Spatially and temporally heterogeneous data. . . Availability, quality, quantity of data are heterogeneous in space and time :

• remote sensing images

• field data (lysimeters in soil, water table and river measurments)

• geophysical data Data assimilation: definition "Approximation of the true state of a physical system at a given time by combining time-distributed observations with a dynamic model in an optimal way"(Asch2016)

⇒ DA has two main goals:

• optimally blend information from observations and model to produce an accurate and physically consistent estimate of the state of the system x a • quantify the uncertainty of this estimate for future users Data assimilation: the ingredients x = (x 0 ,x 1 ,...,x N ) T represents the state of system: streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc. We don't know it, but we do have information from : Data assimilation: the ingredients x = (x 0 ,x 1 ,...,x N ) T represents the state of system: streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc. We don't know it, but we do have information from :

• the dynamical model x k = M k-1→k [x k-1 , param] + η k η k the
• the dynamical model x k = M k-1→k [x k-1 , param] + η k
• the background x b is the state at t k-1 and its associated error

ε b = x b -x t k-1 • the observation model y k = H k [x k ] + ε k
y k is the observation/data at time k ε k the observation error, of covariance matrix R k , e.g. instrumental error, representativeness H : R m → R d the observation operator that projects from model space to observational space (spatial interpolations, convolutions or spectral-to-physical space transformation in spectral models, etc.)

Data assimilation: the ingredients x = (x 0 ,x 1 ,...,x N ) T represents the state of system: streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc. We don't know it, but we do have information from :

• the dynamical model x k = M k-1→k [x k-1 , param] + η k
• the background x b is the state at t k-1 and its associated error

ε b = x b -x t k-1
• the observation model

y k = H k [x k ] + ε k
• We assume that model and obs. errors are random variables → described by pdf or by their covariance matrix Data assimilation: approaches

• Deterministic methods (used in weather forecasting): state variables are assumed to be governed by deterministic laws.

⇒ methods based on optimal control, minimization of a cost function • Statistical/Stochastic methods (used in ocean forecasting): a phenomenon is assumed to be the realization of a random variable: this is justified by the fact that the dynamics of the system under study (weather, ocean) are chaotic and therefore resemble a random system.

⇒ methods based on statistical estimation, Bayes theorem and Kalman filter ⇒ objective = determine a good approximation of the conditional expectation of the system state (as well as its error covariance matrix) given the observed data ⇒ in a perfect context (linear, Gaussian, etc.), the methods are equivalent! • In hydrology ? Chosen method should be suited to heterogeneous structure of the model, highly nonlinear processes but also suited to our high computational cost. The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time 1. Forecast step:

X f k+1 = MX f k C. Lauvernet et al.
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The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time 2. Analysis step:
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The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time 2. Analysis step: The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time 2. Analysis step:

X a k+1 = X f k+1 + K k+1 (Y k+1 -H k+1 X f k+1 ) with K k+1 =P f k+1 H T k+1 [H k+1 P f k+1 H T k+1 +R k+1 ] -1 C.
X a k+1 = X f k+1 + K k+1 (Y k+1 -H k+1 X f k+1 ) P a k+1 = P f k+1 -K k+1 H k+1 P f k+1 C. Lauvernet et al.
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The Kalman Filter (Kalman1960) : estimate the optimal state at each observation time

The The method for data assimilation should be suited to spatialized models

• models are physically-based but:

• highly nonlinear equations (Richards, . . . ) • some are more/less conceptual => discontinuities, thresholds Uncertainty in PESHMELBA

→
We have a dream that one day PESHMELBA will be used as a decisionmaking tool to set up management scenarios and to identify an optimal landscape configuration for pesticide transfer mitigation.
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Uncertainty in PESHMELBA

We have a dream that one day PESHMELBA will be used as a decisionmaking tool to set up management scenarios and to identify an optimal landscape configuration for pesticide transfer mitigation.

This is our objective...but before, it is necessary to quantify and reduce the uncertainty associated to PESHMELBA output variables. Results -Surface moisture images Results -Surface images + vertical profiles Impact of DA of hydological variables on pesticides variables ?

• Pesticide concentration at outlet 

  BUT without heavy experiments, this is very difficult to get the pesticides dynamics C. Lauvernet et al. Data assimilation in ecohydrology 4/35 Spatially and temporally heterogeneous data. . . . . . and pesticides modeling at several scales and several complexity degrees • based on non linear equations and/or conceptual • unknown boundary and initial conditions • a large set of spatialized parameters that are difficult to measure/estimate • many processes affecting pesticide transfer are not (well) represented (e.g., pref. flows) ⇒ a high uncertainty (when we it is considered !) C. Lauvernet et al. Data assimilation in ecohydrology 5/35

  model error of covariance matrix P k • the background x b is the state at t k-1 and its associated error ε b = x b -x t

  (Kalman1960) : estimate the optimal state at each observation time 0. At time k: X f k C. Lauvernet et al. Data assimilation in ecohydrology 13/35

  KF assumes that: all sources of errors are gaussian both the observational and dynamical models are linear → not realistic in most cases ! C. Lauvernet et al. Data assimilation in ecohydrology 13/35

•

  definitely not gaussian ! → Ensemble filter approaches 1 C. Lauvernet et al. Data assimilation in ecohydrology 14/35 Ensemble-based methods (Evensen_2003) • a version of the Kalman filter for nonlinear problems at large dimension • the state variable distribution is represented by an ensemble of state vectors x k • the error covariance matrices are represented by the ensemble covariance C. Lauvernet et al. Data assimilation in ecohydrology 15/35 On the variationnal side. . . Operational in meteorological centers : can deal with very large problems • Use of ALL available information by solving a unique system • Transform the inverse problem into an optimization problem The search of the minimum of the cost function J = |sim. -obs.| 2 + apriori info is performed with standard methods (conjugate gradient, Newton-type methods) • They require the computation of the gradient of J (optimality condition): ∇J = 0 ⇔ J is in an optimum ⇒ analytic approximation: computer time consuming ⇒ adjoint model method C. Lauvernet et al. Data assimilation in ecohydrology 16/35 Variationnal data assimilation using the adjoint model ⇒ The optimality system contains all available information: observations, model, statistics . . . In practice, the gradient is computed by running an «adjoint model» derived from the model (automatic differentiation tool). pesticide transfers and fate on small agricultural catchments with modelling tools ? Integrating landscape elements diversity in a modular model Exploring landscape management scenarios ⇒ Development of the PESHMELBA model (Rouzies2019) C. Lauvernet et al. Data assimilation in ecohydrology 21/35 The PESHMELBA model (Rouzies2019) PESticides et Hydrologie: Modélisation à l'EcheLle du BAssin versant Simulation of heterogenous landscapes composed of plots, vegetative filter zones, hedges, ditches and rivers Water transfers on surface and subsurface Solute advection, adsorption and degradation, solid transport C. Lauvernet et al. Data assimilation in ecohydrology 22/35 The PESHMELBA model (Rouzies2019) PESticides et Hydrologie: Modélisation à l'EcheLle du BAssin versant Simulation of heterogenous landscapes composed of plots, vegetative filter zones, hedges, ditches and rivers Water transfers on surface and subsurface Solute advection, adsorption and degradation, solid transport One module ≡ one process or ensemble of processes on a landscape element Coupling of modules within the OPENFLUID coupler to make it flexible C. Lauvernet et al. Data assimilation in ecohydrology 22/35

  Emilie Rouzies's PhD objectives 1. Quantify: performing an uncertainty analysis and a sensitivity analysis of the model 2. Reduce: performing data assimilation to integrate different sources of data: soil moisture images, ERT measurements and in-situ data of pesticide concentration C. Lauvernet et al. Data assimilation in ecohydrology 23/35 Data assimilation Objectives Improve moisture dynamics modelling both in surface and subsurface Improve estimation of pesticide export at the outlet Estimate input parameters (θsat ) that would be set for the exploration of landscape management scenarios C. Lauvernet et al. Data assimilation in ecohydrology 26/35Twin experiment First step: twin experiments to set and validate the DA framework ( !! Reanalysis context) 1. Use PESHMELBA to generate a "True" reference simulation 2. Add perturbation to generate virtual observations C. Lauvernet et al. Data assimilation in ecohydrology 28/35 Twin experiment First step: twin experiments to set and validate the DA framework ( !! Reanalysis context) 1. Use PESHMELBA to generate a "True" reference simulation 2. Add perturbation to generate virtual observations 3. Generate the prior/background state (build an ensemble from biased input parameters distribs) C. Lauvernet et al. Data assimilation in ecohydrology 28/35 Twin experiment First step: twin experiments to set and validate the DA framework ( !! Reanalysis context) 1. Use PESHMELBA to generate a "True" reference simulation 2. Add perturbation to generate virtual observations 3. Generate the prior/background state (build an ensemble from biased input parameters distribs) 4. Perform ensemble data assimilation to correct input parameters and moisture series towards the reference C. Lauvernet et al. Data assimilation in ecohydrology 28/35 Twin experiment First step: twin experiments to set and validate the DA framework ( !! Reanalysis context) 1. Use PESHMELBA to generate a "True" reference simulation 2. Add perturbation to generate virtual observations 3. Generate the prior/background state (build an ensemble from biased input parameters distribs

••

  (not shown) a relative impact of assimilating integrated concentration of pesticides (only if conc. are measured at high frequency (< 5 days) and accurate) C. Lauvernet et al. Data assimilation in ecohydrology 32/35 Impact of DA of hydological variables on pesticides variables ? • Pesticide concentration at outlet ⇒ Coupled DA assimilation efficiently corrects pest. concentration. • (not shown) a relative impact of assimilating integrated concentration of pesticides (only if conc. are measured at high frequency (< 5 days) and accurate) DA framework set for the first time in PESHMELBA • Multisource DA of hydrological data is efficient to also improve the pesticide transfer • Next step : set a DA framework on a real catchment : many challenges ! (get data, characterize real observation errors, handle high computation cost...) • Include external uncertainties such as forcings (rainfall, ETP, . . . ) • Compare with DA in the CATHY model, purely physics-based (⇒ less discontinuities?) C. Lauvernet et al. Data assimilation in ecohydrology 33/35

  

  

  

  

  

  

  

  

  

Which observations are available ?

Surface moisture images Surface moisture images got from the synergic use of Sentinel-1 and Sentinel-2 data One observation of mean moisture in the top 5 cm per landscape element per time step Freq. of observation: 144h, obs. error : assumed Gaussian, std ∼ 0.02 cm 3 cm -3 (! may highly differ on vineyard !)

In-situ moisture profiles

Moisture profiles from EMI measurements or probe.

Assumption : 2m-moisture profile on some landscape elements, obs. error : assumed Gaussian, std ∼ 0.02 cm 3 cm -3 C. Lauvernet et al.
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