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Hyperspectral images of grapevine 
leaves including healthy leaves 
and leaves with biotic and abiotic 
symptoms
Maxime Ryckewaert1,2 ✉, Daphné Héran1, Jean-Philippe trani1, Silvia Mas-Garcia1, 
Carole Feilhes3, Fanny Prezman3, Eric Serrano3 & Ryad Bendoula1

A hyperspectral imaging database was collected on two hundred and five grape plant leaves. Leaves 
were measured with a hyperspectral camera in the visible/near infrared spectral range under controlled 
conditions. This dataset contains hyperspectral acquisition of grape leaves of seven different varieties. 
For each variety, acquisitions were performed on healthy leaves and leaves with foliar symptoms caused 
by different grapevine diseases showing clear symptoms of biotic or abiotic stress on other organs. For 
each leaf, chemical measurements such as chlorophyll and flavonol contents were also performed.

Background & Summary
In a context of population increase, reduction of arable lands and global climatic change, agricultural produc-
tion still needs to be increased and secured in a durable way with respect to the environment. Improving plant 
production for food and feed is one of the main challenges for the years to come. To meet this challenge, one 
of the ways is the early and precise identification of biotic and abiotic symptoms on plant leaves (water stress, 
disease, or bacteria).

Optical instruments and especially multispectral (MSI) and hyperspectral imaging (HSI) are relevant tools 
for the automated and non-invasive detection of biotic and abiotic symptoms1–5.

HSI is highly informative because it has both high spectral and spatial resolutions leading to an increased 
use in agricultural applications in recent years. For example, new case studies have emerged in the field of 
plant breeding6, crop monitoring such as water stress detection7, maturity monitoring8, disease detection9,10 or 
prediction of biochemical traits11,12.

Although these various studies are promising, the use of HSI forces current analysis methods to be rethought 
to exploit this rich amount of information6,13,14. The training dataset should be as diverse as possible to enable the 
learning algorithm to be robust. This is particularly true with biological samples which are complex media con-
taining a high variability of response. The data we proposed is designed to be this new kind of HSI library for an 
application in agriculture and more specifically for identification and detection of different stress symptoms at 
the grapevine leaf level. For this purpose, a spectral imaging database15 was collected from two hundred and four 
grapevine leaves. The leaves were measured with a hyperspectral camera in the visible/near infrared spectral 
range under controlled conditions. For each leaf, foliar contents (chlorophyll, epidermal flavonol and nitrogen) 
were measured. This dataset contains the reflectance spectra of grape leaves of seven different varieties. For 
each variety, acquisitions were performed on healthy leaves and leaves with foliar symptoms caused by different 
grapevine diseases showing clear symptoms of biotic or abiotic stress.

A subset of this database has already been used to produce a new method of HSI data processing. We have 
recently published this new approach9. In this work, combination of multivariate curve resolution-alternating 
least squares (MCR-ALS) and factorial discriminant analysis (FDA) is proposed to detect the Flavescence dorée 
grapevine disease from hyperspectral imaging. By making this data available to other researchers, we hope to 
encourage them to do similar work and proposed new algorithms.
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Methods
Samples and analyses. Leaves were collected during September 2020, in the south of France (GPS coor-
dinates: 43.84208931745156, 1.8538190583140841). Infected leaves were chosen in order to represent at best 
the variability of the available symptoms in terms of severity and stage of infection. A similar proportion of the 
number of leaves of both red and white varieties was collected for this experiment. In total two hundred and four 
leaves were collected in the fields. All information about leaves and their respective symptoms is summarized in 
Tables 1–3.

Each leaf and each vine from which it was extracted were diagnosed by a phytopathology expert. Leaves 
were extracted from the front face, in the middle of the canopy to avoid the younger and older organs which 
can present a different physiological behaviour. Regarding healthy leaves, they were selected in the same regions 
and they were asserted absent of any symptom. However, some of the healthy sample can exhibit slight forms of 
mechanical or chemical wounds (due to protection, management operations) and some slight damage caused by 
insects. In order to guarantee that leaf physiological status were not affected by the time delay between collection 
and acquisition, leaves were carried in controlled temperature and hydric conditions.

Foliar content measurements. For each leaf, foliar content measurements (see Figs. 1–3) were made 
before sampling. These measurements were carried out with a Dualex 311 scientific+ TM (Force-A, Orsay, 
France) to provide chlorophyll a + b content (µg/cm2), epidermal flavonols content (in % of relative absorbance) 
and the crop nitrogen status index (NBI).

Hyperspectral image acquisition. Hyperspectral images were acquired on each individual leaf under 
controlled conditions in laboratory. Acquisitions of leaf images were performed with a hyperspectral camera (IQ, 
Specim, Finland). Imaging of grapevine leaves was carried out in the spectral range of 400–900 nm, with a spec-
tral resolution of 7 nm. Illumination was provided by a halogen lamp (Arrilite 750 Plus ARRI, Munich, Germany) 
and constant angles of −50° and 50° were maintained between the axes of the halogen lamp and the axis of the 
hyperspectral camera.

For each sample image, the intensity of the reflected light I(λ) was measured. The dark current Id(λ) i.e. signal 
without light, was recorded for each acquisition and then subtracted. The intensity I0(λ) of the light reflected by a 
certified standard reference (Labsphere, SRS-40-010) was measured to standardise spectra and to prevent from 
non-linearities of all the instrumentation components (light source, lens, fibers and spectrometer). From these 
measurements, a reflectance image R(λ) was calculated for each sample, as follows:
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Variety
Number of 
infected leaves

Number of 
healthy leaves

Colombard 18 5

Duras 19 3

Fer 20 5

Gamay 39 11

Loin de l’œil 20 5

Mauzac 20 5

Chardonnay 24 11

Table 1. Number of healthy and infected leaves per variety.

Symptom Number of leaves

Healthy 40

Flavescence dorée (Scaphoideus titanus) 80

Water stress 13

Wood diseases 17

Buffalo treehopper (Stictocephala bisonia) 17

Green leafhopper (Empoasca vitis) 20

Senescence 8

Deficiency 1

Chlorosis 1

Discoloration 1

Damage (hail, harvester) 5

Downy mildew (Plasmopara viticola) 2

Table 2. Number of images per symptom.
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Where λ is the wavelength, I(λ) and I0(λ) are the images of the reflected light intensity from the sample and from 
the reference respectively, and Id(λ) is the image in dark

Data Records
The dataset, mentioned scripts and algorithms are available in the INRAE data repository15.

This dataset contains two table files (description.csv and description_variables.csv), a folder called Data/ 
and another folder called Code/. The first table file (description.csv) contains the experiment factors and the 

Variety Symptom Number of leaves

Gamay Flavescence dorée 10

Gamay Healthy 5

Gamay Water stress 2

Gamay Buffalo treehopper 2

Gamay Green leafhopper 3

Gamay Wood diseases 1

Gamay Buffalo treehopper 1

Gamay Green leafhopper 1

Fer Flavescence dorée 10

Fer Healthy 5

Fer Water stress 5

Fer Buffalo treehopper 3

Fer Wood diseases 1

Fer Green leafhopper 1

Duras Flavescence dorée 9

Duras Healthy 3

Duras Water stress 2

Duras Buffalo treehopper 3

Duras Green leafhopper 3

Duras Deficiency 1

Duras Senescence 1

Gamay Flavescence dorée 9

Gamay Healthy 6

Gamay Water stress 4

Gamay Buffalo treehopper 5

Gamay Green leafhopper 1

Colombard Flavescence dorée 10

Colombard Healthy 5

Colombard Wood diseases 4

Colombard Green leafhopper 2

Colombard Chlorosis 1

Colombard Discoloration 1

Loin de l’œil Flavescence dorée 10

Mauzac Flavescence dorée 10

Loin de l’œil Damaged 5

Loin de l’œil Wood diseases 3

Loin de l’œil Green leafhopper 4

Loin de l’œil Senescence 3

Mauzac Healthy 5

Mauzac Buffalo treehopper 3

Mauzac Mildew 2

Mauzac Wood diseases 2

Mauzac Green leafhopper 1

Mauzac Senescence 2

Chardonnay Flavescence dorée 12

Chardonnay Healthy 11

Chardonnay Wood diseases 6

Chardonnay Senescence 1

Chardonnay Green leafhopper 4

Table 3. Number of images per symptom per variety.
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Fig. 1 Histogram of chlorophyll content values.
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Fig. 3 Histogram of NBI values.
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Fig. 2 Histogram of flavonols content values.
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reference measurements. The second table file (description_variables.csv) contains information about variables 
used in the first table file.

The folder ‘Data/’ contains 204 folders corresponding to 204 hyperspectral image acquisitions. In this 
data directory (see Fig. 4), each folder is named with the acquisition date followed by the acquisition num-
ber (YYYY-MM-DD_NBR). Reflectance image files are located in the ‘results’ directories and the acquisition 
date and acquisition number are specified in the file name (REFLECTANCE_YYYY-MM-DD_NBR.dat). These 
reflectance images are stored in ENVI format containing binary data (.dat) and header file (.hdr). Each reflec-
tance image (.dat) is around 214 MB. The first and the second dimensions correspond to a spatial position (pix-
els) forming the image composed of 512 × 512 pixels (see Fig. 5). The third dimension refers to spectral variables 
with two hundred and four spectral bands.

A Hyperspectral acquisition

The RGB Image calculated from the hyperspectral image 

A manifest listing all the files

The header file (.hdr) of the raw hyperspectral image

The data (.raw) of the raw hyperspectral image

The header file (.hdr) of the dark reference

The data (.raw) of the dark reference

The header file (.hdr) of the white reference

The image data (.raw) of the white reference

The metadata file (.xml) containing imageID as globalTag

The header file (.hdr) of the reflectance hyperspectral image

The data (.dat) of the reflectance hyperspectral image

RGB Image calculated from the hyperspectral image 

The true RGB Image acquired with RGB sensor

The true RGB Image acquired with RGB sensor with the scene

The true RGB Image acquired with RGB sensor (viewfinder) 

Fig. 4 Tree structure of acquisition files.

Fig. 5 An RGB image reconstructed from a hyperspectral image.
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For each image acquisition, raw image, white reference and dark measurements are available in the directory 
named ‘capture’. All these raw data are also stored in ENVI format.

For each hyperspectral acquisition, a metadata file is produced containing information about the acquisi-
tion. In this metadata file, an identification key called global_tag allows the image to be linked to factors in the 
experimentation or to reference values.

technical Validation
We analysed part of this dataset in a first publication to classify images of diseased (flavescence dorée) and 
healthy leaves9. In this study, we proposed a methodology based on multivariate curve resolution-alternating 
least squares (MCR-ALS) and factorial discriminant analysis (FDA). In this publication we tried to classify each 
leaf pixel for each image. For the total pixels to be classified (both infected and healthy pixels), the classification 
rate achieved 85.1%. Another classification result at the leaf (image) level was also investigated. The classification 
of an image was obtained by counting the majority class among the image pixels. Out of the thirty seven test 
images, only two images were misclassified with this method.

The aforementioned publication was based on a subset of the whole dataset. Indeed, the exploitation of this quan-
tity of spectral images to differentiate as many symptoms is a real challenge. Due to the complexity of this dataset 
and the difficulty of providing masks for each symptom, for initial exploration the average spectrum of the database 
(see Fig. 6) is calculated, as well as the average spectra per variety (see Fig. 7) and per symptom (see Fig. 8). Then an 
exploration of the average spectra per leaf is performed by a Principal Component Analysis (PCA).

Mean spectrum and standard deviation of the entire database. The mean spectrum and standard 
deviation are calculated from all spectra of the two hundred and four measured leaves (see Fig. 6). The average 
spectrum is typical of a vegetation spectrum. Low values between 400 nm and 500 nm are mainly related to carot-
enoid and chlorophyll (a + b) contents. The characteristic large peak around 550 nm is attributed to the anthocy-
anin content. The spectral region between 620 nm and 680 nm is related to the chlorophyll content of the leaves. 

Fig. 7 Average spectra per variety.

Fig. 6 Mean spectrum and standard deviation of all leaf pixels.
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The red edge between 680 and 750 nm is also typical of vegetation, separates the visible spectral region related to 
pigments and the plateau between 750 and 1000 nm related to the leaf structure.

Average spectra per variety and per symptom. From this database, average spectra are calculated per 
variety (see Fig. 7) and per symptom (see Fig. 8). Out of the seven average spectra per variety (see Fig. 7), two 
spectrum shapes are identified in the spectral region between 500 nm to 700 nm. The three spectra correspond-
ing to ‘Duras’, ‘Fer’ and ‘Gamay’ varieties have lower values around 550 nm while the spectra corresponding to 
‘Chardonnay’, ‘Colombard’, ‘Loin de l’œil’ and ‘Mauzac’ have higher values. This difference seems to be related 
to the anthocyanin content in leaves depending on whether the variety is red or white.

Figure 8 displays the average spectrum for each of the twelve symptoms. The spectrum corresponding to the 
healthy leaf modality shows the same similarities of a typical vegetation spectrum as described above (see Fig. 6). 
Although for each symptom the spectra are averaged across all grape varieties, differences are noticeable. For 
example, ‘deficiency’ and ‘chlorosis’ symptoms differ from other symptoms with higher values from 500 nm 
to 650 nm. Two other symptoms (‘buffalo treehopper’ and ‘water stress’) also differ in the same spectral range 
but with lower values. The differences between the average spectra between 600 nm and 700 nm, as well as the 
dynamics of the red-edge or the shape of the plateau would require further processing.

Principal component analysis. For each image, an average spectrum was calculated from the leaf pixels. 
Then a principal component analysis was performed on these two hundred and four average spectra. Figure 9 
shows PCA scores obtained for the two first components. A few combinations (variety, symptoms) show a par-
ticular behaviour on this score plot. For example, scores of ‘Chardonnay’ combined with ‘flavescence dorée’ have 
positive scores on both axes and are opposite to the negative scores of healthy ‘Chardonnay’ modality. For other 
varieties and symptoms, scores are more evenly distributed along the two axes. This is can be explained by the 
preponderance of the ‘flavescence dorée’ and ‘heatlhy’ observations. Another notable observation is the clear 
distinction of some observations from the rest of the group, such as ‘senescence’ combined with the ‘Duras’ and 
‘Mauzac’ variety on PC1 and ‘senescence’ combined with ‘Loin de l’œil’ variety on PC2.

Fig. 9 Scores obtained on the two first components.

Fig. 8 Average spectra per symptom.
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These results should be considered in relation to the loadings of the principal components concerned (see 
Figs. 10, 11). The first component corresponds to an inverted overall shape of the spectra (see Fig. 6) which 
could correspond to the total amount of signal received by the camera. The second component shows loadings 
of positive values between 400 nm and 600 nm with a strong positive value in the 550 nm region which is related 
to anthocyanin content. This technical validation was only carried out on the first two principal components of 
a PCA. The availability of this dataset would allow further study through other principal components or even 
more generally using other methods. This dataset offers great perspectives for further study, such as classifica-
tion capabilities according to confounding factors, assessment of spectral variability of symptoms according to 
variety or improvement of the labelling process by selecting only symptomatic areas of the leaf.

Usage Notes
There are many advantages to this database. Firstly, it provides hyperspectral images covering a multitude of grapevine 
symptoms, including different grape varieties. One of the benefits of this dataset lies in the possibility of developing 
new analysis methods. On a more practical level, it will be used to study the potential of hyperspectral imaging to 
detect the symptoms proposed and to identify confounding factors. In addition, measurements are carried out under 
controlled conditions, guaranteeing the reliability and accuracy of the data collected. In particular, measurements are 
carried out on whole leaves, which generates an abundance of pixels available.

This dataset has certain limitations. Firstly, there may be an imbalance between the number of images avail-
able for each grapevine symptom, which could potentially bias the results. Another limitation is that the small 
number of images available can be limiting for deep learning approaches.

Code availability
A Python code example is provided in the ‘Code’ folder. This example helps the reader to understand how to open 
hyperspectral images, to extract spectra, or to display the results obtained after a Principal Component Analysis 
(PCA) applied on the first image and a PCA on all average spectra where one average spectrum is obtained per 
leaf/image.

Received: 6 February 2023; Accepted: 13 October 2023;
Published: xx xx xxxx

Fig. 11 Loadings of the second component.

Fig. 10 Loadings of the first component.
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