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Introduction: some challenges in ecohydrology Data assimilation Application

Context : How to improve the water quality ?

⇒ a better understanding of water and pesticide transfer in soil

• Spatial heterogeneity of the soils, at
all scales

• Soil and agricultural practices are
more and more diverse

• Processes that drive the pesticide fate
at the catchment scale are complex :
• Hydrological transfer
• adsorption
• degradation
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Introduction: some challenges in ecohydrology Data assimilation Application

Spatially and temporally heterogeneous data. . .

Availability, quality, quantity of data
are heterogeneous in space and time
:
• remote sensing images
• field data (lysimeters in soil,

water table and river
measurments)

• geophysical data

BUT without heavy experiments, this is very difficult to get the pesticides dynamics
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Introduction: some challenges in ecohydrology Data assimilation Application

Spatially and temporally heterogeneous data. . .
. . . and pesticides modeling at several scales and several complexity degrees

• based on non linear equations and/or conceptual
• unknown boundary and initial conditions
• a large set of spatialized parameters that are

difficult to measure/estimate
• many processes affecting pesticide transfer are not

(well) represented (e.g., pref. flows)
⇒ a high uncertainty (when we it is considered !)
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Introduction: some challenges in ecohydrology Data assimilation Application

Spatially heterogeneous data. . . . . . and spatialized modeling

⇒ merging information from the available data and from the model
to get as close as possible to the “true” state

Data Assimilation techniques (or model-data fusion)
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Introduction: some challenges in ecohydrology Data assimilation Application

Data assimilation: definition

• the systematic use of data to constrain a numerical model
• first used in the 1960s in numerical weather forecasting models for short-term predictions

of meteorological conditions
• in the 1970s, development in numerical ocean general circulation models (OGCMs)
• poorly developed in other domains (hydrology)
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Data assimilation: definition

Model Observations
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Introduction: some challenges in ecohydrology Data assimilation Application

Data assimilation: definition

“Approximation of the true state of a physical system at a given time by combining
time-distributed observations with a dynamic model in an optimal way“(Asch2016)

⇒ DA has two main goals:
• optimally blend information from observations and model to produce an accurate and

physically consistent estimate of the state of the system xa

• quantify the uncertainty of this estimate for future users
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Introduction: some challenges in ecohydrology Data assimilation Application

Data assimilation: the ingredients

x = (x0,x1,...,xN)T represents the state of system:
streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc. We
don’t know it, but we do have information from :
• the dynamical model xk = Mk−1→k [xk−1, param] + ηk
ηk the model error of covariance matrix Pk

• the background xb is the state at tk-1 and its associated error εb = xb - xt
k−1

• the observation model yk = Hk [xk ] + εk

• We assume that model and obs. errors are random variables → described by pdf or
by their covariance matrix
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yk is the observation/data at time k
εk the observation error, of covariance matrix Rk , e.g. instrumental error, representativeness
H : Rm →Rd the observation operator that projects from model space to observational
space (spatial interpolations, convolutions or spectral-to-physical space transformation in
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Introduction: some challenges in ecohydrology Data assimilation Application

Data assimilation: approaches

(from Asch2016)
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Introduction: some challenges in ecohydrology Data assimilation Application

Data assimilation: approaches

• Deterministic methods (used in weather forecasting): state variables are assumed to be
governed by deterministic laws.
⇒ methods based on optimal control, minimization of a cost function

• Statistical/Stochastic methods (used in ocean forecasting): a phenomenon is assumed
to be the realization of a random variable: this is justified by the fact that the dynamics of
the system under study (weather, ocean) are chaotic and therefore resemble a random
system.
⇒ methods based on statistical estimation, Bayes theorem and Kalman filter
⇒ objective = determine a good approximation of the conditional expectation of the
system state (as well as its error covariance matrix) given the observed data

⇒ in a perfect context (linear, Gaussian, etc.), the methods are equivalent!
• In hydrology ? Chosen method should be suited to heterogeneous structure of the model,

highly nonlinear processes but also suited to our high computational cost.
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Data assimilation: definition
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Introduction: some challenges in ecohydrology Data assimilation Application

The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time

0. At time k: Xf
k
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Introduction: some challenges in ecohydrology Data assimilation Application

The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time

1. Forecast step: Xf
k+1 = MXf

k
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Introduction: some challenges in ecohydrology Data assimilation Application

The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time

2. Analysis step: Xa
k+1 = Xf

k+1 + Kk+1(Yk+1-Hk+1Xf
k+1)
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Introduction: some challenges in ecohydrology Data assimilation Application

The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time

2. Analysis step: Xa
k+1 = Xf

k+1 + Kk+1(Yk+1-Hk+1Xf
k+1)

with Kk+1=Pf
k+1HT

k+1[Hk+1Pf
k+1HT

k+1+Rk+1]−1

C. Lauvernet et al. Data assimilation in ecohydrology 13/35



Introduction: some challenges in ecohydrology Data assimilation Application

The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time

2. Analysis step: Xa
k+1 = Xf

k+1 + Kk+1(Yk+1-Hk+1Xf
k+1)

Pa
k+1 = Pf

k+1 -Kk+1Hk+1Pf
k+1
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Introduction: some challenges in ecohydrology Data assimilation Application

The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time

The KF assumes that:

X all sources of errors are gaussian
X both the observational and dynamical models are linear

→ not realistic in most cases !

C. Lauvernet et al. Data assimilation in ecohydrology 13/35



Introduction: some challenges in ecohydrology Data assimilation Application

The method for data assimilation should be suited to spatialized models

• models are physically-based but:
• highly nonlinear equations (Richards,

. . . )
• some are more/less conceptual =>

discontinuities, thresholds
→ definitely not gaussian !
→ Ensemble filter approaches

1
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Introduction: some challenges in ecohydrology Data assimilation Application

Ensemble-based methods (Evensen_2003)
• a version of the Kalman filter for nonlinear problems at large dimension
• the state variable distribution is represented by an ensemble of state vectors xk

• the error covariance matrices are represented by the ensemble covariance
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Introduction: some challenges in ecohydrology Data assimilation Application

On the variationnal side. . .

• Operational in meteorological centers : can deal with very large problems
• Use of ALL available information by solving a unique system
• Transform the inverse problem into an optimization problem The search of the minimum

of the cost function
J = |sim.− obs.|2 + apriori info

is performed with standard methods (conjugate gradient, Newton-type methods)
• They require the computation of the gradient of J (optimality condition):
∇J = 0⇔ J is in an optimum

⇒ analytic approximation: computer time consuming
⇒ adjoint model method
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Introduction: some challenges in ecohydrology Data assimilation Application

. . . an optimization problem

Problem : determine K∗ that achieves the best LAI simulation closest to the observations, i.e.
minimizing J
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Introduction: some challenges in ecohydrology Data assimilation Application

Variationnal data assimilation using the adjoint model

⇒ The optimality system contains all available information: observations, model, statistics . . .
In practice, the gradient is computed by running an «adjoint model» derived from the model
(automatic differentiation tool).
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Introduction: some challenges in ecohydrology Data assimilation Application

Context
Landscape features speed up or slow down pesticide transfer from the plots to the river.

⇒ The configuration of the catchment can influence the water quality.
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Introduction: some challenges in ecohydrology Data assimilation Application

How to tackle pesticide transfers and fate on small agricultural
catchments with modelling tools ?

X Integrating landscape elements diversity in a modular model

X Exploring landscape management scenarios

⇒ Development of the PESHMELBA model (Rouzies2019)
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Introduction: some challenges in ecohydrology Data assimilation Application

The PESHMELBA model (Rouzies2019)
PESticides et Hydrologie: Modélisation à l’EcheLle du BAssin versant

X Simulation of heterogenous landscapes
composed of plots, vegetative filter zones,
hedges, ditches and rivers

X Water transfers on surface and subsurface
X Solute advection, adsorption and

degradation, solid transport

X One module ≡ one process or ensemble of
processes on a landscape element

X Coupling of modules within the
OPENFLUID coupler to make it flexible
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Introduction: some challenges in ecohydrology Data assimilation Application

Uncertainty in PESHMELBA

We have a dream that one day PESHMELBA will be used as a decision-
making tool to set up management scenarios and to identify an optimal
landscape configuration for pesticide transfer mitigation.

This is our objective...but before, it is necessary to quantify and reduce the uncertainty
associated to PESHMELBA output variables.

Emilie Rouzies’s PhD objectives
1. Quantify: performing an uncertainty analysis and a sensitivity analysis of the

model

2. Reduce: performing data assimilation to integrate different sources of data: soil
moisture images, ERT measurements and in-situ data of pesticide concentration
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Introduction: some challenges in ecohydrology Data assimilation Application

Case study
First attempt of DA in the PESHMELBA model: let’s keep it simple...but realistic! (types of
landscape elements, number of parameters, climate conditions...)
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Introduction: some challenges in ecohydrology Data assimilation Application

Which observations are available ?
� Surface moisture images

X Surface moisture images got from the synergic use of
Sentinel-1 and Sentinel-2 data

X One observation of mean moisture in the top 5 cm per landscape element per time step
X Freq. of observation: 144h, obs. error : assumed Gaussian, std ∼ 0.02 cm3cm-3 (! may

highly differ on vineyard !)
� In-situ moisture profiles

X Moisture profiles from EMI measurements or probe.
X Assumption : 2m-moisture profile on some landscape elements, obs.

error : assumed Gaussian, std ∼ 0.02 cm3cm-3
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Introduction: some challenges in ecohydrology Data assimilation Application

Data assimilation

Objectives
X Improve moisture dynamics modelling both in surface and subsurface
X Improve estimation of pesticide export at the outlet
X Estimate input parameters (θsat) that would be set for the exploration of landscape management

scenarios
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Introduction: some challenges in ecohydrology Data assimilation Application

DA method
Ensemble Smoother with Multiple Data Assimilation (Emerick2013)

• Ensemble method that inherits from Kalman Filter
• Iterative smoother well suited to parameter estimation problems in non linear contexts
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Introduction: some challenges in ecohydrology Data assimilation Application

Twin experiment

First step: twin experiments to set and validate
the DA framework ( !! Reanalysis context)

1. Use PESHMELBA to generate a "True"
reference simulation

2. Add perturbation to generate virtual
observations

3. Generate the prior/background state (build
an ensemble from biased input parameters
distribs)

4. Perform ensemble data assimilation to
correct input parameters and moisture series
towards the reference
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Introduction: some challenges in ecohydrology Data assimilation Application

Results - Surface moisture images
• Moisture estimation

• Parameter estimation

Data assimilation of satellite
moisture images

• Good correction of surface moisture
and surface parameters

• Corrections do not propagate to
subsurface (lack of correlations
between surface and subsurface)

⇒ Idea? Integrate subsurface
observations : point vertical profiles
of moisture
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Introduction: some challenges in ecohydrology Data assimilation Application

Results - Surface images + vertical profiles
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Introduction: some challenges in ecohydrology Data assimilation Application

Results - Surface images + vertical profiles

• Moisture estimation

• Parameter estimation

Adding subsurface observations
• improves moisture simulations at all

depths

• improves θs estimates at all depths
but on the plots of the same soil type
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Introduction: some challenges in ecohydrology Data assimilation Application

Impact of DA of hydological variables on pesticides variables ?
• Pesticide concentration at outlet

• (not shown) a relative impact of assimilating integrated concentration of
pesticides (only if conc. are measured at high frequency (< 5 days) and
accurate)
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Introduction: some challenges in ecohydrology Data assimilation Application

Impact of DA of hydological variables on pesticides variables ?
• Pesticide concentration at outlet

⇒ Coupled DA assimilation efficiently corrects pest. concentration.
• (not shown) a relative impact of assimilating integrated concentration of

pesticides (only if conc. are measured at high frequency (< 5 days) and
accurate)
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Introduction: some challenges in ecohydrology Data assimilation Application

Conclusion

• DA framework set for the first time in PESHMELBA
• Multisource DA of hydrological data is efficient to also improve the pesticide transfer
• Next step : set a DA framework on a real catchment : many challenges ! (get data,

characterize real observation errors, handle high computation cost...)
• Include external uncertainties such as forcings (rainfall, ETP, . . . )
• Compare with DA in the CATHY model, purely physics-based (⇒ less discontinuities?)
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PhD Katarina Radišić : Calibrating a hydrological model robustly to rain
perturbations (with stochastic surrogates)

What about the impact of external uncertainties on the calibration results?
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PhD Katarina Radišić : Calibrating a hydrological model robustly to rain
perturbations (with stochastic surrogates)

What does it mean to find a robust minimizer ?
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