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Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of
cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has
been described, but its physiological role is not yet known. The domestic pig provides an alternative to
traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antag-
onists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig
CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant
porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human
CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and
dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demon-
strating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human
IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we
discuss the molecular basis for the species specificity.

� 2012 Elsevier Ltd. Open access under CC BY license.
1. Introduction

Macrophage Colony-Stimulating Factor (CSF-1) is required for
the proliferation, differentiation and survival of cells of the mono-
nuclear phagocyte lineage [1–3]. CSF-1 signals through a protein
tyrosine kinase receptor, CSF-1R, which in adults is restricted in
its expression to myeloid cells [4]. The three-dimensional structure
of the CSF-1/CSF-1R complex has been reported [5]. Cells of mesen-
chymal lineages (fibroblasts, osteoblasts, myoblasts, adipocytes,
endothelial cells) produce CSF-1 constitutively, and the protein is
detected in the circulation at biologically active concentrations
[6,7]. In keeping with these cellular sources, almost every tissue
in the body can produce CSF-1 [8]. Elevated levels in uterus, endo-
metrium, oviducts and conceptus suggest that CSF-1 functions in
foetal growth and development, consistent with expression of
the receptor in placental trophoblast cells [9–11].

In mammals, alternative splicing from the CSF-1 locus generates
several isoforms. Garceau et al. [12] demonstrated that the two
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major mRNAs are also present in birds. All functional CSF-1 iso-
forms share a biologically-active 149 residue growth factor do-
main, making CSF-1 a member of the four helix bundle
hemopoietin family [13]. This domain contains four intra-chain
disulphide bridges, and forms a disulphide-linked dimer [14]. The
avian protein lacks the inter-chain disulphide bond, but like the re-
lated stem cell factor, still forms functional homodimers [12]. The
smallest protein product of the CSF-1 gene is a cell surface glyco-
protein with a transmembrane region and a cytoplasmic tail. Lar-
ger isoforms include a glycoprotein and proteoglycan, containing
a variable spacer domain which permits cleavage from the cell sur-
face to generate the soluble cytokine [8,13,15].

Mice and rats with a homozygous mutation in their CSF-1 gene
are deficient in biologically active CSF-1 (op/op mice and tl/tl rats)
and born with congenital osteopetrosis, reduced tissue macro-
phage populations and multiple developmental abnormalities
[1,2,16]. Expression of full-length CSF-1 transgene or cell surface
CSF-1 can fully correct the op/op mice weight defects [17,18]. These
findings suggest that the regulated expression of the distinct CSF-1
isoforms is biologically significant [16].

A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been
identified in humans and mice [19], perhaps explaining the more
penetrant phenotype of a csf1r (�/�) mutation in mice compared
to the op/op [20]. Recent solution of the crystal structure of
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hIL-34 confirmed the prediction [12] that it belongs to the short
four helical cytokine family that includes stem cell factor and Flt3L
as well as CSF-1 [19,21]. The two ligands, one receptor, relationship
was found to be conserved in birds and a co-evolution analysis
indicated that the two ligands probably bind to distinct regions
of the receptor [12]. Solution of the crystal structure of IL-34 bound
to CSF-1R indicated that although both IL-34 and CSF-1 bind to the
CSF-1R D2 and D3 domains, no single interaction with CSF-1R is
shared between IL-34 and CSF-1 [21,22]. In keeping with this view,
antibodies have been produced which can block CSF-1, but not IL-
34 binding to the receptor [23]. Nandi et al. [24] have reported
non-overlapping distributions of the two ligands in developing
brain, and implicated IL-34 in brain development. IL-34 deficiency
in a knockout mouse appears to generate a specific deficiency in
microglia and Langerhans cells [25].

Molecular tools targeting either CSF-1 or CSF-1R have proved
very useful, allowing investigation of the myeloid population
(macrophages/monocytes). Antibodies against the CSF-1R devel-
oped for the mouse and human ligands (CD115) are commonly
used as markers to enable purification of blood monocytes in mice
and humans [26,27]. Injection of recombinant CSF-1 into mice and
humans increases monocyte and macrophage numbers [2,28].
Conversely, antibodies that block receptor binding can deplete a
subset of monocytes and the majority of tissue macrophages
[29]. For these reasons, CSF-1 and its receptor have been recogni-
sed as candidate drug targets in humans [30–33].

Much of our knowledge of CSF-1 biology derives from studies of
rodents. We have reviewed elsewhere the evidence of a role for
macrophages, and CSF-1, in the growth hormone/insulin like
growth factor-1 axis [16]. However, we have also demonstrated
that the responses of mouse and human macrophages to the addi-
tion of CSF-1 are quite different; in mice CSF-1 is associated with
induction of genes involved in wound repair, such as urokinase
plasminogen activator, whereas in humans, CSF-1 induces genes
involved in cholesterol biosynthesis [34]. The domestic pig has
many similarities with humans, especially in terms of innate im-
mune responses [35]. In the current study, we aimed to express
porcine CSF-1, and the CSF-1 receptor, and to develop a simple bio-
assay to enable the study of CSF-1 and IL-34 biology in this species.

2. Materials and methods

2.1. Cell culture and reagents

The Ba/F3 cell line, transfected Ba/F3 cells and primary bone
marrow cells were cultured in RPMI 1640 medium (Sigma–Aldrich,
Dorset, UK) containing 10% HI-FCS (Sigma), 2 mM L-glutamine
(35050-61 Invitrogen Ltd., Paisley, UK), 100 lg/ml streptomycin,
and 100 U/ml penicillin (15140 Invitrogen Ltd., Paisley, UK).
Untransfected Ba/F3 cells were maintained in medium containing
10% conditioned medium from X63 Ag8-653 myeloma cells
carrying an expression vector for IL-3 [36,37]. Unless otherwise
stated, transfected Ba/F3 cells and primary bone marrow cells were
maintained in medium with 104 U/ml rh-CSF-1 (a gift from Chiron
Corp., Emeryville, CA, USA). HEK293T cells (American Type Culture
Collection, Manassas, VA, USA) were cultured in DMEM (Sigma–Al-
Table 1
Table of final primers used for cloning of porcine CSF-1, and CSF-1R. A Kozak
optimal translation initiation (Kozak 1987).

Primer name Primer sequence 50–30

Porcine CSF-1 forward AGTATGGCCGCGCCGGG
Porcine CSF-1 reverse CTGGCTGGAGCATTTAGCAA
Porcine CSF-1R forward ACCATGGGCCTGGGCACGC
Porcine CSF-1R reverse GCAGAACTGGTAGGTGTTGG
drich, Dorset, UK) supplemented with 10% HI-FCS (Sigma), 2 mM L-
glutamine (Invitrogen), 100 lg/ml streptomycin (Invitrogen),
100 U/ml penicillin and 0.1 mM nonessential amino acids (Invitro-
gen). All cell lines and primary bone marrow cells were incubated
at 37 �C with 5% CO2.

2.2. Total RNA extraction

All procedures performed on these animals were in accordance
with national regulations and established guidelines and were re-
viewed and approved by the Institutional Animal Care and Use
Committee or Ethical Review Panel. Spleen, liver and mesenteric
lymph node samples were collected from a healthy, 3-year-old
male, Large White � Landrace pig, euthanised by intramuscular
injection of ketamine followed by captive bolt. Total RNA was pre-
pared using Qiagen RNeasy kit (Qiagen, Crawley, UK) according to
manufacturer’s instructions, including a DNase digestion step. Por-
cine specific cDNA was produced using 1ug of total RNA and re-
versed transcribed using ImPromII (Promega, Southampton, UK).
Successful cDNA production without genomic DNA contamination
was demonstrated using porcine HPRT primers [38].

2.3. Expression cloning of porcine CSF-1 and CSF-1R

For mammalian expression of porcine CSF-1 and CSF-1R, PCR
primer pairs (Table 1) were designed for amplification of biologi-
cally active porcine CSF-1 (amino acids 1–149) and full-length
CSF-1R from the predicted porcine CSF-1 cDNA sequence (Pre-
Ensemble BLA_hbFhA8F3M), and based on homologous regions of
human, mouse and bovine CSF-1R for porcine CSF-1R, since the
corresponding porcine genomic sequence was not available at
the time of primer design.

Amplification was achieved using porcine cDNA and expand
high fidelity enzyme (Roche, Mannheim, Germany) with 3 mM
MgCl2 (CSF-1R) or 1 mM MgCl2 (CSF-1) using an initial cycle of
94 �C for 2 min (3 min for CSF-1R), followed by 30 cycles (35 for
CSF-1R) of 94 �C for 30 s, 60 �C for 30 s (56 �C for CSF-1R), 72 �C
for 3 min and one cycle of 72 �C for 10 min. PCR products were
gel-purified using QIAquick gel extraction kit (Qiagen) and cloned
in frame with V5-His C-terminal tag of pEF6/V5-His expression con-
struct using TOPO cloning kit (Invitrogen). DNA sequencing was
performed by DNA Sequencing & Services (MRCPPU, College of Life
Sciences, University of Dundee, Scotland, www.dnaseq.co.uk) using
Applied Biosystems Big-Dye Ver 3.1 chemistry on an Applied
Biosystems model 3730 automated capillary DNA sequencer.

For bacterial expression of porcine CSF-1, the sequence corre-
sponding to the active fragment of porcine CSF-1 (Ser36–Arg189)
was codon optimised for expression in Escherichia coli and synthe-
sized by Blue Heron Biotechnologies (WA, USA). The sequence was
engineered with a BspHI restriction site at the 50 end and an EcoRI
restriction site at the 30 end and cloned into the expression plasmid
pET-28(b) using the complimentary restriction sites NcoI and
EcoRI. The resulting plasmid, pTLW53, was transformed into MAX
Efficiency� DH5a™ Chemically Competent E. coli according to the
manufacturer’s protocol (Invitrogen, CA, USA). A kanamycin
resistant transformant was selected and the plasmid sequenced
sequence (bold in sequence) was included in both forward primers for

Tm (�C) Size (bp)

61.3 543
AGCT 59.9 –

64.6 2904
GTTGCAG 57.7 –

http://www.dnaseq.co.uk


D.J. Gow et al. / Cytokine 60 (2012) 793–805 795
to verify the error-free ORF. The pTLW53 plasmid was isolated via
QIAprep� spin miniprep kit (Qiagen, CA, USA) according to the
manufacturer’s recommendations and transformed into One Shot�

BL21 Star™ Chemically Competent E. coli (Invitrogen, CA, USA).
An overnight TB/Kan50 broth of pTLW53/One Shot� BL21 Star™

E. coli incubating at 37 �C with 225 rpm shaking was refreshed 1:10
into 1 l of TB/Kan50 broth into baffled, vented 2L flasks. Protein
expression was induced with 0.5 mM IPTG, final concentration,
with incubation conditions continued at 37 �C and 300 rpm shak-
ing. After 2 h induction, the culture was centrifuged and the
E. coli pellet was stored at �80 �C.

Frozen cell pellets from E. coli cell culture were suspended in
five volumes of lysis buffer (50 mM Tris pH 8.5, 5 mM EDTA) and
lysis was completed by passing the suspension through a Microflu-
idizer. Lysate was centrifuged and insoluble pellets were washed in
1% Trition X-100, and 5 mM EDTA. Inclusion body pellets were sus-
pended in DEAE buffer (15 mM Tris pH 8.5, 8 M Urea, 10 mM DTT,
1 mM EDTA), and mixed at room temperature for 60 min. Follow-
ing clarification, the soluble protein was loaded onto a DEAE Se-
pharose column and eluted with a gradient of 0–150 mM NaCl in
buffer containing 8 M Urea. Protein fractions containing pCSF-1
were pooled and diluted slowly into two parts redox buffer
(50 mM Tris pH 8.5, 5 mM EDTA, 1 mM reduced glutathione,
1 mM oxidised glutathione). Protein was dialysed against redox
buffer overnight and dialysis buffer exchanged to contain 0.5 mM
reduced glutathione and 1 mM oxidised glutathione. Refolded
pCSF-1 dimer was loaded onto a Q Sepharose column equilibrated
with 50 mM Tris pH 8.5, 5 mM EDTA. Protein was eluted with a 10
BV gradient of 0–250 mM NaCl. The pooled pCSF-1 was dialysed
against PBS and sterile filtered prior to use. Protein concentration
was calculated by UV absorbance at 280 nm.
2.4. Generation of stable cell lines

For generation of stable Ba/F3 cells expressing porcine CSF-1R,
5 � 106 Ba/F3 cells were transfected by electroporation (300 V,
975 lF) with 10 lg DNA (pEF6_pCSF-1R or empty pEF6 DNA), or
no DNA, and selected with 30 lg/ml blasticidin (Invitrogen) and
10% IL-3 for 6 days prior to further selection with 30 lg/ml blastic-
idin and 104 Units/ml of rh-CSF-1. For generation of stable
pEF6_pCSF-1 HEK293T cells, 0.8 � 106 cells/well of a six well plate
were plated with antibiotic-free DMEM for 24 h, followed by trans-
fection with 4 lg DNA (pEF6_pCSF-1, or empty pEF6 DNA), or no
DNA, using Lipofectamine 2000 (Invitrogen) according to manufac-
turer’s instructions. Selection of stable cells was achieved by the
addition of 10 lg/ml blasticidin (Invitrogen) after 48 h.
2.5. Immunoblotting

Whole cell lysate was prepared by lysing 0.5 � 106 cells in 2%
SDS 10 mM Tris buffer and boiling for 10 min at 100 �C. 100 ll of
centrifuged supernatant from stably transfected HEK293T cell cul-
tures of pEF6_pCSF-1, and empty pEF6 was also prepared. Protein
concentration was determined using DC protein assay (Bio-Rad,
Hercules, CA, USA) with 10 lg of protein mixed with Laemmli buf-
fer (Invitrogen) and 5 mM DTT. Samples were run on a 4–12% gra-
dient precast SDS–PAGE gel (Bio-Rad) and transferred onto
polyvinylidene difluoride membrane, as per manufacturer’s direc-
tions (Bio-Rad). The membrane was blocked with 5% skimmed milk
powder in TBS-Tween 20 at 4 �C overnight, prior to being washed
and probed with 1:5000 dilution of mouse anti-v5 tag antibody
(MCA1360G, AbD Serotec, Raleigh, NC, USA) and 1:5000 dilution
of anti-mouse IgG HRP conjugated antibody (7076, Cell Signalling
Technology, Beverly, USA,) and detected using enhanced chemilu-
minescence (ECL) reagents (Amersham, GE Healthcare, UK). b-Ac-
tin (Santa Cruz Biotechnology INC, sc-4778) was used at 1:200
dilution as a loading control.
2.6. Bone marrow differentiation

Pig bone marrow cells were obtained by flushing the bone mar-
row from five caudal ribs with 20 ml of complete RPMI with 5 mM
EDTA using a bone marrow biopsy/aspirate needle (Cardinal
Health, USA). For each condition, 0.25 � 106 cells were pelleted
and re-suspended in 4 ml of complete RPMI containing superna-
tant from empty pEF6 or pEF6_pCSF-1 transfected HEK293T cells
(100%, 80%, 50% and 20%). Cells were plated into 60 mm bacterio-
logical plates and incubated for 10 days at 37 �C with 5% CO2.

With owners consent, 0.5 ml of surplus feline bone marrow
from clinical diagnostic investigation of a 2 year old, neutered
male, DSH cat was obtained from a bone marrow aspirate of the
left humerus using a bone marrow biopsy/aspirate needle (Cardi-
nal Health, USA) and placed in EDTA. Canine bone marrow was col-
lected post-mortem with owner’s consent from a 3-year-old male
entire Staffordshire Bull Terrier dog which was euthanised for
behavioural reasons. Bone marrow was flushed from the left femur
with 20 ml of RPMI and 5 mM EDTA using a bone marrow biopsy/
aspirate needle (Cardinal Health, USA). For both feline and canine
bone marrow cultures, 10 � 106 cells were cultured in 60 mm bac-
teriological plates with 4 ml RPMI, supplemented with either
104 Units/ml rh-CSF-1, or 300 ng/ml porcine CSF-1 and incubated
for 12 days at 37 �C with 5% CO2.

Mouse bone marrow cells were flushed from the femurs of an 8-
week-old male BALB/c mouse with 10 ml complete RPMI and a
27 g needle, and plated in 100 mm bacteriological plates with com-
plete RPMI supplemented with 104 Units/ml rh-CSF-1 for 5 days at
37 �C with 5% CO2.
2.7. Cell viability assays

Stable Ba/F3 cells expressing porcine CSF-1R were maintained
in culture with complete RPMI supplemented with either
104 Units/ml rh-CSF-1 or 10% IL-3 conditioned medium prior to
MTT assay. 2 � 104 cells/well (Ba/F3 cells and Ba/F3 transfectants),
or 5 � 104 cells/well (mouse BMM) of a 96 well plate were plated
in triplicate or quadruplicate and appropriate treatment (serial
dilutions of rh-CSF-1, rm-CSF-1 (R&D systems 416-ml) rhIL-34
(R&D Systems 5265), or rmIL-34 (R&D Systems 5195), or superna-
tant from pEF6_pCSF-1 were added to make a total volume of
100 ll per well. Cells were incubated for 48 h at 37 �C with 5%
CO2. For Ba/F3 cells, 10 ll of MTT (Sigma Aldrich M5655) stock
solution (5 mg/ml) was added directly to each well to achieve a fi-
nal concentration of 0.5 mg/ml and incubated at 37 �C for 3 h prior
to solubilisation overnight. For adherent mouse BMM cells, culture
medium was replaced with 50 ll of 1 mg/ml MTT solution and
incubated for 1 h at 37 �C. MTT solution was removed and tetrazo-
lium salt solubilised with 100 ll of solubilisation agent (0.1 M HCl,
10% Triton X-100 and isopropanol) followed by incubation at 37 �C
with 5% CO2 for 10 min. Plates were read at 570 nm with reference
wavelength of 405 nm.
2.8. EC50 calculation

The EC50 for rh-CSF-1 and bacterially produced porcine CSF-1 in
the Ba/F3pCSF-1R MTT cell viability assay were calculated from
dose responses performed in triplicate or quadruplicate. Data
was analysed using GraphPad Prism software using nonlinear
regression curve fit. The R2 (coefficient of determination) values
for all curve fits were >0.90.
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2.9. 3D modelling of contact amino acids

3D models in PDB format were generated with 3D-Jigsaw
(http://bmm.cancerresearchuk.org/3djigsaw/) using structure-
based alignments (performed by Domain Fishing). 3D models of
human IL-34-CSF-1R (PDB 4DKD), mouse IL-34-CSF-1R (PDB
4EXP), and mouse CSF-1 (PDB 3EJJ) were obtained and viewed in
FirstGlance in Jmol (http://firstglance.jmol.org). Human and pig
CSF-1 were generated using 3D-Jigsaw with the mouse CSF-1
structure as template (3EJJ) and pig CSF-1R was generated using
human CSF-1R as template (4DKD chain X). Contact amino acids
between IL-34, CSF-1 and CSF-1R were identified using recently
published data [5,21,22]. The non-conserved contact amino acids
of human and mouse IL-34, CSF-1 and CSF-1R were highlighted.
3. Results

3.1. Cloning and sequence of porcine CSF-1 and CSF-1R

A partial fragment of porcine CSF-1 cDNA was cloned previously
and used to demonstrate the existence of multiple isoforms, simi-
lar to those in humans, in conceptus and uterine tissues of the pig
[10]. However, the sequence was not reported. For our study, por-
cine CSF-1 cDNA was PCR-amplified from liver, mesenteric lymph
node and spleen cDNA templates. Agarose gel electrophoresis of
the PCR products revealed the expected single band size of approx-
imately 550 base pairs in all three-tissue samples, with the spleen
sample producing the most product (data not shown). For CSF-1R,
PCR amplification using porcine spleen cDNA template identified
the expected single band size of approximately 3000 base pairs.
The coding regions for porcine CSF-1 and CSF-1R were cloned in
Fig. 1. Alignment of cloned porcine CSF-1 with human, mouse, canine and feline CS
clustalw2/) and demonstrates the high level of homology that exists between porcine and
represents acidic amino acids, magenta denotes basic amino acids, and the green co
represented by ‘‘⁄’’, conserved substitutions are represented by ‘‘:’’ and semi-conserved
missing from feline CSF-1).
frame with V5-His C-terminal tag of pEF6 V5-His TOPO plasmid.
The DNA and protein sequences were confirmed by sequence anal-
ysis. Multiple species alignments of CSF-1 and CSF-1R were consis-
tent with the published porcine CSF-1, and CSF-1R sequences
(ENSEMBL ENSSSCT00000007466 for CSF-1 and ENS-
SSCP00000015371 for CSF-1R). The cloned porcine CSF-1 shares
99% amino acid homology with the reference genomic sequence
in ENSEMBL. A single nucleotide change in the signal peptide
was associated with a single amino acid change at position 2 of
the CSF-1 signal peptide from Thr to Ala. This mutation may be
due to PCR proof-reading error rather than single nucleotide poly-
morphism (SNP) since other species (cow, human, mouse, guinea
pig and rat) all have Thr present at amino acid 2. The cloned por-
cine CSF-1 cDNA sequence is 543 base pairs in length and encodes
a 32 amino acid signal peptide (Met1–Ala32) and a 149 amino acid
mature protein in which the biological activity is predicted to be
maintained (Glu33–Ser190). The porcine CSF-1 peptide sequence
has 87% and 84% homology with human and mouse CSF-1 amino
acid sequences respectively, while human and mouse share 80%
homology (Fig. 1). The seven Cys residues that form the three in-
tra-chain disulphide bonds and the single inter-chain disulphide
bond required for biological activity [39] are conserved. The resi-
dues involved in the binding of porcine CSF-1 to CSF-1R are shown
in Table 2 together with mouse and human data [5].

The cloned porcine CSF-1R is 2904 base pairs in length which
encodes full-length CSF-1R of 969 amino acids, including a 19 ami-
no acid signal peptide (Met1–Gly19) and a 950 amino acid mature
chain (Val20–Cys969). The 520 amino acid extracellular segment
contains the predicted ligand binding domains (D1–D5) and a 25
amino acid hydrophobic transmembrane region. The 430 amino
acid intracellular region contains the tyrosine kinase domain and
ATP binding region required for catalytic activity of the receptor
F-1. Alignment was performed using Clustal W (http://www.ebi.ac.uk/Tools/msa/
human CSF-1. The red colour represents small hydrophobic amino acids, blue colour
lour corresponds to hydrophilic or polar amino acids. Identical amino acids are
substitutions are represented by ‘‘.’’. (Note: signal peptide amino acid sequence is
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Table 2
Table of contact amino acids between mouse, human and porcine CSF-1 and CSF-1R.

CSF-1 mouse CSF-1 pig CSF-1 human CSF-1R mouse CSF-1R pig CSF-1R human

Asp59 Asp Asp Arg146 Arg Arg
Glu78 Val Val Lys151 Gln His
Glu78 Val Val Lys168 Lys Lys
Met10 Met Met Tyr257 Tyr Tyr
Asn13 Asp Ser Asp251 Asp Asp
Gly14 Gly Gly Arg146 Arg Arg
Gln58 Gln Gln Arg150 Arg Arg
Asp62 Asp Asp Arg150 Arg Arg
Asn85 Leu Leu Leu170 Ile Ile
His6 Asn Tyr Val231 Gly232 Val, His Val, Asn
His9 His His Val231 Ser250 Tyr257 Val, Ser, Tyr Val, Ser, Tyr
Met10 Met Met Val231 Tyr257 Val and Tyr Val Tyr
Gly12 Gly Gly Asp251 Asp Asp
Asn13 Asp Ser Asp251 Asp Asp
Gly14 Gly Gly Asp251 Phe252 Asp, Phe Asp, Phe
His15 His His Phe252 Tyr257 Phe, Tyr Phe, Tyr
Phe55 Leu Leu Arg146 Arg Arg
Gln58 Gln Gln Arg142 Arg146 Leu, Arg Arg, Arg
Asp62 Asp Asp Leu149 Arg150 Leu, Arg Met, Arg
Arg66 Arg Arg Arg150 Arg Arg
Arg79 Gln Gln Phe252 Asn255 Phe, Asn Phe, Asn
Gln81 Gln Gln Leu149 Leu Met
Glu82 Glu Glu Val169 Phe Phe
Asn85 Leu Leu Leu170 Ser172 Asn173 Ile, Gly, Gln Ile, Ser, Gln

Bold indicates conserved amino acids between these three species.
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upon binding of CSF-1 or IL-34 to the extracellular domain. Com-
parison between species of CSF-1R sequences demonstrates that
porcine CSF-1R shares 80% homology with human CSF-1R and
72% homology with the mouse CSF-1R amino acid sequence, while
human and mouse CSF-1R share 75% amino acid homology (Fig. 2).
In particular, conserved regions of amino acids are noted within
the predicted binding sites for CSF-1 (D2–D3 immunoglobulin do-
main) and IL-34 (D3–D4 interface region of the extracellular do-
main) in human and pig CSF-1R. Further homology also exists
between the signal peptide, transmembrane region and ATP bind-
ing site of the intracellular domain. The ten cysteine residues pres-
ent in the extracellular domain that are most likely responsible for
the tertiary structure of CSF-1R are conserved between human,
mouse and the cloned porcine CSF-1R. The presence of these resi-
dues is a feature shared by other type III receptor kinases family
members e.g. cKIT and PDGF, thus highlighting the evolutionary
origins of these receptor family members [40]. The five tyrosine
residues (Tyr546, Tyr699, Tyr708, Tyr723, Tyr809 and Tyr923) lo-
cated within the CSF-1R intracellular domain, which are phosphor-
ylated in response to CSF-1 binding, thus activating downstream
signalling, are also conserved between human, mouse and porcine
CSF-1R. Based on this high level of conservation between human
and porcine CSF-1R and CSF-1, we predicted that human CSF-1
would bind and activate the porcine CSF-1R.
3.2. Production of porcine CSF-1 from HEK293T cells

To provide an initial source of porcine CSF-1 for in vitro studies,
the pEF6_CSF-1 expression plasmid encoding porcine CSF-1 was
transfected into HEK293T cells using Lipofectamine 2000. Secreted
CSF-1 in the HEK293T supernatant was successfully detected using
Western blotting for the V5 epitope tag encoded by the expression
plasmid. The CSF-1 protein has a predicted weight of 27 KDa. Un-
der non-reducing conditions, two bands of approximately 37 KDa
and 50 KDa were detected, whereas two smaller bands (20 and
25 KDa) were detected in the presence of dithiothreitol (DTT)
(Fig. 3A). These findings suggest that the recombinant protein is
expressed and secreted as a disulphide-linked dimer, and may be
variably glycosylated.
3.3. Production of porcine CSF-1R expressing Ba/F3 cells

To confirm biological activity of secreted porcine pEF6_CSF-1,
we stably transfected the IL-3 dependant Ba/F3 cell line [41], as
previously described for the human receptor [31], with porcine
CSF-1R. Stable clones were initially selected for their survival in
blasticidin, followed by further selection in rh-CSF-1. The expres-
sion of porcine CSF-1R on Ba/F3 cells abrogated the absolute IL-3
dependance of the Ba/F3 cells and permitted a proliferative re-
sponse in response to CSF-1. Parent Ba/F3 cells and Ba/F3 cells
transfected with the empty expression construct (pEF6) which
did not express CSF-1R did not survive in the presence of rh-CSF-
1 upon removal of IL-3.

Western blot analysis of these cells based upon detection of the
V5 epitope tag demonstrated successful expression of porcine CSF-
1R. Prior selection of these cells with rh-CSF-1 and/or IL-3 altered
the levels of receptor expression (Fig. 3B). Growth of Ba/F3 cells
expressing porcine CSF-1R in rh-CSF-1 reduced levels of receptor
expression compared to cells grown in the presence of IL-3 or both
growth factors combined.
3.4. Activation of porcine CSF-1R with CSF-1

Using an MTT cell viability assay, we developed and optimised a
bioassay for assessing the biological activity of secreted CSF-1 by
HEK293T transfection with porcine pEF6_CSF-1, and rh-CSF-1.
The bioassay was optimised for cell number/well, and culture con-
ditions (rh-CSF-1, and/or IL-3) prior to assay, but these variables
did not make a substantive difference to sensitivity. Although IL-
3 was equivalent to rh-CSF-1 in the bioassay in terms of cellular
viability and proliferative response of the Ba/F3 cells expressing
CSF-1R, rh-CSF-1 was used as the standard culture growth factor
to maintain selection pressure for CSF-1R expression. Using the
MTT cell viability assay, the presence of 10% conditioned medium
from the IL-3-expressing cell line allowed survival of both parent
Ba/F3 and Ba/F3 cells expressing porcine CSF-1R. The supernatant
from transfected HEK293T with porcine pEF6_pCSF-1 also main-
tained the viability of the Ba/F3 cells expressing porcine CSF-1R
(Fig. 4A).



Fig. 2. Alignment of the cloned porcine CSF-1R extracellular domain with human, mouse, canine and feline CSF-1R. Alignment was performed using Clustal W (http://
www.ebi.ac.uk/Tools/msa/clustalw2/) and demonstrates the high level of homology that exists between porcine and human CSF-1R. The red colour represents small
hydrophobic amino acids, blue colour represents acidic amino acids, magenta denotes basic amino acids, and the green colour corresponds to hydrophilic or polar amino
acids. Identical amino acids are represented by ‘‘⁄’’, conserved substitutions are represented by ‘‘:’’ and semi-conserved substitutions are represented by ‘‘.’’.
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Bone marrow-derived macrophages (BMDMs) grown in CSF-1
have been used extensively in studies of mouse macrophage biol-
ogy [42,43]. We therefore tested whether porcine CSF-1 in the
HEK293T cell supernatant would be active on the porcine CSF-1R



Fig. 3. Expression of cloned porcine CSF-1 (A) and CSF-1R (B). (A) Western blot of secreted cloned porcine CSF-1 by HEK293T cells transfected with porcine CSF-1_pEF6
expression construct or empty pEF6 construct. Under non-reducing conditions, two bands of approximately 37 KDa and 50 KDa were detected, whereas two smaller bands
(20 and 25 KDa) were detected in the presence of dithiothreitol (DTT). Porcine CSF-1 is secreted as a disulphide linked dimer that is variably glycosylated. (B) Western blot of
cloned expressed porcine CSF-1R transfected into Ba/F3 cells. Cells were cultured in either rh-CSF-1, IL-3 or both factors combined prior to collection of cell lysate. Differential
levels of receptor expression were noted when the cells were cultured in these different conditions. Receptor expression is reduced when Ba/F3 cells expressing CSF-1R are
cultured in rh-CSF-1 alone.
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in its native context by causing bone marrow progenitor cells to
differentiate into BMDMs. Porcine bone marrow progenitor cells
isolated from a rib, cultured for 7 days in either 100%, 80%, 50%
or 20% HEK293T pEF6_pCSF-1 supernatant, grew and differentiated
into adherent macrophages (Fig. 4B) whereas control cells died
(Fig. 4C). We describe elsewhere the use of pig BMDM grown in
recombinant human CSF-1 in studies of macrophage responses to
bacterial lipopolysaccharide [44]. In combination, these
experiments have confirmed both functionality of the expressed
porcine CSF-1R and biological activity of HEK293T pEF6_pCSF-1
supernatant on both our CSF-1R expressing cell line, and porcine
primary cells.

3.5. Expression of porcine CSF-1 in bacteria

The recombinant human CSF-1 used here and in previous stud-
ies on pig marrow [44] was expressed in E. coli. The advantage of
an E. coli expression system is not only the high yield which en-
ables both preclinical and structural studies, but also the possibil-
ity of introducing defined mutations to support structure–function



Fig. 4. Demonstration of biological activity of cloned secreted porcine CSF-1 transfected into HEK293T cells and porcine CSF-1 expressed in E.Coli. (A) An MTT cell viability
assay was performed using Ba/F3 cells expressing porcine CSF-1R and supernatant collected from transfected HEK293T cells with porcine CSF-1_pEF6 expression construct.
Using 80% of the HEK293T transfected cell supernatant produced viable cells. (B) Porcine bone marrow cells cultured with 20% supernatant collected from HEK293T cells
transfected with porcine CSF-1_pEF6 expression construct differentiated into BMDMs, adhered to the tissue culture plate and proliferated compared to cells cultured with
supernatant from HEK293T cells transfected with empty pEF6 construct which did not adhere, proliferate or survive after 7 days in culture (C). (D) Bacterially expressed
Porcine CSF-1 has also shown to be biologically active on the porcine CSF-1R expressed in Ba/F3 cells in an MTT cell viability assay. (E) An MTT cell viability assay was
performed using mouse BMMs cultured with supernatant collected from transfected HEK293T cells with porcine CSF-1_pEF6 expression construct. Using either 50% and 20%
supernatant produced viable cells. All of the assays shown are representative of three separate experiments with either triplicate or quadruplicate determinations.
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Fig. 5. Activity of porcine and human recombinant CSF-1 on canine and feline bone marrow progenitor cells. Canine and feline bone marrow cells were cultured with either
104 U/ml rh-CSF-1, 300ng/ml porcine E.Coli expressed CSF-1 or no growth factors. By day 5 of differentiation, canine and feline BMDMs with no growth factors were dead
(canine A & feline D). By day 5 of differentiation for canine and day 12 for feline, BMDMS were attaching to the culture dish when cultured with either rh-CSF-1 (canine B &
feline E) or porcine CSF-1 (canine C & feline F).

Fig. 6. Activity of recombinant human and mouse IL-34 on porcine CSF-1R
expressed in Ba/F3 cells. An MTT cell viability was used to assess the biological
activity of human and mouse IL-34 on expressed porcine CSF-1R. (A) Both human
and mouse IL-34 are biologically active on the porcine receptor. (B) Human IL-34 has
demonstrates similar activity to rh-CSF-1 on the porcine CSF-1R in an MTT assay.

D.J. Gow et al. / Cytokine 60 (2012) 793–805 801
analysis. To enable such studies of the porcine protein, and to fur-
ther optimise expression, a synthetic codon-optimised cDNA
encoding the active amino acids was generated as described in
Section 2. The EC50 of the bacterially produced porcine CSF-1 and
rh-CSF-1 on Ba/F3 cells expressing porcine CSF-1R was essentially
identical (29 ng/ml and 34 ng/ml respectively) (Fig. 4D).

3.6. Species specificity of CSF-1 and IL-34

Human CSF-1 is active on mouse CSF-1R, but not vice versa
[28,45,46]. Mouse CSF-1 expressed by L929 fibroblasts is biologi-
cally active on the porcine CSF-1R expressed on peripheral blood
mononuclear cells and bone marrow progenitor cells [47,48], but
the precise efficacy was not previously determined. Using an
MTT cell viability assay we demonstrated that recombinant mouse
and human CSF-1 also have identical activity on the porcine
CSF-1R. The pig provides an apparent intermediate between the
species, enabling analysis of the molecular basis of the species
specificity. We therefore assessed the biological activity of porcine
CSF-1 on the mouse CSF-1R. Using an MTT cell viability assay,
mouse BMMs were cultured in the presence of 104 Units/ml rh-
CSF-1 or increasing concentrations of HEK pEF6_pCSF-1 superna-
tant. There was a dose-dependent increase in BMM survival with
increasing concentrations of HEK pEF6_pCSF-1 supernatant
(Fig. 4E). This finding was extended by demonstrating that both
human and porcine CSF-1 have similar biologically activity on bone
marrow cells isolated from the cat and dog. Bone marrow progen-
itor cells from both species proliferated, became adherent and dif-
ferentiated into a mature population of bone marrow derived
macrophages (BMDM) (Fig. 5). Hence, porcine CSF-1, like human
CSF-1, is biologically active in all mammal species tested. The spe-
cies barrier is restricted to the relative lack of activity of the mouse
protein on human cells.

3.7. Activation of porcine CSF-1R with IL-34

Previous studies suggest that CSF-1 and IL-34 bind different
parts of the CSF-1R [12], but with similar outcomes in terms of
the survival and proliferation of human blood monocytes and col-
ony formation from bone marrow progenitors [19]. In contrast to
CSF-1, human IL-34 was found to be considerably less active than
the mouse protein in stimulating CSF-1R mediated mouse



802 D.J. Gow et al. / Cytokine 60 (2012) 793–805
macrophage proliferation [49], a finding we have confirmed (not
shown). Recombinant mouse and human IL-34 are both commer-
cially available (R&D Systems). Both products are the more active
isoforms that include an indel (Q81) generated by an alternative
splice acceptor [49], which is also present in the pig IL-34 gene
(ENSEMBL ENSSSCP00000002942). We therefore tested their com-
parative efficacy on the Ba/F3 cells expressing porcine CSF-1R
(Fig. 6A). Mouse and human IL-34 were almost equally active.
We also compared the efficacy of human CSF-1 and IL-34. Human
IL-34 was found to have similar activity to rh-CSF-1 on the porcine
CSF-1R (rhIL-34 EC50 137 ng/ml and rhCSF-1 EC50 100 ng/ml)
(Fig. 6B). This finding indicates that pig is an intermediate species
in which to test therapeutic applications of recombinant human IL-
34. Surprisingly, and despite the fact that we have succeeded in
expressing avian IL-34 in transfected mammalian cells [12] we
have not yet been able to produce biologically active pig IL-34
through mammalian expression.
4. Discussion

We have produced a stable Ba/F3 cell line expressing porcine
CSF-1R which can be utilised in a cell viability bioassay to assess
biological activity of CSF-1. Numerous receptors and oncogenes
have been tested in Ba/F3 cells for their ability to generate fac-
tor-independent, or novel factor-dependent growth [31,50]. An
Fig. 7. 3D models of non-conserved contact amino acids between human and mouse CSF
and mouse CSF-1R and IL-34 were generated using the PDB file 4DKD (human) and 4EXP (
were analysed and non-conserved contact amino acids highlighted using FirstGlance (htt
for IL-34 binding and (B) mouse CSF-1R non-conserved amino acids for IL-34 binding. (C
mouse IL-34 non-conserved contact amino acids. Positively charged atoms are represente
atoms denote partially charged atoms.
earlier study reported their stable transfection with human
CSF-1R, or the related flt3 or c-kit receptor, to develop assays for
specific inhibitors [31]. In that study, Ba/F3 cells were stably-trans-
fected with the human CSF-1R expression construct containing a
blasticidin resistance cassette, selected in blasticidin, then sub-
jected to secondary selection for the ability to grow in rh-CSF-1
in the absence of IL-3. This approach generated stable transfectants
with both the human receptor and a mouse-human chimeric
receptor [31]. We have successfully reproduced this approach
using porcine CSF-1R and then selected cells for their ability to
grow in rh-CSF-1.

Although transfected Ba/F3 cells grew well in CSF-1 and pro-
vided a useful assay, they nevertheless generally proliferated less
rapidly than in IL-3. Ba/F3 cells were originally identified as pro-
B cells that express surface Ig and lack endogenous CSF-1R
[41,51,52]. However, although we have confirmed the presence
of surface Ig, we find that they express the myeloid markers
Cd11b and F4/80 antigens (data not shown). In this respect, they
share some features with other myeloid lines such as PU5/1.8
and P388D1 [53]. The addition of CSF-1 to the receptor-expressing
cells apparently induces some of them to undergo differentiation,
growth arrest and adhesion. Western blotting of the Ba/F3 cells
expressing porcine CSF-1R revealed differential levels of receptor
expression, depending on the culture conditions. When cells
were cultured in rh-CSF-1, there was a reduction in the level of
CSF-1R expression. This result may be explained by ligand-receptor
-1R and IL-34. 3D models demonstrating the charged amino acid changes of human
mouse). Published contact amino acids for both human and mouse CSF-1R and IL-34
p://firstglance.jmol.org). (A) 3D model of human CSF-1R non-conserved amino acids
) 3D model of human IL-34 non-conserved contact amino acids and (D) 3D model of
d by blue colour and negatively charged atoms by red colour. Medium blue coloured
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activation followed by degradation and internalisation of the
CSF-1/CSF-1R complex [54,55]. The ability of IL-3 to prevent the
loss of CSF-1R was unexpected; it may be due to IL-3 producing
a signal that inhibits CSF-1/CSF-1R interactions, degradation of
the CSF-1R after binding of CSF-1, or CSF-1R internalisation. An
alternative explanation is that IL-3 acts on the EF1A promoter in
the expression plasmid to increase CSF-1R production.

We have used the recombinant proteins and receptor-express-
ing cells to further dissect the species-specificity of CSF-1 and IL-
34. Porcine CSF-1 was able to activate porcine, mouse, feline and
Fig. 8. 3D models of non-conserved contact amino acids between human and mouse
changes of human, porcine and mouse CSF-1 were generated using the PDB file for mou
Published contact amino acids of mouse CSF-1 were analysed and non-conserved contact
of mouse CSF-1 non-conserved contact amino acids, (B) 3D model of porcine CSF-1 non-
acids. Positively charged atoms are represented by blue colour and negatively charged a

Fig. 9. 3D models of non-conserved contact amino acids between mouse, human and por
contact binding sites of mouse, human and porcine CSF-1R. Human and mouse CSF-1R m
CSF-1R was generated using human CSF-1R (4DKD) as template. The 6 non-conserved a
Arg79) were identified and the coresponding binding site of CSF-1R identified (A) Mouse
Porcine CSF-1R highlighting these amino acids. Whilst the change from Lys to His on the
the molecular and residue weight which could potentially constrain the binding of the
receptor with the larger Asn232 in human might produce a steric hindrance that is n
represented by blue colour and negatively charged atoms by red colour. Medium blue c
canine CSF-1 receptors, a property shared by recombinant human
CSF-1 [28,48,56,57]. Conversely, mouse CSF-1 which lacks activ-
ity on human cells [46,47,58] was able to activate the porcine
receptor, and mouse and human IL-34, which lacks cross-reactiv-
ity across those two species [19], were both active on the porcine
receptor. The contact amino acids between human CSF-1R and
IL-34 has recently been published [22]. Logically, the CSF-1R
from the three species must differ from each other in contact
amino acids with IL-34. Fig. 7A and B shows the models of hu-
man and mouse CSF-1R viewed from the perspective of IL-34,
and porcine CSF-1 and CSF-1R. 3D models demonstrating the charged amino acid
se CSF-1 (3EJJ) was used as a template for both human and porcine CSF-1 models.

amino acids highlighted using FirstGlance (http://firstglance.jmol.org). (A) 3D model
conserved contact amino acids and (C) human CSF-1 non-conserved contact amino
toms by red colour. Medium blue coloured atoms denotes partially charged atoms.

cine CSF-1 binding sites of CSF-1R. 3D models highlighting the non-conserved CSF-1
odels were generated using the PDB file 4DKD (human) and 4EXP (mouse). Porcine

mino acids involved in CSF-1 binding to CSF-1R (Glu78, Asn13, Asn85, His6, Phe55,
CSF-1R highlighting the position of Lys151 and Gly232. (B) Human CSF-1R and (C)

human CSF-1R does not alter the amino acid properties, there is an increase in both
mouse protein to the human receptor. The substitution of Gly232 in the mouse

ot seen when histidine is substituted as in the pig. Positively charged atoms are
oloured atoms denotes partially charged atoms.
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highlighting the contact amino acids that are not conserved be-
tween human and mouse. The sequence alignment in Fig. 2
shows that the contiguous binding patch from amino acid 169–
173 is VLDSNT in mouse CSF-1R, FIEGQD in pig CSF-1R and
FIQSQD in human CSF-1R. CSF-1R contact amino acids 248 and
249 are Pro and Leu in mouse, Ser and Gln in pig and Pro and
Gln in human. A third significant difference between the species
exists around amino acid 144–150 of the CSF-1R. Gly103 in IL-
34, which is conserved in mouse, human and pig, forms a salt
bridge with Arg142 and Arg146 in human CSF-1R (22). In mouse,
the sequence is REGGR, in human it is RVRGR and in pig, there is
a complex insertion of six amino acids relative to all other mam-
malian CSF-1R (LLRRLSVLPGR) (Fig. 2). The amino acid differ-
ences between the receptors from mouse and human also
cause subtle changes in the predicted topology, as shown in
Fig. 7A and B. If we consider the ligand IL-34, Fig. 7C and D
shows the binding faces of human and mouse ligands, again
highlighting the non-conserved contact amino acids. Despite
the substantial conservation across species, and low DN/DS ratios,
noted by Garceau et al. [12], the majority of the amino acids
shown are divergent between mouse, pig and humans. For exam-
ple, amino acids 127–134 are NVQQGLTD in human, DVRQGLAG
in pig and NVQRSLMD in mice. Accordingly, there is no simple
model to explain the species specificity of IL-34 actions and de-
spite the apparent overall conservation of IL-34 [12], the contact
amino acids are under positive selection, consistent with a role in
the immune system. Since the cat and dog CSF-1R also differ
from each other (Fig. 2), and from mouse, human and pig, in
the key contact amino acids, cross-species reactivity of IL-34 will
probably need to be determined empirically.

We have demonstrated that mouse CSF-1 can bind and activate
the porcine CSF-1R. Porcine CSF-1 can also stimulate the mouse,
dog and cat receptors. Conversely, mouse CSF-1 can activate por-
cine CSF-1R but not human CSF-1R. As with IL-34 binding, there
must be a difference between all three species of CSF-1R and be-
tween mouse and human CSF-1. There are 19 contact amino acids
between mouse CSF-1 and CSF-1R [5], 13 of which are conserved
(Table 2). The remaining six amino acids (His6, Asn13, Phe55,
Glu78, Arg79, Asn85 in mouse) are different in both pig and hu-
man. Fig. 8 highlights these non-conserved amino acids and their
location on the binding surface of mouse (Fig. 8A), pig (Fig. 8B)
and human (Fig. 8C) CSF-1. Of these, only 2 also have a correspond-
ing change in the CSF-1R contact amino acid between all three spe-
cies, His6 and Glu78. Glu78 of the mouse CSF-1 is Val78 in both the
human and porcine CSF-1. Glu78 contacts Lys151 on the mouse
CSF-1R, which is His151 in human CSF-1R. The bulkier amino acid
at this position could constrain the binding of the mouse protein
(Fig. 9A–C). In the pig, Lys151 is replaced with Gln, structurally
similar but smaller and uncharged. The same substitution occurs
in the cow, which can also respond to mouse CSF-1 [63]. His6
forms Van der Waals contacts with Gly232 in the mouse receptor.
However, in this position, dog and cow share Asn232 with human,
where pig has His232. So, this variation is less likely to determine
binding specificity. Having established the bacterial expression
system for the pig protein, structure function predictions can be
tested in the future by targeted substitutions.

Mice with no detectable biologically-active serum CSF-1 (op/
op), have been previously well studied [59]. Amongst other defects,
these mice are growth retarded and are born with low birth
weights compared to litter mate controls. We and others have ex-
plored therapeutic options for CSF-1 in a number of preclinical
applications, mainly to do with tissue repair [33,60–62]. The suc-
cessful expression of recombinant CSF-1 and CSF-1R in the pig
and evaluation of cross-species activity of IL-34 provide the
tools for evaluation of both agents in pig and rodent preclinical
models.
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