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Abstract

The Weighted Stochastic Block Model (WSBM) is a statistical model for unsu-
pervised clustering of individuals based on a pairwise distance matrix. The
probabilities of group membership are computed as unary marginals of the joint
conditional distribution of the WSBM, whose exact evaluation with brute force
is out of reach beyond a few individuals. We propose to build an exact Tensor-
Train (TT) decomposition of the multivariate joint distribution, from the SVD of
each binary factor of a WSBM, which leads to variables separation. We present
how to exploit this decomposition to compute unary and binary marginals. They
are expressed without approximation as products of matrices involved in the
TT decomposition. However, the implementation of the procedure faces sev-
eral numerical challenges. First, the dimensions of the matrices involved grow
faster than exponentially with the number of variables. We bypass this diffi-
culty by using the format of TT-matrices. Second, the TT-rank of the products
grows exponentially. Then, we use a numerical approximation of matrices prod-
uct that guarantees a low TT-rank, the rounding. We compare the TT approach
with two classical inference methods, the Mean-Field approximation and the
Gibbs Sampler, on the problem of binary marginal inference for WSBM with
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various distances structures and up to fifty variables. The results lead to recom-
mend the TT approach for its accuracy and reasonable computing time. Further
researches should be devoted to the numerical difficulties for controlling the rank
in rounding, to be able to deal with larger problems.

Keywords: Binary marginals, Weighted Stochastic Block Model, Variables separation,
Tensor-Train format, low rank approximation, TT matrices.

1 Introduction

Pattern discovery in data sets has become a challenging goal in a large diversity of
application domains. It is not so easy to define what an interesting pattern is, but
among the quasi infinite number of possibilities, manifold learning for continuous
patterns and clustering for discrete patterns are two mainstays for building a compact
representation of a data set. Here, we are interested in cluster discovery formalised by
a statistical model because it quantifies the uncertainties as limits to our knowledge
through probabilities for group membership instead of yes/no answer. In many situa-
tions, one knows pairwise distances or dissimilarities between a set of items (see Deza
and Deza, 2016). An example is distances between DNA sequences in an environ-
mental sample, which are distances on strings computed from local alignment score
(Gusfield, 1997; Smith and Waterman, 1981). The question of clustering items based
on their pairwise distances is also classical in time series clustering (Ansari et al.,
2020). For distance-based clustering, Weighted Stochastic Block Models (WSBM) are
more and more used with a large scope of application domains like social sciences
(Barbillon et al., 2017), analysis of ecological interaction networks (Miele and Matias,
2017), neurology (Faskowitz et al., 2018), or numerical taxonomy (Abouabdallah
et al., 2022). This statistical model formalises the groups the items belong to as latent
variables. One of their main advantages is the possibility to find out groups which are
not communities (the items within a groupare not necessarily close to each others),
like dissortative structures which exist in bipartite graphs. This property gives them
great flexibility to adapt to a variety of structures and widen the scope of patterns
which can be discovered beyond community detection.

Tools exist to estimate the parameters of a WSBM, as a prerequisite before inferring
the group memberships. The classical approach for parameters estimation in models
with latent variables is the EM algorithm (Dempster et al., 1977) which, at step E,
requires the computation of unary and binary marginals of the conditional distri-
bution of the group memberships. If there are n items and Q groups, computing a
unary WSBM marginal requires Qn−1 sums and it is a known bottleneck. The main
approach used to overpass this difficulty is the Variational EM, where an assumption
of independence is made and unary marginals are approximated as fixed points of the
Mean-Field equations. (Daudin et al., 2008; Mariadassou et al., 2010). Beyond the
utility of marginalisation for parameters estimation, binary marginals of a WSBM are
useful for inferring group memberships as their provide a richer information than the
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sole unary marginals. Indeed, a group allocation based solely on the unary marginals,
i.e. by assigning the individual to the group with higher probability, may be associ-
ated with a large uncertainty when the mode is not peaked. In this case, the binary
marginal can inform on the source of uncertainty. Indeed, focusing on a particular
individual in group g, one can compute the probabilities for it to be in the same group
than each other individual of group g. They will reveal if there is equal uncertainty
of co-membership or on contrary if uncertainty is due to few specific members.

Therefore, in this work, we consider the problem of computing binary marginals in a
WSBM. We will use the fact that a WSBM is a graphical model. A graphical model
is a stochastic model in which the joint distribution of the variables can be expressed
as a product of factors, each factor involving only a subset of the variables. In a
WSBM, the joint distribution of interest is the conditional distribution of the group
memberships, and it is a pairwise graphical model (factors are binary at most). For
some graphical models, the factorisation property makes marginalisation simple. It
depends on the structure of the graph associated to the graphical model, a topic
which has been thoroughly studied (see e.g. Wainwright and Jordan, 2008; Koller
and Friedman, 2009; Murphy, 2012; Peyrard et al., 2019). Very often, one needs not
only to compute one marginal for one variable, but all marginals for all variables,
or subsets of variables. This global calculation is performed exactly when the graph
of the model is a tree, with message passing or belief propagation. On graphs with
loops it can sometimes be performed exactly with message passing using a Junction
Tree built from the graph, and otherwise the marginals are approximated as fixed
points of loopy belief propagation. The tree width, a feature of the graph associ-
ated to the graphical model, characterises the complexity of the calculation of the
marginalisation. If the tree-width is w, this complexity is in O(kQw+1) if there are Q
possible values for a discrete random variable. In case of large tree-width, the exact
calculation by message passing in the Junction-Tree becomes impossible.

The graph associated to the conditional distribution of the group memberships in a
WSBM is a clique. The Junction Tree has one node (the clique), and the tree-width
is n − 1. It is the most complex situation with n nodes. Therefore, the issue of
marginalisation in WSBM should be addressed with other approaches. The above-
mentioned Mean-Field approach is a classical option, and MCMC techniques (Robert
and Casella, 2004), like the Gibbs sampler is another. The first one is quick but is
limited to unary marginals, and the second allows calculation of binary marginals but
to the price of a higher computational cost.

In this work we explore an alternative to the Mean-Field and the MCMC approaches
for approximate marginals inference in a WSBM. We use the fact that the joint
distribution of a graphical model with n variables and Q possible values for each
random variable is a tensor of order n and dimension Q per mode (see section 3 for
the definition of these terms). If the joint distribution of a set of random variables
can be expressed as a tensor of low rank, then marginalisation becomes fairly easy.
One possible strategy for marginalisation of the joint distribution is to find the best
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approximation in the sense of Frobenius norm of this distribution by a tensor of low
rank, and to perform marginalisation on the low rank approximation. There exists
several notions of rank for tensors (see e.g. Coppi and Bolasco, 1989; Kolda and Bader,
2009), among which CP-rank (Harshman, 1970; Carroll and Chang, 1970), Tucker
rank (Tucker, 1966; Kroonenberg and de Leeuw, 1980; de Lathauwer et al., 2000),
and TT-rank (Oseledets, 2009, 2011; Al Daas et al., 2022). It is now acknowledged
that TT decomposition is equivalent to the notion of Matrix Product States which
has been widely developed in statistical physics (Fannes et al., 1992; Orus, 2014).

Approximation of tensors which correspond to the Conditional Probability Tables
(CPT) of a Bayesian Network (BN, directed graphical models) by decompositions
based on CP-rank ones tensors has been exploited in Savicky and Vomlel (2007). The
authors establish theoretical results on the closed-form expression of the minimal
rank-one decomposition for some particular forms of CPT and propose a numerical
method to compute a rank-one decomposition for the other situations. In the same
spirit, Wrigley et al. (2017) propose an approximation of the factors of a graphical
model by rank-one tensors decompositions to implement the Junction Tree algorithm.
Marginalisation becomes easy because approximated factors are fully factored (i.e.
product of functions of scope of size 1). Multiplication is not as easy and they propose
to sample to approximate the product of two factors. However, finding the best low
CP-rank approximation of a given tensor is not an easy task. It has been shown that
such a problem may be ill-posed because the manifold of tensors of a given CP-rank
may not be closed (de Silva and Lim, 2008). Close to its boundary, numerical algo-
rithm may not converge.

The Tucker decomposition is exploited in Lyu et al. (2023). The authors define a
new family of graphical models, the latent space models, to study the organisation
of individuals linked by hyperedges. To estimate the model parameters and restore
the latent positions of the individuals, they propose to maximise the probability of
the observed adjacency tensor knowing the latent variables, under a constraint on
the Tucker ranks of the tensor of interest. The approach does not requires marginal
inference, and the authors do not consider this task. Moreover marginalisation with
the Tucker decomposition remains computationally complex.

On the contrary, finding the best TT rank r approximation of a given tensor is a
well-posed problem, numerical algorithms for computing it are robust (Oseledets,
2009, 2011), and as we will see the TT format is well adapted for marginalisation
because it leads to variables separation. Ducamp et al. (2020) use the TT format of
the factors of a BN to write and implement the equations of the classical message
passing algorithm for probabilistic inference (i.e. to compute some marginals of the
BN). They show on several BN examples how this approach can lead to a reduction
in the storage and a faster inference time compared to the exact message passing
algorithm, with a reasonable error on the marginals values. This property has been
exploited as well in Novikov et al. (2014) to compute the normalising constant and
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the unary marginals of any graphical model by first finding a best low rank TT-
approximation of each factor and, second, writing the product of the approximations
of the factors as a tensor in TT-format by a clever utilisation of the mixed-product
property of the Kronecker product.

Our work aims at proposing a way to compute the binary marginals of a WSBM, and
more generally of a graphical model with binary factors, by using the TT format of
the tensor associated to the joint distribution of the model. The article is organised
as follows. We first recall some definitions and notations that we will use throughout
this paper, on WSBM in section 2, and on tensors in section 3. The material in those
sections is standard. In section 4, we present in detail the approach of Novikov et al.
(2014). Our contribution is based on an extension of their work, and is developed in
the next 3 sections. In section 5, we observe that the Singular Value Decomposition
(SVD) of the matrices which are tables of binary factors is a variable separation
between indices of rows and of columns. When plugged in step 1 in Novikov proce-
dure, this leads to writing the joint distribution of a pairwise graphical model exactly
as a tensor in TT format, without approximation. Distributivity of multiplication
over addition in the ring of matrices leads to an algebraically simple calculation of
the maginals. We develop a approach by recursion for the simultaneous calculation
of all binary marginals, over all variables and all possible values the variables, which
extends Novikov’s procedure for computing all unary marginals. If such an approach
is algebraically straightforward, it leads to sums and products between matrices with
huge dimensions. In section 6, elaborating on the TT-matrix approach used in Novikov
et al. (2014), we show that it leads to numerical locks for which some solutions are
proposed, essentially based on the rounding (Oseledets, 2011; Al Daas et al., 2022).
Finally, in section 7, we compare both in time and accuracy the computation of binary
marginals by our TT approach to three classical methods: brute force enumeration,
simulation with a Gibbs sampler, and as fixed point of a Mean-Field approximation.

2 Weighted Stochastic Block Model

The Stochastic Block Model (SBM, Holland et al., 1983; Daudin et al., 2008) was
originally defined for identifying groups in a set of individuals connected by binary
relationships (two individuals are either connected or not). In this work, we consider
the extension to dissimilarity matrices, where to each pair of individuals is attached
a weight which is a measure of dissimilarity between the two individuals.

The Weighted SBM (WSBM) is a model from the family of statistical models with
latent variables. Let us consider n individuals. The observed variable is the dissimi-
larity matrix D of size n× n, with element D[i, j]. The latent (unobserved) variables
are the group memberships of each individual: Zi ∈ {1, . . . , Q} is the group of individ-
ual i. The model relies on two assumptions. First, the Zi’s are independent and their
distribution is described by the vector of probabilities α = (α1, . . . , αQ), such that
P (Zi = q) = αq. Second, the distribution of the dissimilarity between i and j depends
only on the groups of i and j (an not on the individuals i and j). We assume that
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the distribution of D[i, j] conditionally to (Zi, Zj) depends on a parameter Λ and we
denote θ = (α,Λ) the model’s parameters. For instance, P(D[i, j] | Zi = q, Zj = q′)
can be the Poisson distribution with parameter λqq′ . The connectivity matrix of the
model is the Q by Q matrix Λ such that Λ[q, q′] = λqq′ . Let Z = (Z1, . . . , Zn). Then,
the joint probability distribution of Z and D is:

Pθ(Z,D) = PΛ(D | Z)Pα(Z)

=

(
n∏

i=1

∏
i>j

PΛ(D[i, j] | Zi, Zj)

)
n∏

i=1

Pα(Zi) (1)

In practice, when modelling a dissimilarity matrix with a WSBM the main goal is
to recover each individual’s memberships, i.e. to restore the Zis. This is performed by
maximising the conditional distribution Pθ(Z | D). Beyond this ’definitive’ affectation
of an individual to a group, one may be interested by the vector of probabilities that
an individual belongs to each group, namely {Pθ(Zi = q | D)}1≤q≤Q, to quantify the
uncertainty on the membership. Another probability of interest is the joint conditional
probability that two individuals i and j belong to the same group: Pθ(Zi = q, Zj = q |
D). Therefore, the distributions of interest are not only the conditional distribution
Pθ(Z | D) but also its unary and binary marginals. The probability Pθ(Z | D) is
proportional to Pθ(Z,D),

Pθ(Z | D) = Pθ(Z,D)/W (2)

and the normalising constantW is equal to the likelihood of the observed dissimilarity
matrix D:

W =
∑

z∈{1,...,Q}n

Pθ(Z = z,D)

= Pθ(D)

The binary marginal for two individuals, for instance 1 and 2, is defined by

Pθ(Z1 = q, Z2 = q′ | D) =

Q∑
z3=1

. . .

Q∑
zn=1

Pθ(Z1 = q, Z2 = q′, Z3 = z3, . . . , Zn = zn | D)

=
1

W

Q∑
z3=1

. . .

Q∑
zn=1

Pθ(Z1 = q, Z2 = q′, Z3 = z3, . . . , Zn = zn, D)(3)

The unary marginal Pθ(Zi = q | D) is obtained by marginalising any binary
marginal involving Zi:

Pθ(Zi = q | D) =

Q∑
q′=1

Pθ(Zi = q, Zj = q′ | D)
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In practice, un-normalised binary marginals, P̃θ(Zi = q, Zj = q′ | D) = Pθ(Zi =
q, Zj = zj , D) are computed, by marginalising Pθ(Z,D) instead of Pθ(Z | D). Then,

un-normalised unary marginals P̃θ(Zi = q | D) = Pθ(Zi = q,D) are derived by
marginalisation of the P̃θ(Zi = q, Zj = q′ | D). Finally W is obtained from any

un-normalised unary marginal as W =
∑Q

q=1 P̃θ(Zi = q | D).

For the following, it will be convenient to cast the WSBM in the family of graphical
models (Koller and Friedman, 2009). A vector of random variables Z = {Z1, . . . , Zn}
is a graphical model if the joint distribution can be expressed (up to the normalising
constant) as a product of functions, called factors, involving only subsets of the vari-
ables. From expression (1), we can see that in a WSBM, the distribution Pθ(Z | D) is

that of a graphical model with only binary and unary factors. There are n(n−1)
2 binary

factors, equal to PΛ(D[i, j] | Zi, Zj) and n unary factors equal to Pα(Zi). If com-
puted by applying näıvely expression (3), the complexity of evaluation of one binary
marginal is in O(Qn−2).

The Mean-Field approximation of a WSBM is its best approximation, in the sense
of the Kullback-Leibler divergence, by a product of independent unary factors ϕ.

Pθ(Z1 = z1, . . . , Zn = zn, D) ≈
n∏

i=1

ϕi(zi)

In such a case, we have separation of variables, and marginalisation is simple due to
the distributivity of multiplication over addition:

Q∑
z1=1

. . .

Q∑
zn=1

(
n∏

i=1

ϕi(zi)

)
=

n∏
i=1

(
Q∑

zi=1

ϕi(zi)

)
(4)

which requires nQ sums and n− 1 products. Such a distributivity exists as well in the
ring of matrices. Therefore, marginalisation with separation of variables can be done
as well in the case where the joint distribution of the n variables can be approximated
by a product of unary factors G, each being a matrix, like, for n = 3

Pθ(Z1 = z1, . . . , Zn = zn, D) ≈ G1(z1)G2(z2)G3(z3) with


G1(z1) ∈ R1×r1

G2(z2) ∈ Rr1×r2

G3(z3) ∈ Rr2×1

(5)
Such a decomposition is known as Tensor-Train decomposition (TT), and has been
thoroughly studied in the literature (see next section). We will see in Section 5 that
the joint distribution of a WSBM (or any pairwise graphical model) can be exactly
decomposed in a TT format, which paves the way for its marginalisation. Indeed, in
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the simple case of the probability written in TT-format in equation (5), we have

W =

Q∑
z1=1

Q∑
z2=1

Q∑
z3=1

G1(z1)G2(z2)G3(z3)

=

(
Q∑

z1=1

G1(z1)

)(
Q∑

z2=1

G2(z2)

)(
Q∑

z3=1

G3(z3)

)
(6)

3 Tensors and Tensor Trains

The main idea which has driven this study is to consider that the joint distribution of
a WSBM defines a tensor, i.e. a multi-way array. Then, following Novikov et al. (2014),
we use possibilities given by computing in TT-format (mainly due to Oseledets, 2009,
2011) to separate the variables for each variable zi of the WSBM in the expression of
Pθ(Z,D). This separation enables to compute the marginals of the joint distribution.
Before positioning our method, we recall here the main definitions and results on
tensors we will use in the rest of the article.

Tensors:

Let E = (E1, . . . , Ei, . . . , En) be a family of n finite dimensional real vector spaces.
A tensor T on E is a multilinear form on E1 × . . . × En. Then, n is the order of the
tensor, Ei for 1 ≤ i ≤ n is a mode of T (often simplified as i) and the dimension of
Ei, denoted Qi, is its dimension for mode Ei. The multilinear dimension of the tensor
is denoted Q1 × . . . ×Qn, with T ∈ RQ1×...×Qn . If a basis has been selected on each
space Ei, T can be represented in those basis as a n−dimensional array, the elements
of which are denoted

T[z1, . . . , zi, . . . , zn] with 1 ≤ i ≤ n, 1 ≤ zi ≤ Qi,

or Tz1...zn .

Slice of a tensor:

Let us explain what a slice of a tensor is on the example of a 3−modes tensors on
E1 × E2 × E3 with indices z1, z2, z3. A general term of T is T[z1, z2, z3] and T has
dimension Q1 ×Q2 ×Q3 with 1 ≤ z1 ≤ Q1, 1 ≤ z2 ≤ Q2 and 1 ≤ z3 ≤ Q3. The slice
TE2

(z2) on mode E2 with index z2 or, more simply, T2(z2), is the tensor of dimension
Q1 × Q3 obtained by letting the indices in modes E1 and E3 ( ̸= E2) run over all
dimensions of respectively E1 and E3 and fixing the index for mode E2 at z2:

T2(z2) = (T[z1, z2, z3])z1,z3 with 1 ≤ z1 ≤ Q1, 1 ≤ z3 ≤ Q3.

or, more simply:
T2(z2) = T[:, z2, :]
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This can be extended with some technicalities in notations to any tensor, by selecting
a mode Ei (referred to as Ti) and an index zi (1 ≤ zi ≤ Qi):

Ti(zi) = T[:, . . . , :, zi, :, . . . , :]

Frobenius norm of a tensor:

The set of tensors of a gi ven multilinear dimension is a vector space, which can inherit
the Euclidean structure of all modes. The Frobenius norm ∥T∥ of T is defined by

∥T∥2 =

Q1∑
i1=1

. . .

Qn∑
in=1

T2[i1 . . . in].

This will be useful to define a distance between tensors, as d(T,T′) = ∥T−T′∥.

Tensor-Train format:

The Tensor-Train format, denoted TT-format in the rest of this article, is a for-
mat proposed in Oseledets (2009, 2011), well adapted to separation of variables
(it can be read as a local, or componentwise, separation of variables). A tensor
T = (T[z1, . . . , zn])z1,...,zn is in TT-format if there exists matrices Gi(zi) for 1 ≤ i ≤ n
such that

∀ (z1, . . . , zn), with 1 ≤ zi ≤ Qi, T[z1, . . . , zn] = G1(z1) . . . Gn(zn),

(Oseledets, 2011, equation (1.2)). The matrices Gi(zi) are called the cores of the TT-
decomposition of T. This is explicitly variable separation for the modes of the tensor.
The dimensions of matrix Gi(zi) are ri−1 × ri, with r0 = rn = 1. These are called the
ranks of the TT-format. The TT-rank of T is

r = (r0, . . . , rn).

The TT-decomposition of T can be developed by defining componentwise for each
mode i

Gi(zi) = (Gi(zi)[αi−1, αi])αi−1,αi
∈ Rri−1×ri with

{
1 ≤ αi−1 ≤ ri−1

1 ≤ αi ≤ ri

and the tensorGi of order 3 of dimension ri−1×Qi×ri with coefficientsGi[αi−1, zi, αi].
The matrix Gi(zi) is the slice zi of second mode of tensor Gi. This leads to

∀(z1, . . . , zn), T[z1, . . . , zn] =

r1∑
α1=1

r2∑
α2=1

. . .

rn−1∑
αn−1=1

G1[z1, α1]G2[α1, z2, α2] . . .Gn[αn−1, zn]

Vidal (2003) has shown in the framework of the MPS that such a decomposition
always exists, and is not unique. However, a simple dimension analysis shows that the
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rank may be huge (r ∼
√
Qn−1/n) in general). A classical problem is, a tensor T and

a rank r being given, to find a tensor in TT format of rank r which is closest to T with
Frobenius norm. Oseledets (2011) has proposed a robust algorithm, called TT-SVD,
to solve this optimisation problem (see Oseledets, 2011, Algorithm 1). He has shown
that many basic operations in tensor calculus can be done in the framework of the
TT-format, i.e. knowing the cores only, without using explicitly the coefficients of the
tensors involved: addition, contraction, Hadamard product, inner product, matrix-by-
vector product, and the best approximation at a given TT-rank called the rounding.
Bypassing the explicitation of all coefficients leads to powerful tools for many modes
tensors which cannot be stored in memory.

Suitability for marginalisation:

Marginalisation in tensors is an operation associated with slicing. It consists in (i)
selecting a slice, which can be empty and (ii) summing up all terms which are not in
the slice. Here, we show why TT format is suitable for marginalisation. Let us first
develop it for a tensor of order 3 with equal dimension Q on all modes, as

∀1 ≤ z1, z2, z3 ≤ Q, T[z1, z2, z3] = G1(z1)G2(z2)G3(z3) with


G1(z1) ∈ R1×r1

G2(z2) ∈ Rr1×r2

G3(z3) ∈ Rr2×1

Let us consider the slice defined by mode E2 and index z2 to define the marginal
m2(z2). Then, because of distributivity of multiplication on addition in the ring of
matrices

m2(z2) =

Q∑
z1,z3=1

T[z1, z2, z3]

=

Q∑
z1,z3=1

G1(z1)G2(z2)G3(z3)

=

(
Q∑

z1=1

G1(z1)

)
G2(z2)

(
Q∑

z3=1

G3(z3)

)
= B1G2(z2)B3

(7)

with

B1 =

Q∑
z1=1

G1(z1) ∈ R1×r1 , B3 =

Q∑
z3=1

G3(z3) ∈ Rr2×1.

This can be extended in a straightforward way to tensors of any order n with unequal
dimensions.

4 TT to compute the normalising constant of a
graphical model

In this section we present in detail the approach developed in Novikov et al. (2014).
They use the TT-approximation of the factors of a graphical model to compute the
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normalising constant. Our work on inference for WSBM is elaborated on their results.
We present in Table 1 a few notations used in the rest of the article that allow a
transition between the domains of statistical modelling and tensor algebra.

symbol WSBM tensor
n # of individuals # of modes
i an individual a mode
Q number of groups dimension of a mode
zi latent group membership index in mode i

for individual i zi ∈ {1, . . . , Q}
ψij(zi, zj) a factor in WSBM
Ψij [zi, zj ] matrix of the table

associated to ψij

ψ(z1, . . . , zn) joint distribution
Ψ[z1, . . . , zn] associated tensor

m # of factors n(n− 1)/2 −
ℓ index of a factor −

Table 1 Notations for transition between WSBM and tensor
calculus.

When a is a vector or M a matrix, we denote by a[i] the component i of a and
by M [i, j] the component at row i and column j of M . If, for example, ψij is a
binary factor of a graphical model on edge (i, j), represented by a matrix Ψij , if the
group membership of individual i (resp. j) is zi (resp. zj), both in state space S, we
denote by ψij(zi, zj) the factor as a function from S × S on R and by Ψij [zi, zj ] the
coefficients of the matrix associated to it.

Let us have a graphical model with n variables, each representing an individual,
with zi being the group of individual i. The graphical model is defined on a hyper-
graph G = (I, E) where I = {1, . . . , n} and E is a set of hyperedges Aℓ ⊂ I for
ℓ ∈ {1, . . . ,m}. Let us denote nℓ = |Aℓ|, and by zℓ the groups of the individuals in Aℓ

i.e. zℓ = (zi)i∈Aℓ
. Then, the un-normalised distribution of the graphical model can be

written as a product of m factors indexed by ℓ:

ψ(z1, . . . , zn) =

m∏
ℓ=1

ψℓ(zℓ)

The objective of the work in Novikov et al. (2014) is to compute the normalising
constant

W =

Q∑
z1=1

. . .

Q∑
zn=1

(
m∏
ℓ=1

ψℓ(zℓ)

)
Their method is composed of four steps presented here as we will elaborate on them
to develop our method for computing marginals in a WSBM. Let us denote by Ψ :=
Ψ[z1, . . . , zn] = ψ(z1, . . . , zn) the tensor which is the distribution table associated to
the un-normalised joint distribution ψ.

11



Step 1: approximating each factor for a given TT-format

A tensor Ψℓ can be built from each factor ψℓ. Its order is nℓ, the number of indices
in Aℓ, and its dimensions are Q for each mode. We define

Ψℓ[zℓ] = ψℓ(zℓ), with Ψℓ ∈ RQ×...×Q

The first step consists in selecting a rank r and computing a best TT-approximation Ψ̃ℓ

of Ψℓ at rank r (more rigorously, at rank r = (1, r, . . . , r, 1)). In the TT-format, each

component Ψ̃ℓ[ziℓ1 , . . . , ziℓnℓ
] can be written as a product of matrices with separation

of variables (here, zℓ = (ziℓ1 , . . . , ziℓnℓ
) where iℓµ is µ−th index in Aℓ):

Ψ̃ℓ[ziℓ1 , . . . , ziℓnℓ
] = Gℓ

iℓ1
(ziℓ1) . . . G

ℓ
iℓnℓ

(ziℓnℓ
), with


Gℓ

iℓ1
(ziℓ1) ∈ R1×r

Gℓ
iℓµ
(ziℓµ) ∈ Rr×r iℓ2 ≤ iℓµ ≤ iℓnℓ−1

Gℓ
iℓnℓ

(ziℓnℓ
) ∈ Rr×1.

For sake of simplicity, we select a same rank r for each node, but it can be developed
with ranks specific to each node. It may happen that, for a given factor and a given
rank, the TT-decomposition at rank r is exact. For example, if nℓ = 3, tensor Ψℓ has
Q3 terms, and a TT of order 3 with rank r has Qr(r + 2) terms. A simple dimension
analysis shows that if r = Q, an exact TT-decomposition likely exists. In order to
encompass in a same notation exact decomposition and best approximation at a given

rank for any factor, we will use the same notation Ψℓ from now on, and drop the (̃.).
We then start with

Ψℓ[ziℓ1 , . . . , ziℓnℓ
] = Gℓ

iℓ1
(ziℓ1) . . . G

ℓ
iℓnℓ

(ziℓnℓ
).

Step 2: Adding non essential variable:

This step is simple, but notations can be cumbersome. So, it will be presented first on
the small example of Novikov et al. (2014), section 5.1. The idea is to build for each
hyperedge Aℓ a new factor ψℓ that depends on all variables and not only on zℓ but
whose value does not actually depend on zj for j /∈ Aℓ:

ψℓ : {1, . . . , Q}n −−−−→ R

(z1, . . . , zn) −−−−→ ψℓ(zℓ)

The tensor Ψℓ attached to ψℓ has order n. We have

Ψ[z1, . . . , zn] =

m∏
ℓ=1

Ψℓ[z1, . . . , zn] (8)

The TT-format of tensors Ψℓ with non essential variables can be derived from the
TT-format of the tensor corresponding to the factor ψℓ as shown in the following toy
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example, with n = 7, Aℓ = {2, 4, 6}. We then have

Ψℓ[z2, z4, z6] = Gℓ
2(z2)G

ℓ
4(z4)G

ℓ
6(z6) with


Gℓ

2(z2) ∈ R1×r

Gℓ
4(z4) ∈ Rr×r

Gℓ
2(z6) ∈ Rr×1

This can be sketched as

Ψℓ[z2, z4, z6] =

Gℓ
2(z2) Gℓ

4(z4) Gℓ
6(z6)

1× r r × r r × 1

The product of those matrices of dimensions (1, r), (r, r) and (r, 1) is a real. To build
the TT-format of Ψℓ, we add new cores, one per non essential variable, which are
Gℓ

1(z1) = 1, Gℓ
3(z3) = Gℓ

5(z5) = Ir and Gℓ
7(z7) = 1 as in the following figure:

Ψℓ[z1, z2, z3, z4, z5, z6, z7] = • •
Gℓ

1(z1) = 1 Gℓ
2(z2) Gℓ

3(z3) = Ir Gℓ
4(z4) Gℓ

5(z5) = IrGℓ
6(z6)G

ℓ
7(z7) = 1

1× 1 1× r r × r r × r r × r r × 1 1× 1

Finally,

Ψℓ[z1, z2, z3, z4, z5, z6, z7] = Gℓ
1(z1)G

ℓ
2(z2)G

ℓ
3(z3)G

ℓ
4(z4)G

ℓ
5(z5)G

ℓ
6(z6)G

ℓ
7(z7)

This procedure is applied to each factor of the graphical model. Then, there exists a
family of cores (Gℓ

k(zk))k,ℓ with 1 ≤ ℓ ≤ m and 1 ≤ k ≤ n such that

∀Aℓ ∈ E, Ψℓ[z1, . . . , zn] =

n∏
k=1

Gℓ
k(zk)

Step 3: Mixed-product property of Kronecker product:

Let us recall that ⊗ denotes the Kronecker product between matrices. Knowing that
xy = x⊗ y if x, y ∈ R, equation (8) can be written

Ψ[z1, . . . , zn] =

m⊗
ℓ=1

Ψℓ[z1, . . . , zn]

=

m⊗
ℓ=1

(
n∏

k=1

Gℓ
k(zk)

)

Let us recall the mixed-product property of Kronecker product (see Horn and Johnson,
2012): if A,B,C,D are matrices with relevant dimensions for the products AB and
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CD to be possible, then

(AB)⊗ (CD) = (A⊗ C) (B ⊗D).

This leads to

Ψ[z1, . . . , zn] =

n∏
k=1

(
m⊗
ℓ=1

Gℓ
k[zk]

)
Let us denote

Ak(zk) =

m⊗
ℓ=1

Gℓ
k(zk) (9)

Then, the un-normalised joint distribution ψ can be expressed as

ψ(z1, . . . , zn) = Ψ[z1, . . . , zn] =

n∏
k=1

Ak(zk) (10)

which is separation of variables.

Step 4: computation of the normalising constant and of unary marginals

It is now easy to compute the normalising constant W of ψ. We recall that

W =

Q∑
z1=1

. . .

Q∑
zn=1

ψ(z1, . . . , zn)

Then,

W =

Q∑
z1=1

. . .

Q∑
zn=1

(
n∏

k=1

Ak(zk)

)

=

n∏
k=1

(
Q∑

zk=1

Ak(zk)

)

=

n∏
k=1

Bk, with Bk =

Q∑
zk=1

Ak(zk).

It requires nQ matrix additions and n− 1 matrix multiplications only, if all matrices
Ak(zk) have been computed for all 1 ≤ k ≤ n and 1 ≤ zk ≤ Q (hence nQ matrices).
The complexity is no longer exponential with n, but depends on the dimensions of the
matrices Ak.

Expression (10) permits to compute the unary marginals as well, with mes-
sage passing, as evoked in Novikov et al. (2014). Let us denote z\zi =
(z1, . . . , zi−1, zi+1, . . . , zn), i.e. all zj for j ̸= i. The un-normalised unary marginal for
variable i is defined as

mi(zi) =
∑

z\zi∈{1,...,Q}n−1

ψ(z1, . . . , zn)
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Then

mi(zi) =
∑
z\zi

(
n∏

k=1

Ak(zk)

)

=

 ∑
z1,...zi−1

(
i−1∏
k=1

Ak(zk)

)Ai[zi]

 ∑
zi+1,...zn

(
n∏

k=i+1

Ak(zk)

)
=

(
i−1∏
k=1

Bk

)
Ai[zi]

(
n∏

k=i+1

Bk

)

For one unary marginal, this requires only n−1 matrix multiplications. If all marginals
for all zk have to be computed, the calculations can be organised in order to mutualise
them. Computing all marginals mi(zi) for all i and all zi requires 2(n − 2) + 2nQ

matrix multiplications: n − 2 to compute recursively each
∏i−1

k=1 Bk for i = 3 to n,
again n − 2 to compute recursively each

∏n
k=i+1 Bk for i = 1 to n − 2, and finally

2(n+ 1)(Q− 1) (because we use
∑

qmi(q) = 1) to compute each mi(zi) for all i and
all zi by multiplying three matrices (or only 2 for m1 and mn).

This expression does not allow to reveal the real complexity of the calculation,
which depends on the dimensions of the matrices. Indeed, if A,B are two p×pmatrices,
the complexity of the calculation of the product AB is in O(p3). Such dimensions are
specific to the graphical model defined by ψ and its factors.

From now on we focus on the case of graphical models with binary factors (as for
the WSBM model) and starting from the Novikov approach we establish the following
results :
1. We first observe in section 5.1 that if a factor ψℓ is binary, the tensor Ψℓ attached

to it is a matrix, and its TT-SVD is the SVD of this matrix
2. For pairwise graphical models (i.e. all factors are binary, like an Ising model), this

leads to a rewriting of the tensor Ψ with separation of variable by equation (10)
without any approximation (step 1 is exact). This leads to a calculation of all the
binary marginals by a recursion approach inspired by Message Passing (section
5.2)

3. We develop this approach on a specific family of pairwise graphical model: the
WSBM, for which all binary factors are present (section 5.3). We show that, even
though the calculation is algebraically exact, it can be intractable for large n
(due to the matrix × matrix product of the Ak), and we propose some low rank
approximation with the rounding (section 6).

5 Separation of variables and computation of binary
marginals for pairwise graphical models

In this section, we show that Novikov approach when implemented on a graphical
model with binary factors at most leads to rewrite the un-normalised joint distribution
in Tensor-Train format, hence with variable separation for computing normalising
constant or marginals. This applies to WSBM models. We first develop the approach
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of section 4 on pairwise graphical models, and focus after on the particular case of
WSBM, which are pairwise graphical models.

5.1 Separation of variables in the un-normalised joint
distribution of a pairwise graphical model

The main advantage of pairwise graphical model is that the TT-format of each
binary factor (i.e. separation of variables) is obtained with the SVD of the factor. We
implement it as first step in Novikov approach for binary graphical models. Further
steps are unchanged, and presented in appendix C.

Let us have a pairwise graphical model with un-normalised distribution ψ defined as
follows:

ψ(z1 . . . , zn) =
∏

(i,j)∈E

ψij(zi, zj)

where E is the set of binary factors of the graphical model. Factor ψij can be given as
a Q × Q matrix Ψij with Ψij [zi, zj ] = ψij(zi, zj) where zi and zj label the rows and
columns of Ψij . The SVD of Ψij can be written as (see e.g. Horn and Johnson, 2012;
Strang, 2019)

Ψij = Uij Σij V
t
ij , with Uij ,Σij , Vij ∈ RQ×Q

where Σij is a diagonal matrix, and Uij , Vij are columnwise orthonormal. We assume
that matrices are full rank, i.e. rank Ψij = Q. Let us denote Mij = Uij Σij . Then,
Ψij =Mij V

t
ij . So

Ψij [zi, zj ] =

Q∑
q=1

Mij [zi, q]Vij [q, zj ]

Let us denote by Mij [a] ∈ RQ the row a of Mij and by Vij [b] ∈ RQ the column b of
Vij . These can be considered as one row and one column matrices respectively

Mij [zi] ∈ R1×Q, Vij [zj ] ∈ RQ×1

Then
ψij(zi, zj) = Ψij [zi, zj ] =Mij [zi]Vij [zj ] (Matrices product)

This is variable separation for ψij(zi, zj): each matrix depends only on one variable
zi or zj .

The subsequent steps (adding non essential variables, computation of the matrices
Ak(zk) and Bk) are implemented as in section 4, and are described with a specific
implementation for a WSBM in appendix C.
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5.2 Computing the binary marginals of a pairwise graphical
model

Like the unary marginals, the un-normalised binary marginals can be expressed in
terms of the Bk and the Ak(zk):

mij(q, q
′) = P̃θ(Zi = q, Zj = q′ | D)

= B1 × . . .×Bi−1 ×Ai(q)×Bi+1 × . . .×Bj−1 ×Aj(q
′)×Bj+1 × . . .×Bn

Let us define the following quantities:

∀ 1 ≤ i ≤ n, Fi,i = Bi

∀ 1 ≤ i ≤ n− 1, ∀ i+ 1 ≤ j ≤ n, Fi,j = Bi ×Bi+1 × . . .×Bj

Depending on the values of i and j, mij(q, q
′) can be expressed as follows:

i = 1 j = n ⇒ m1n(q, q
′) = A1[q]× F2,n−1 ×An[q

′]
i = 1 2 < j < n ⇒ m1j(q, q

′) = A1[q]× F2,j−1 ×Aj [q
′]× Fj+1,n

1 < i < n− 1 j = n ⇒ min(q, q
′) = F1,i−1 ×Ai[q]× Fi+1,n−1 ×An[q

′]
1 < i < n− 2 i+ 1 < j < n ⇒ mij(q, q

′) = F1,i−1 ×Ai[q]× Fi+1,j−1 ×Aj [q
′]× Fj+1,n

i = 1 j = 2 ⇒ m12(q, q
′) = A1[q]×A2[q

′]× F3,n

i = n− 1 j = n ⇒ min(q, q
′) = F1,n−2 ×An−1[q]×An[q

′]
1 < i < n− 1 i+ 1 = j ⇒ mij(q, q

′) = F1,i−1 ×Ai[q]×Ai+1[q
′]× Fi+2,n

All the Fi,j can be computed in an efficient way recursively with the following
algorithm:

Algorithm 1 Recursive computation of the Fij

1: inputs: Bi ∀ 1 ≤ i ≤ n
2: initialisation: ∀ 1 ≤ i ≤ n, Fi,i = Bi

3: for i = 1 to n− 1 do
4: for j = i+ 1 to n do
5: Fi,j = Fi,j−1 ×Bj

6: end for
7: end for
8: return Fi,j ∀ 1 ≤ i < j ≤ n

Once the Fij are computed, all binary marginals can be computed with the fol-
lowing algorithm:
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Algorithm 2 Computation of all binary marginals of a pairwise graphical model

1: inputs: Fi,j ∀ 1 ≤ i < j ≤ n, Ak(q) ∀ 1 ≤ k ≤ n, ∀ 1 ≤ q ≤ Q
2: for j = 1 to n− 1 do
3: for q′ = 1 to Q do
4: Rj [q

′] = Aj [q
′]× Fj+1,n

5: end for
6: end for
7: for i = 2 to n do
8: for q = 1 to Q do
9: Li[q] = F1,i−1 ×Ai[q]

10: end for
11: end for
12: for i = 1 to n− 1 do
13: for j = i+ 1 to n do
14: for q = 1 to Q do
15: for q′ = 1 to Q do
16: if i = 1 and j = n then
17: mij(q, q

′) = A1[q]× F2,n−1 ×An[q
′]

18: else if i = 1 and 2 < j < n then
19: mij(q, q

′) = A1[z1]× F2,j−1 ×Rj [q
′]

20: else if 1 < i < n− 1 and j = n then
21: mij(q, q

′) = Li[q]× Fi+1,n−1 ×An[q
′]

22: else if 1 < i < n− 2 and i+ 1 < j < n then
23: mij(q, q

′) = Li[q]× Fi+1,j−1 ×Rj [q
′]

24: else if i = n− 1 and j = n then
25: mij(q, q

′) = Ln−1[q]×An[q
′]

26: else if 1 < i < n− 1 and i+ 1 = j then
27: mij(q, q

′) = Li[q]×Ri+1[q
′]

28: end if
29: end for
30: end for
31: end for
32: end for
33: return mij(q, q

′) ∀ 1 ≤ i < j ≤ n,∀ 1 ≤ q, q′ ≤ Q

Computing all the Fi,j requires
∑n−1

i=1 (n − i) = n(n − 1)/2 matrices products.
Then, computing all Li[q] for a given q requires n − 1 matrices products, and there
are Q possible values for q, hence (n− 1)Q matrices products are needed to obtain all
matrices Li[q]. There is a similar result for all matrices Rj [zj ]. Knowing all Fi,j , Li[q]
and Rj [q

′], the calculation of mij(q, q
′) requires 2 matrices products, hence n(n−1)Q2

products for all binary marginals because there are n(n − 1)/2 pairs (i, j). In total,
computing all binary marginals requires n(n− 1)/2+2(n− 1)Q+n(n− 1)Q2 ≈ n2Q2

matrix multiplications. Let us recall that the real barrier to this calculation is the

18



dimension of the matrices, hence each matrices product. These dimensions are evalu-
ated in next section.

Note that the procedure is more general and is not restricted to binary marginals.
It can also be used to compute marginals of order 3 or more since any marginal can
be expressed as products of some Bk and Ak[zk].

5.3 Dimensions of the matrices Ak(zk) for a WSBM

If the graphical model is a WSBM, for which E = {(i, j) : 1 ≤ i < j ≤ n}, the price to
pay in complexity for variable separation using TT is very high. Indeed, the dimensions
of the matrices Ak(zk) are huge. This can be understood intuitively before developing
the calculation, as each Ak(zk) is a Kronecker product of m matrices Gij

k [zk] with

m = n(n−1)/2. Each matrix Gij
k [zk] has dimension 1×1, 1×Q, Q×1, or Q×Q, and

their Kronecker product has dimension at most Qm ×Qm. Hence, complexity comes
from the number of pairs (i, j) in E. What follows is established for WSBM, but the
approach is relevant for any pairwise graphical model.

We first establish that, for WSBM models with n individuals, the dimensions of
the matrix Ak(zk) is

dimAk(zk) = Q(k−1)(n−k+1) ×Qk(n−k)

Proof. Let us start from

Ak(zk) =
⊗

1≤i<j≤n

Gij
k [zk]

(see equation (9) with (i, j) ≡ ℓ). Let us recall that if dim A = (a, a′) and dim B =
(b, b′), then dimA⊗B = (ab, a′b′). Ak(zk) is a Kronecker product of m = n(n− 1)/2
matrices. Let us assume that mr matrices are in R, mq in R1×Q, mq′ in RQ×1 and
mQ in RQ×Q. Then

dimAk(zk) = Qmq′+mQ ×Qmq+mQ

Let us select a k ∈ {1, . . . , n} and express mq,mq′ and mq in terms of k and n. The

dimension of matrix Gij
k [zk] depends on the position of k when compared to i and

j according to equation (C14). The value of Gij
k [zk] depending on i and j can be

visualised in figure 1 for k /∈ {i, j}.
k being fixed, the counts of pairs (i, j) per condition in (C14) follow as:
→ condition k < i: it corresponds to all pairs (i, j) with k + 1 ≤ i < j ≤ n, hence

(n− k)(n− k − 1)/2 pairs
→ condition k = i: it corresponds to all pairs (i, j) with k = i < j ≤ n, hence n− k

pairs
→ condition i < k < j: it corresponds to all pairs (i, j) with i < k < j, hence k − 1

values for i and n− k for j, hence (k − 1)(n− k) pairs
→ condition k = j: it corresponds to all pairs (i, j) with 1 ≤ i < k = j, hence k − 1

pairs
→ condition k > j: it corresponds to all pairs (i, j) with 1 ≤ i < j < k, hence

(k − 1)(k − 2)/2 pairs
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Iq

Fig. 1 This matrix displays all matrices Gij
k [zk] for k being fixed and all pairs (i, j) ∈ {1, . . . , n} ×

{1, . . . , n}. The gray zone represents those for which 1 ≤ i < j ≤ n. Indices i for which k < i or k > i,
and indices j for which k < j or k > j are separated by dashed lines. This enables to show the blocks

of indices (i, j) for which G
(k)
ij = 1 and those for which G

(k)
ij = Iq

This leads to the following table:

k number of pairs (i, j) size of ψij
k [zk]

k < i (n− k)(n− k − 1)/2 1× 1
k = i n− k 1×Q

i < k < j (k − 1)(n− k) Q×Q
k = j k − 1 Q× 1
k > j k(k − 1)/2 1× 1

Hence, mq′ = k − 1, mQ = (k − 1)(n − k) and mq = n − k. Let us note that the
counts for k < i and k > j are not necessary since they correspond to mr, which is
not involved in the size of Ak(zk).

The highest values are obtained for k ≃ n/2, which yields dimAk(zk) ≃ Q(n/2)2 ×
Q(n/2)2 , which is worse than Qn (the number of terms in the tensor of the joint

distribution). For example, for n = 20 and Q = 3, this yields dim An/2[z] ≃ 310
2

=
3100 ≃ 5.15×1047. The growth of the dimension is due to the multiplicity of Kronecker
products. Hence, algebra yields exact formula for computing the normalising constant,
but leads to inextricable numerical difficulties for the calculation. We address in next
section such difficulties. Let us mention that the dimensions are dominated by the
pairs (i, j) with i < k < j: the highest contribution to the dimension of Ak(zk) is a
Kronecker product of (k − 1)(n − k) matrices IQ. This is the identity matrix of size
Q(k−1)(n−k), which is sparse (if x = Q(k−1)(n−k), the number of terms in this identity
matrix is x2, among which, in the diagonal, x are non zero and equal to 1). To the
best of our knowledge, taking this sparsity into account to simplify the calculations
remains an open question.
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6 Numerical difficulties beyond small sized problems

We have seen in section 5.3 that the dimensions of the matrices involved in matri-
ces products for exact computation of the normalising constant or some marginals
(like W =

∏
iBi with Bi =

∑
zi
Ai(zi)) have dimensions which can reach ≃

Q(n/2)2 × Q(n/2)2 . It is not possible to perform these calculations using conventional
matrix calculation algorithms, in particular the BLAS library. Novikov et al. (2014)
proposed to use a TT-format specific for matrix calculation which has been defined in
Oseledets et al. (2011) and Oseledets and Dolgov (2012). We call here this format TT-
matrix format, and not TT-format, because it is not the TT-format of a matrix read
as a tensor of order 2 (this TT-format is given by the SVD of the matrix, see section
5.1). To avoid any confusion, we specify ”matrix expressed as TT-matrix”, or more
simply ”TT-matrix”, instead of matrix in TT format. Calculation can be done exactly
in TT-matrix format, because matrices Ai(zi) are expressed as TT-matrices of rank
one, hence matrices Bi are expressed as TT-matrices too, as well as their products.
Definition of TT-matrices is given in Section 6.1, after the presentation of multiplex-
ing / demultiplexing of indices. Even when using TT-matrices, numerical difficulties
remain and we present in Section 6.2 how we propose to bypass them.

6.1 Matrices expressed as TT-matrices

Multiplexing / demultiplexing of indices:

Let z = (z1, . . . , zn) ∈ {1, . . . , Q}n be a multi-index. An index a in {1, . . . , Qn} can be

associated to z using the following construction: a =
∑n−1

i=1 Q
n−i(zi − 1) + zn , which

is a bijection between {1, . . . , Q}n and {1, . . . , Qn}. The transformation from a to z
is called multiplexing, and the reverse operation is called demultiplexing.

Definition of a matrix expressed as a TT-matrix:

Let A be a Qn ×Qn matrix. Let a ≡ (z1, . . . , zi, . . . , zn) and b ≡ (t1, . . . , ti, . . . , tn) be
two demultiplexed indices and their multiplexed equivalent. A is said to be expressed
in TT-matrix format of rank r if there exists n families of r × r matrices, where each
family is composed of Q2 matrices and is indexed by i, and where each matrix in a
given family is indexed by (zi, ti):

∀ i, (zi, ti) −−−−→ Mi(zi, tj), with


i ∈ {1, . . . , n}
zi, tj ∈ {1, . . . , Q}
Mi(zi, tj) ∈ Rr×r

such that

A[a, b] := A[(z1, . . . , zn) ; (t1, . . . , tn)] =M1(z1, t1) . . .Mn(zn, tn). (11)

(M1 is 1 × r and Mn is r × 1 for the r.h.s. to be a scalar). Matrices Mi(zi, ti) are
called the ”cores” of the TT-matrix. Each matrix Mi(zi, ti) has r

2 elements (or r for
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M1(z1, z1) and Mn(zn, tn)), and there are nQ2 of them. Hence, storage of A in TT-
matrix format (i.e. storing the matricesMi(zi, ti) instead of storing A) requires nQ2r2

elements instead of Qn.

Elementary operations of matrix calculus in TT-matrix format:

In addition to the impressive storage savings achieved by using the TT-matrix format
when possible, basic matrix calculus operations can be carried out directly in TT-
matrix format, without the need for massive and complete storage of matrices in
memory. It is possible to compute the cores of the sum A + B of two matrices, or of
their product AB (see appendix B), knowing the cores of A and B only. It is possible
to show that TT rank (A + B) ≤ TT rank A + TT rank B and TT rank (AB) ≤
(TT rankA)(TT rankB).

Application to the computation of W : controlling the TT-rank:

So, all calculations of Bk =
∑

zk
Ak(zk), W =

∏
k Bk and marginals can be computed

in TT-matrix format. We have TT rankB ≤ Q, and TT rankW ≤ Qm. Of course, W
is a scalar, and TT rankW = 1. However, the rank of intermediate products can be
exponential with the number of terms in the product. For controlling the exponential
growth of the TT-rank when computing the product

∏
iBi, algorithm 1 in Novikov

et al. (2014) consists in approximating the product by a matrix of low TT-rank, with
an operation called the ”rounding”, which can also be performed in TT-matrix format.
Let us recall that each matrix Bi in W =

∏n
i=1Bi is the sum of Q matrices Ai(q) for

q ∈ {1, . . . , Q}. Hence, storage of a matrix Bi requires a memory space of size mQ4

(r = Q). Using the TT-toolbox, we have carried out the control the TT-rank of the
matrices after each product with rounding with a prescribed accuracy of ϵTT = 5.10−2,
starting with n = 8 variables and increasing n progressively. At given values of n,
some new numerical difficulties appeared. We present them next in the order in which
they have appeared, and the choices we made for overcoming each of them.

6.2 Numerical difficulties encountered and options for
overcoming them

1. for n ≥ 24, numerical instabilities occurred because of small values for W or
marginals. So we have developed a simple action to fix it (see Calculating with
very small values);

2. for n ≥ 30, the rounding at prescribed accuracy yields matrices with too large
TT-rank (the TT-rank is no longer controlled). Therefore, a new strategy has
been carried out for the control of the TT-rank (see Strategy for controlling the
TT-rank in the rounding);

3. for n ≥ 45, the number of cores became an issue. Indeed, each matrix Bi has m
cores. The rounding requires ∼ m2 factorisations LQ and SVD which becomes
prohibitive when m is large, and the TT-toolbox is limited to matrices with 1024
cores or less. As the number m of cores is n(n− 1)/2, this corresponds to n = 45
nodes or less. Therefore, we set up core fusion to work with fewer but larger cores
(see Fusion of cores).
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We therefore have implementation choices that depend on the problem size, as detailed
below. This allowed us to calculate the different marginals up to n = 65 for a WSBM
with an assortative connectivity matrix (see Section 7 for a description of several
WSBM connectivity structures).

Calculating with very small values:

Both the un-normalised marginals and the normalising constant, computed separately,
are very small (see table 2): numerical simulations have shown that W ∼ exp−m.
Because of the finite representation of real numbers in IEEE format and the small
number of points to represent very small values, calculating marginals leads to errors
when n ≥ 24. This can be solved easily by scaling the WSBM factors with a fac-
tor denoted α. Let us denote with an exponent s the scaled factors: ψs

i,j(zi, zj) =
αψi,j(zi, zj). We have Ps(z,D) = αm P(z,D) because it is a product of m fac-
tors. So, W s =

∑
z Ps(z,D) = αmW . If mi,j(zi, zj) is the un-normalised binary

marginal of variables (i, j) for states (zi, zj), we have mi,j(zi, zj) =
∑

z\zi,zj P(z,D),

so ms
i,j(zi, zj) = αmmi,j(zi, zj). So, normalised marginals are unchanged by scaling,

because ms
i,j(zi, zj)/W

s = αmmi,j(zi, zj)/α
mW = mi,j(zi, zj)/W . We have chosen

α = 10, which is not the optimal parameter, but it is sufficient in our case.

Strategy for the controlling the TT-rank in the rounding:

There is indeed a trade off between TT-rank and accuracy: as with Singular Value
Decomposition of matrices which provides a best low rank approximation of a matrix,
the higher the rank, the better the accuracy. We wish at the same time a low TT-rank
for memory issues, and a high accuracy. To choose the best balance between low TT-
rank and high precision, we carried out a numerical experiment to compare the quality
of the calculation of W with prescribed precision and several choices of prescribed TT-
rank. For this experiment, we considered a WSBM with Poisson distributed distances.
It means that PΛ(D[i, j] | Zi = q, Zj = q′) is a Poisson distribution with parameter
λqq′ , and the connectivity matrix Λ is defined by Λ[q, q′] = λqq′ . We used

Λ =

 2 10 10
10 3 8
10 10 4


The result is given in table 2 for different values of n (from n = 8 to n = 32).

To this end, in the TT rounding algorithm we have combined the two approaches of
prescribed accuracy and prescribed rank, by setting the accuracy to ϵTT = 10−2, but
limiting the rank growth to rTT

max = 27. If the final rank reaches 27, that means we
have lost some of our prescribed accuracy.

Merging of cores:

To have fewer but larger cores in TT-matrix format, with m ≤ 1024, the cores of the
matrices Ak(zk) can be merged together thanks to the associativity of the Kronecker
product, as seen on this very simple example: M1 ⊗M2 ⊗M3 ⊗M4 = (M1 ⊗M2) ⊗
(M3⊗M4): we have two larger cores as far as dimensions are concerned instead of four
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n R1 R2 R3 R4 R5

8 6.21× 10−28 (9) 2.68× 10−28 6.21× 10−28 6.21× 10−28 6.21× 10−28

10 3.2× 10−45(12) 2.24× 10−46 3.20× 10−45 3.2× 10−45 3.2× 10−45

12 1.0× 10−75(31) 3.32× 10−77 6.73× 10−76 1.0× 10−75 1.0× 10−75

14 5.38× 10−101(8) 1.11× 10−101 5.38× 10−101 5.38× 10−101 5.38× 10−101

16 3.30× 10−135(10) 3.05× 10−135 3.30× 10−135 3.30× 10−135 3.30× 10−135

18 2.05× 10−161(15) 1.14× 10−161 2.05× 10−161 2.05× 10−161 2.05× 10−161

20 1.18× 10−199(18) 2.65× 10−205 1.18× 10−199 1.18× 10−199 1.18× 10−199

22 1.59× 10−247(15) 1.80× 10−247 1.59× 10−247 1.59× 10−247 1.59× 10−247

24 9.57× 10−294(16) 1.12× 10−297 9.57× 10−294 9.57× 10−294 9.57× 10−294

26 1.80× 10−353 (16) 8.13× 10−375 1.80× 10−353 1.80× 10−353 1.80× 10−353

28 1.34× 10−393 (21) 1.09× 10−393 1.34× 10−393 1.34× 10−393 1.34× 10−393

30 4.03× 10−459 (21) 4.03× 10−459 4.03× 10−459 4.03× 10−459 4.03× 10−459

32 3.43× 10−511 (34) 3.19× 10−511 3.43× 10−511 3.43× 10−511 3.43× 10−511

Table 2 Normalising constant calculated according to different accuracy and maximal rank

settings in rounding: R1: ϵTT = 5.10−2; R2: rTT
max = 3; R3: rTT

max = 9; R4: rTT
max = 27; R5:

rTT
max = 81. For ϵTT = 5.10−2, the maximum of observed rank is given in brackets. Calculations
have been done for a WSBM with Poisson distributed distances and Q = 3.

smaller cores. This has been implemented for each matrix Ak(zk). Let us recall that
(see formula (C15)): Ak(zk) =

⊗
1≤i<j≤n G

ij
k (zk) The fusion here is carried out at the

level of the matrices Gij
k [zk]. Merging can be implemented either by building groups

with the same number of initial cores (uniform numbers), or by creating merged cores
of the same dimensions (uniform volumes). We have tested the impact of each method
on the calculation of W for different values of n for the same WSBM model than
above. (see table 3). As the results are very similar, and observing that the method
with uniform numbers is much simpler to implement, we have chosen to merge cores
with uniform numbers.

n Without merging Merging with uniform numbers Merging with uniform volumes
12 9.35× 10−71 9.35× 10−71 9.35× 10−71

15 8.04× 10−112 7.95× 10−112 7.95× 10−112

18 3.77× 10−163 3.77× 10−163 3.77× 10−163

21 2.92× 10−219 2.92× 10−219 2.92× 10−219

24 1.53× 10−281 1.53× 10−281 1.53× 10−281

27 3.49× 10−359 3.76× 10−359 3.73× 10−359

30 4.40× 10−459 4.40× 10−459 4.40× 10−459

33 7.81× 10−565 7.81× 10−565 7.81× 10−565

36 1.55× 10−673 1.54× 10−673 1.55× 10−673

39 1.08× 10−775 1.08× 10−775 1.08× 10−775

42 1.06× 10−915 1.06× 10−915 1.06× 10−915

Table 3 Normalising constant without merging cores, or when merging them with uniform numbers
or uniform volumes, for increasing number of variables (n). Calculations have been done for a WSBM
with Poisson distributed distances and Q = 3.
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Remark:

The solutions proposed above to overcome the numerical obstacles in carrying out
the computation of marginal for large n with separation of variables in TT format
have led to the possibility of computing them on data sets with n ≤ 65. Even though
the algebraic calculation is exact, the rounding steps introduce approximations in the
numerical implementation.

7 Comparison of the TT-based method and
state-of-the-art approaches on simulated data

In this section we compare the behaviour of the TT-based method (refered to as TT
in the following) for computing binary marginals in a WSBM model, to that of three
classical inference methods: the exact method by complete enumeration, the Gibbs
Sampler and the Mean-Field approximation. For these experiments, we considered a
WSBM with Poisson distributed distances.

7.1 Different methods for computing the marginals

The first method tested for computing the binary marginals (3) is the complete enu-
meration of all the terms in the sum. It means Qn−2 terms for computing a single
binary marginal. So this method is only available for small n. Beyond n = 12 it is
not possible to store the tensor corresponding to Pθ(Z,D) in memory. To circumvent
this complexity two strategies are classically used. The exact computation can approx-
imated using simulations of the model, it leads for instance to the Gibbs Sampler
(Robert and Casella, 2004). The other option consists in computing the marginals on a
simpler model close enough to the original one in a certain sense. This is the principle
of the Mean-Field approximation used in the E step of the EM algorithm for WSBM
in Daudin et al. (2008). The Gibbs Sampler can be very precise but to the price of
a large computing time due to the number of simulations required. On contrary, the
Mean-Field method is faster to solve, but the quality of the approximated marginals
is lower. Let us detail these two methods.

Gibbs Sampler.

The Gibbs Sampler (GS, Geman and Geman, 1984) is a Markov Chain Monte-Carlo
method that exploits conditional probabilities associated to the complex propability
of interest. In our case, GS consists in simulating iteratively a Markov chain, using
only Pθ(Zi = q|{Zj = zj}j ̸=i, D), and whose stationary distribution converges towards
Pθ(Z | D). In practice, we simulate a single GS run (or path) for a number NGS

burnin

iterations, then we sample a simulated value of Z everyNGS
thining new iterations until we

collect L realisations. Binary marginals of Pθ(Z|D) can be approximated by empirical
frequencies.

Mean-Field.

With the Mean-Field approximation (MF), the conditional distribution Pθ(Z | D) is
approximated by a distribution Qθ(Z | D) for which marginalisation is less costly.

25



Qθ(Z | D) is chosen among the family Q of distributions that satisfy the hypothesis
of mutual independence between the Zis. It means that Qθ(Z | D) =

∏n
i=1 q

i
θ(Zi | D),

where the qiθ(Zi | D) are the unary marginals of Qθ. The binary marginals are easily

obtained as Qθ(Zi = q, Zj = q′ | D) = qiθ(Zi = q | D)qjθ(Zj = q′ | D).
The distribution Qθ(Z | D) is chosen as the one that minimises the Kullback-

Leibler divergence with the true distribution Pθ(Z | D):

Qθ(. | D) = argmax
Q∈Q

KL(Q(.) | Pθ(. | D))

with KL(Q(.)|P(.)) =
∑

z Q(z) ln
(

Q(z)
P(z)

)
. The solution is on the form of a fixed

point equation which is solved by an iterative scheme (see Appendix A for the
demonstration). If we denote by τ ti,q the current value of Q(Zi = q | D), we have

∀1 ≤ i ≤ n, ∀1 ≤ q ≤ Q,


τ t+1
i,q =

µ
t+1/2
i,q∑Q

l=1 µ
t+1/2
i,l

µ
t+1/2
i,q = αq

∏
j ̸=i

∏Q
q′=1

[
λ
D(i,j)

q,q′

D(i,j)! exp−λq,q′
]τt

j,q′

The scheme is initialised by τ0i,q = αq. We stop the scheme when ∥∆∥∞ < ϵMF with
∆ = {∆i,q, 1 ≤ i ≤ n, 1 ≤ q ≤ Q} and

∆i,q =
|τ t+1

i,q − τ ti,q|
|τ ti,q|

.

7.2 The 6 WSBM structures

In the literature, different structures of the connectivity matrix Λ has been consid-
ered (Kalmbach et al., 2017; Funke and Becker, 2019). They correspond to different
organisations of the distances between the individuals. We have selected the follow-
ing ones: assortative (two examples, easy and difficult), dissortative, core periphery,
ordered, and hierarchical structures. The assortative structure corresponds to the sit-
uations where the individuals are organised into well separated communities : intra
group dissimilarities λqq are small and inter group dissimilarities λqq′ are large. In
the dissortative structure, it is the opposite. In a core periphery structure, groups are
organised with a core plus groups at increasing distance from this core. Individuals in
the core are close to each other while those in the periphery are more and more scat-
tered. In an ordered structure, all the intra group dissimilarities are small then groups
have a chain-like organisation where a group is close only to its direct neighbours. In
the hierarchical structure, all inter dissimilarities are large and the intra dissimilari-
ties range from small to large. For each structure, the Λ matrix that we used in the
experiments, as well as a realisation of the dissimilarity matrix D for n = 100 are
presented in Figure 2.
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Assortative easy Assortative difficult Core periphery 2 6 10
6 2 8
10 8 2

  2 2.5 6
2.5 2 6
6 6 2

  2 5 8
5 4 6
8 6 10
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Ordered Dissortative Hierarchical 10 6 2
6 10 6
2 6 10

  8 3 3
3 10 3
3 3 9

  1.5 5 7.5
5 3 7.5
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0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

Fig. 2 The 6 WSBM structures used for the numerical experiments: Λ connectivity matrix and a
realisation of the dissimilarity matrix D for n = 100 individuals, for each structure.

7.3 Protocol

For n = 12, exact computation is still possible and so we are able to compare the
binary marginals computed by TT, GS and MF to the true ones. For each of the
6 connectivity matrix of Figure 2 we generated 10 dissimilarity matrices D and we
ran inference of each of them with the 4 methods. We also ran the comparison for
10 random Λ matrices. Then, for n = 25 and n = 40, we compared TT, MF and GS
behaviours, only on the two assortative structures and the core-periphery structure.
We chose the two assortative structures because, they represent typical easy and
difficult inference problems. Indeed, even though they belong to the same family of
assortative structures, one can see from Figure 2 than the dissimilarity matrix gen-
erated using the assortative difficult structure provides much less information on the
underlying groups than for the assortative easy structure. This is due to the fact that
in the connectivity matrix Λ of the assortative difficult structure, two lines are almost
identical, meaning that two groups share almost the same pattern of connections.
We also considered the core-periphery structure because for n = 12 we observed that
the associated unary marginals have a different pattern than for the two assortative
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structures (see Section 7.4.1 and Table 4). Therefore we can expect that the 3 selected
structures correspond to different difficulties regarding marginal inference.

Generation of the dissimilarity matrices. We set Q = 3 and αq = 1/3 in all
the experiments. Then, for a given number of individuals n and a given connectivity
matrix Λ, we generated a realisation z of Pα(Z) and then we generated a dissimilarity
matrix D according to PΛ(D | Z = z).

Settings of the inference methods. The parameters for each method are set to
the following values:

- exact method : with this method, the tensor of the joint distribution is stored in
memory, and the binary and unary marginals are computed by using expression
(3). It does not require any parameter setting;

- TT : parameters are the accuracy ϵTT and the maximal TT-rank rTT
max. We set

ϵTT = 10−2 and rTT
max = 27 for all experiments except n = 40 and the assortative

easy structure where we lowered rTT
max to 9 since it was enough to reach a good

agreement with the other methods.
- Gibbs Sampler : parameters are the number of iterations LGS = 5 × 105, the
warming phase NGS

burnin = 103 and the thinning frequency NGS
thinning = 5. There

exist no universal operational rules to set these parameters (Casella and George,
1992). We choose these values empirically by checking that for n = 12 the GS
estimates of unary marginals converge to the true values in most cases, and that
for n = 25 or 40 GS reached an agreement with the two other approximate
methods;

- Mean-Field : accuracy for stopping the iteration: ϵMF = 10−1.
Note that these choices may be specific to Q = 3.
Output. Computation of binary marginals by Gibbs Sampler can be subject to label
switching (Murphy, 2012, chapter 24). It means that there should be a phase of rela-
beling before comparison with the binary marginals obtained with the other methods.
To avoid this step which can be tricky, we compared the values of the probability
that two individuals i and j belong to the same class. This probability is obtained
as PSCi,j =

∑Q
q=1 Pθ(Zi = q, Zj = q | D). This quantity is not sensible to label

switching. Furthermore, in most applications, this quantity is more relevant than the
knowledge of each probabilities Pθ(Zi = q, Zj = q′ | D).

7.4 Results

7.4.1 Numerical experiments for n = 12

In a preliminary step, we compared the value of the exact and approximated unary
marginals. The list of all marginals for a dissimilarity matrix is a list 12 × 3 values,
so we were able to compared the exact and approximated values one by one instead
or summarising the difference by some statistics. We observed that the shape of the
unary marginals varies a lot between the structures, and it can also vary among the
10 repetitions for a given Λ matrix due to the variance of the Poisson distribution.
For assortative easy the true unary marginals are all very close to a Dirac, i.e. with
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one group of high probability (> 0.9) and the two others of very low probability. For
assortative difficult and ordered structures, some marginals are close to Dirac and other
are close to a uniform distribution between 2 groups (the third one having a probability
of zero). Finally, for core-periphery, hierachic and random, the true unary marginals
are more variables. The first observation is that the unary marginals computed using
TT always follow the same pattern than the true ones, which is not the case for GS and
MF (see Table 4). In addition quite often MF did not converge. Beyond this qualitative
observation, quantitatively the TT unary marginals are always almost identical to the
true one (up to the 3rd decimal). GS can be good to very good, however the quality
varies with the structure, and sometimes between different runs of a same structure.
When MF reaches convergence, the unary are not always of same quality than TT or
GS.

Regarding now binary marginals, Table 5 provides, for each Λ structure the median
of the absolute difference between the value of PSCi,j computed with the exact method
and each of the approximate ones. We chose the median rather than the mean since
histograms of these absolute difference are often bimodal (see Figure 1 in the SI).
The value reported is the mean of this median over the 10 repetitions. Similarly Table
6 displays the mean computational time, over the 10 repetitions, for computing all
unary and binary marginals, for each Λ structure.

Having in mind that the true value of PSCi,j is between 0 and 1, the global
conclusion from Table 5 is that the three approximate methods provide good to very
good estimates, and TT almost always leads to the lowest error. The MF estimator
is also precise but less than TT. Furthermore, as above-mentioned, it can happen
that the iterative scheme for solving the fixed point equation does not converge. This
concerned between 0 and 10 repetitions depending on the Λ structure (see Table 5).
We also observed that the MF approximation of PSCi,j is of very good quality when
the unary marginals are close to 0 or 1. This occurs typically with the ’assortative
easy’ structure. In this case, the MF approximates very well the unary marginals.
Since it can be shown (see Appendix C) that when unary marginals are equal to 0 or
1 then the binary marginals are equal to the product of the unary ones, mechanically
MF leads to a good approximation of PSCi,j in this case. If the unary marginals are
not close to 0 or 1, the quality if the MF approximation can decrease, this is the case
for instance for the random structure.

As for the unary marginals, we observed that the quality of the approximation can
vary with the structure of Λ. For instance, whatever the method, the approximation
is of better quality for the ”assortative easy” structure than the ”assortative difficult”
structure. For the latter, group 1 and group 2 have very similar connectivity pattern,
therefore they can be difficult to distinguish from the dissimilarity matrix D.

Note that a method can provide a good approximation of PSC while leading
to a poor approximation of the unary marginals. This is due to the fact that the
computation of PSC(i, j) does not use all the binary marginals Pθ(Zi = q, Zj = q′ | D)
but only those where q = q′. On contrary, all binary marginals are required to compute
the unary marginals. It happends for instance for GS with the ordered structure or
MF with the dissortative structure, so it means that in this cases GS and MF did not
approximate well the binary marginals Pθ(Zi = q, Zj = q′ | D) when q ̸= q′.
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Regarding computational time, the four methods rank as expected, with from the
faster to the slowest MF, TT, GS. For TT and MF, the computational time varies
with the structure of Λ.

7.4.2 Numerical experiments for n > 12

For n = 25 and n = 40, we compared the different methods on three structures which
present three different patterns of unary marginals on the experiments for n = 12 : the
two assortative structures and the core-periphery one. Table 7 provides the median
of the absolute difference between the value of PSCi,j computed with two pairs of
approximate methods. The median is computed over all pairs of variables i, j, and the
value reported in Table 7 is the mean of this median value, over the 10 experiments.
Table 8 displays the mean computational time (over the 10 experiments) for computing
all unary and binary marginals.

The agreement between the TT, GS and MF estimates is very good for the assorta-
tive easy structure. In this case, the unary marginals are close to 0/1, so, as explained
previously, it is a situation where MF performs well. The agreement between MF
and the two other methods increases when n = 40, probably because, heuristically,
Mean-Field approximation originating from statistical physics is more appropriate for
systems with a large number of interacting sites.

Agreement between the three methods is weaker for the assortative difficult struc-
ture than for the assortative easy one. Still, it remains of good quality. At first sight,
TT and MF are closer to each other than GS is with them. However, when looking at
the biplots of all PSCi,j for all pairs (i, j) we observe that MF quite systematically
returns values equal to 0, 1 or 1/2, while TT and GS provide more variable values
(see Figure 3).

For the core-periphery structure, the agreement between the three method on the
value of PSC, while lower than for thee assortative easy structure, is still very good.

Computing time obviously increases with n. MF remains very fast (less than a
second). However, as for n = 12, the MF does not always converge (see Table 8).
So even though it is the fastest method, it has to be used with care. TT remains
faster than GS, however the running time of TT can vary a lot with the nature of the
connectivity matrix Λ, as opposed to GS and MF. Indeed for the assortative difficult
structure we had to change rTT

max to 27 for n = 40 (instead of 9 for assortative easy).
This was necessary to reach a good agreement with GS and MF, however rounding is
the demanding task in the TT algorithm and increasing rTT

max has a high impact on
computing time. Note that we were able to run TT of the assortative easy structure
for n = 50, but not for the assortative difficult one. The problem was probably due to
a saturation of memory in the underlying fortran layer.

8 Conclusions and perspectives

In this paper, we propose an algebraic approach to compute exactly the marginals
(normalising constant, unaries, binaries, ternaries, ...) of a pairwise graphical model
(the size of the factors is at most two). For this purpose, we have adapted a previous
calculation of Novikov et al. (2014) developed for approximating normalising constant
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Fig. 3 Biplots of the approximated values of the probability to be in the same group PSCi,j per
pair of methods (Q = 3, n = 40). A dot corresponds to a pair of variables (i, j) with i < j. Example
for the assortative difficult structure of the WSBM connectivity matrix.

and unary marginals of any graphical model through a clever combination of TT low
rank approximations of the factors. Our algebraic calculation leads to the separation
of variables in the joint distribution which, by simple distributivity, allows the exact
calculation of the marginals through some products of matrices. However, the size of
matrices involved grows exponentially with the number m of factors in the graphical
model: we have exchanged a number of sums exponential in n with products of sparse
matrices of sizes exponential in m. Calculations of such products cannot be done
exactly numerically. We then considered numerical approximations in order to prac-
tically implement them in the case of the Weighted Stochastic Block Model (WSBM)
where the underlying graph is a clique, therefore corresponding to the most complex
situation. Such an implementation requires the use of specific techniques, the main
ones being working with TT-matrices, and rounding for controlling the TT-rank in
matrix × matrices products.

One of the key issue for controlling the complexity of the numerical approximations
is controlling the TT-rank of product of TT-matrices with rounding. What are its
quality and efficiency ? It appeared in our numerical simulations that for reasonable
sizes of n, like n = 12, the rounding works well, i.e. the approximate marginals are
of good quality when compared to exact values, and computation times are short,
whatever the structure of the connectivity matrix Λ of the WSBM. Further numerical
simulations for n = 25 and 40 on three structures (called assortative easy, assortative
difficult and core-periphery) showed that two elements have an impact on the com-
putation time of the TT approach : the number n of the nodes and the easiness or
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difficulty with which some groups can be distinguished. The structure of Λ has also
an impact on the precision (from our experiments we cannot determine if n as well
because the true marginals are only available for n = 12). In structure assortative dif-
ficult, two groups are hard to distinguish since they have almost the same connection
pattern, whereas in structure assortative easy, all groups are easily distinguished (see
Figure 2). TT performs better on assortative easy than on assortative difficult, in
the sense that it obtains results much closer to the GS and MF results. Then, in the
current version of the implementation, TT cannot be ran on problems with n = 50,
due to numerical limits in the rounding procedure.

We have compared our TT-based approach with classical approximation approaches
like Gibbs Sampler (GS) or Mean-Field approximation (MF). GS has a sound sta-
tistical background which guarantees convergence to an unbiased estimator of the
marginals (Geman and Geman, 1984; Häggström, 2002), but there are to our knowl-
edge nor theoretical results to tune the parameters for securing a prescribed accuracy,
neither generally adopted ad-hoc technique to decide for the number of iterations.
Furthermore it may lead to long calculation times, and we observe in practice that it
is longer than TT. MF is often quick and accurate for computing unary marginals
(Daudin et al., 2008), but it is not designed to compute binary marginals (apart from
an coarse estimate as a product of independent unary marginals). It relies on a fixed
point solution of some nonlinear system, which sometimes does not converge. TT has
an intermediate running time and showed good accuracy on our experiments. So the
alternative solution we propose here, based on TT approximation, appears as a useful
solution for computing WSBM marginals for intermediate values of n (below 50).

The algebraic exactness of the TT approach (separation of variables) is a very
good basis for developing efficient and accurate numerical approaches for calculating
the marginals of pairwise graphical models. One challenge for further studies is to
go beyond the current numerical limits, moving towards higher sizes, and address-
ing structures where certain groups are more difficult to distinguish. This should be
achieved through investing efforts for repelling the numerical limits in the ”rounding”
step, possibly by incorporating recent developments in this field, be it with implemen-
tations with distributed memory (Al Daas et al., 2022) or, even more recently, with
randomised algorithms (Al Daas et al., 2023).
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Assortative difficult Assortative easy Core periphery
Exact TT GS MF Exact TT GS MF Exact TT GS MF

LS NC
NC
NC

NC
NC

LS NC
NC NC

LS LS
Dissortative Hierarchic Ordered

Exact TT GS MF Exact TT GS MF Exact TT GS MF
NC LS NC

NC
NC NC

NC LS NC
NC NC
NC NC
NC NC
NC NC

NC
NC

Random
Exact TT GS MF

NC
NC
NC

NC

NC

Table 4 Pattern of unary marginals for different structures of the connectivity
matrix (n = 12 and Q = 3). For each structure, 10 dissimilarity matrices have been
generated (corresponding to the 10 lines below each structure name) and for each of
them the unary marginals of each variable have been computed by 4 different methods
(corresponding to the columns in each structure). Then for a dissimilarity matrix and
a method we have classified the pattern of the n unary marginals : orange cells
correspond to situations where all marginals are Dirac, yellow cells to situations where
marginals are either Dirac or uniform on two groups, and green cells to situations
where marginals are variable. We also indicate when Label Switching occured (LS)
and when MF did not converge (NC). For instance, for the first dissimilarity matrix of
structure dissortative, unary marginals computed exactly or with TT were variables
(e.g. (0.6, 0.3, 0.1)), while the one computed with GS were all Dirac and MF did not
converge.

34



Λ TT Gibbs MF
Assortative difficult 2.126641e-03 1.137171e-01 2.096444e-02 (10)

Assortative easy 7.487330e-10 8.200865e-09 1.177558e-08 (4)
Core periphery 1.430457e-03 1.981476e-04 2.106457e-02 (8)

Dissortative 2.037286e-07 2.723249e-07 7.601169e-07 (8)
Hierarchic (II) 3.293547e-03 6.799929e-03 2.340016e-02(5)

Ordered 3.891483e-08 2.265697e-06 - (0)
Random 2.067789e-02 1.037811e-03 1.925229e-01 (5)

Table 5 Absolute difference between the probability to be in the same
group computed by the exact method and by three different approximate
methods, for n = 12 and Q = 3. The value reported is the mean (over 10
runs) of the median of the absolute errors for the n(n− 1)/2 pairs of
variables. For MF, we provide under parentheses the number of runs that
converged.

Λ Exact TT Gibbs MF
Assortative difficult 0.1748605 7.366531 354.3655 0.009956175 (10)

Assortative easy 0.1761076 3.626953 352.9239 0.046608290 (4)
Core periphery 0.1770441 5.178768 368.2358 0.062990053 (8)

Dissortative 0.1755904 4.698245 357.3765 0.059073172 (8)
Hierarchic (II) 0.1756495 7.124235 364.6317 0.021913800 (5)

Ordered 0.1800913 3.962546 359.0718 - (0)
Random 0.1784855 6.781812 361.7040 0.020079037 (5)

Table 6 Computing time (in seconds) for computing all unary and binary
marginals, for n = 12 and Q = 3. The value reported is the mean (over 10 runs).
For MF, we provide under parentheses the number of runs that converged.

Λ n = 25 n = 40
TT vs GS TT vs MF GS vs MF TT vs GS TT vs MF GS vs TT

Assort. easy 0 3.8e-16 4.1e-16 9.07e-61 5.03e-49 6.16e-56
Assort. difficult 1.02e-01 2.16e-02 1.53e-01 1.15e-01 1.93e-02 1.86e-01
Core periphery 1.26e-06 4.91e-07 1.54e-06 3.76e-09 1.88e-11 5.73e-10

Table 7 Absolute difference between the probability to be in the same group computed by two
approximate methods, for n = 25 and n = 40, and Q = 3. The value reported is the mean (over 10
runs) of the median of the absolute errors for the n(n− 1)/2 pairs of variables. For TT, experiments
on the assortative easy structure were run with rTT

max = 9 and those on the assortative difficult and
core-periphery structures were run with rTT

max = 27.

n = 25 n = 40
Λ TT GS MF TT GS MF

Assort. easy 61.90 1536.32 0.15 (5) 202.97 4670.47 0.42 (2)
Assort. difficult 278.48 1503.69 0.03 (10) 2790.38 4670.25 0.09 (10)
Core-periphery 86.39 1505.00 0.13 (6) 393.33 4526.13 0.36 (7)

Table 8 Computing time (in seconds) for computing all unary and binary marginals,
for n = 25 and n = 40, and Q = 3. The value reported is the mean (over 10 runs).
For MF, we provide under parentheses the number of runs that converged. For TT,
experiments on the assortative easy structure were run with rTT

max = 9 and those on
the assortative difficult and core -periphery structures were run with rTT

max = 27.
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Appendix A Mean-Field fixed point equation

A.1 Principle

The Mean-Field approximation consists in approximating Pθ(Z | D) by another joint
distribution Qθ(Z | D) for which computation of marginals is easier. Under the distri-
bution Qθ the variables Zi are independent, i.e. Qθ(Z | D) =

∏n
i=1 q

i
θ(Zi | D) where

qiθ(Zi | D) is the unary marginal of Zi under Qθ. The distribution Qθ is the one
that miminises the Kullback-Leibler divergence between a distribution of independent
variables and Pθ(Z | D). We recall the definition of the Kullback-Leibler divergence
between two distributions Q and P:

KL(Q|P) = EQ

[
ln

(
Q(Z)

P(Z)

)]
A.2 Mean-Field as solution of a fixed point equation

Let us define the family Q of distributions Q such that Q(Z) =
∏n

i=1 q
i(Zi), and let

us denote τi,q = qi(Zi = q). Then Qθ(. | D) is solution of

Qθ(.|D) = arg min
Q∈Q

KL(Q | Pθ(. | D))

We have
KL(Q(.) | Pθ(. | D)) = EQ [ln(Q)]− EQ[ln(Pθ(Z | D))].

From equations (1) and (2), it is equal to

KL(Q(.) | Pθ(. | D)) =

n∑
i=1

Q∑
q=1

τi,q ln(τi,q)− EQ

[
ln

(
1

W

(
n∏

i=1

∏
i>j

PΛ(D[i, j] | Zi, Zj)

)
n∏

i=1

Pα(Zi)

)]

=

n∑
i=1

Q∑
q=1

τi,q ln(τi,q)− EQ

[
ln

(
1

W
×

n∏
i=1

[∏
j>i

PΛ(D[i, j] | Zi, Zj)

Q∏
q=1

αZi,q
q

])]

=

n∑
i=1

Q∑
q=1

τi,q ln(τi,q)−
n∑

i=1

∑
j>i

Q∑
q=1

Q∑
q′=1

τi,qτj,q′ lnPΛ(D[i, j] | Zi = q, Zj = q′)

−
n∑

i=1

Q∑
q=1

(τi,q ln(αq))− ln(
1

W
)

The minimisation of KL(Q(.) | Pθ(. | D)) is under the constraint that for all i,∑Q
q=1 τi,q = 1. So, using Lagrangian multipliers, we minimise

G = KL(Q | P(. | D)) +

n∑
i=1

σi

(
Q∑

q=1

τi,q − 1

)
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The variables are the τl,q for l ∈ {1, . . . , n} and q ∈ {1, . . . Q}, and the σl for l ∈
{1, . . . , n}. Let us compute the derivatives of G.

∂G

∂σl
=

Q∑
q=1

τl,q − 1

So G
∂σl

= 0 leads to
Q∑

q=1

τl,q = 1 (A1)

Then using the fact that D and Λ are symmetric matrices, we obtain:

∂G

∂τl,q
= ln(τl,q) + 1 + σl − ln(αq)−

l−1∑
j=1

Q∑
q′=1

τj,q′ [lnPΛ(D[j, l] | Zl = q, Zj = q′)]

−
∑
j>l

Q∑
q′=1

τj,q′ [lnPΛ(D[l, j] | Zl = q, Zj = q′)]

= ln(τl,q) + 1 + σl − ln(αq)−
∑
j ̸=l

Q∑
q′=1

τj,q′ [lnPΛ(D[l, j] | Zl = q, Zj = q′)]

So
∂g(σl,τl,q)

∂τl,q
= 0 leads to

τl,q = αq exp

∑
j ̸=l

Q∑
q′=1

τj,q′ [lnPΛ(D[l, j] | Zl = q, Zj = q′)]

 exp−(σl + 1) (A2)

We define

µl,q = αq

n∏
j ̸=l

Q∏
q′=1

[PΛ(D[l, j] | Zl = q, Zj = q′)]
τj,q′

Then
τl,q = µl,qe

−(σl+1) (A3)

Finally, by combining equation (A1) and equation (A3) we obtain

τl,q =
µl,q∑Q
q=1 µl,q

(A4)

So the τl,q are solution of a fixed point equation, since µl,q is a function of the τj,q′ for
j ̸= l.

The associated fixed point iteration scheme is

∀1 ≤ l ≤ n,∀1 ≤ q ≤ Q,

 τ t+1
l,q =

µ
t+1/2
l,q∑Q

q′=1
µ
t+1/2

l,q′

µ
t+1/2
l,q = αq

∏
j ̸=l

∏Q
q′=1 [PΛ(D[l, j] | Zl = q, Zj = q′)]

τt
j,q′
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In the case of a Poisson distribution of the dissimilarities, we obtain

∀1 ≤ l ≤ n,∀1 ≤ q ≤ Q,


τ t+1
l,q =

µ
t+1/2
l,q∑Q

q′=1
µ
t+1/2

l,q′

µ
t+1/2
l,q = αq

∏
j ̸=l

∏Q
q′=1

[
λ
D(l,j)

q,q′

D(l,j)! exp−λq,q′
]τt

j,q′

Appendix B Matrix product in TT-matrix format

Let A and B be two matrices with dimensions such that the product C = AB exists.
Here, we show how to compute the cores of C expressed in TT-matrix format knowing
only the cores of A and B expressed in TT-matrix format. Although it is classical, it is
seldom presented in articles. We develop the calculation in detail on a simple example
with 3 cores, and evaluate its complexity in a more general case.

Let A,B be TT-matrices with

A[(i1, i2, i3); (j1, j2, j3)] =M1(i1, j1)M2(i2, j2)M3(i3, j3) (B5)

and
B[(i1, i2, i3); (j1, j2, j3)] = N1(i1, j1)N2(i2, j2)N3(i3, j3) (B6)

with 1 ≤ iµ, jµ ≤ n. Then

C[(i1, i2, i3); (k1, k2, k3)] =

n∑
j1,j2,j3=1

A[(i1, i2, i3); (j1, j2, j3)] B[(j1, j2, j3); (k1, k2, k3)]

=

n∑
j1,j2,j3=1

M1(i1, j1)M2(i2, j2)M3(i3, j3) N1(j1, k1)N2(j2, k2)N3(j3, k3) (B7)

Would the matrices product be commutative, reordering the terms would lead to
simplifications. But it is not the case. However, reordering can be done in R between
coefficients. Therefore, let us introduce the following notations:

Matrix size coefficients
M1(i1, j1) 1× r M1[i1, j1, α1]
M2(i2, j2) r × r M2[α1, i2, j2, α2]
M3(i3, j3) r × 1 M3[α2, i3, j3]
N1(j1, k1) 1× r N1[j1, k1, β1]
N2(j2, k2) r × r N2[β1, j2, k2, β2]
N3(j3, k3) r × 1 N3[β2, j3, k3]

with 1 ≤ αi, βj ≤ r. Then

M1(i1, j1)M2(i2, j2)M3(i3, j3) N1(j1, k1)N2(j2, k2)N3(j3, k3)

=

r∑
α1,α2=1

r∑
β1,β2=1

M1[i1, j1, α1]M2[α1, i2, j2, α2]M3[α2, i3, j3]×
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N1[j1, k1, β1]N2[β1, j2, k2, β2]N3[β2, j3, k3]

(B8)

Let us reorder the terms after the
∑

by grouping (α1, β1) and (α2, β2) as

M1[i1, j1, α1]N1[j1, k1, β1]M2[α1, i2, j2, α2]N2[β1, j2, k2, β2]M3[α2, i3, j3]N3[β2, j3, k3]
(B9)

and define, with γi coding for (αi, βi) with γi = r(αi − 1) + βi,

M1[i1, j1, α1]N1[j1, k1, β1]︸ ︷︷ ︸
=P1[i1,j1,k1,γ1]

M2[α1, i2, j2, α2]N2[β1, j2, k2, β2]︸ ︷︷ ︸
=P2[γ1,i2,j2,k2,γ2]

M3[α2, i3, j3]N3[β2, j3, k3]︸ ︷︷ ︸
=P3[γ2,i3,j3,k3]

(B10)
Let us note that, as indices αi, βi run each over {1, . . . , r}, indices γi run over
{1, . . . , r2}. Then

C[(i1, i2, i3); (k1, k2, k3)]

=

n∑
j1,j2,j3=1

r2∑
γ1,γ2=1

P1[i1, j1, k1, γ1]P2[γ1, i2, j2, k2, γ2]P3[γ2, i3, j3, k3]

=

r2∑
γ1,γ2=1

n∑
j1,j2,j3=1

P1[i1, j1, k1, γ1]P2[γ1, i2, j2, k2, γ2]P3[γ2, i3, j3, k3]

=

r2∑
γ1,γ2=1

(
n∑

j1=1

P1[i1, j1, k1, γ1]

)(
n∑

j2=1

P2[γ1, i2, j2, k2, γ2]

)(
n∑

j3=1

P3[γ2, i3, j3, k3]

)
(B11)

Let us define Q1, Q2, Q3 by

Q1[i1, k1, γ1] =

n∑
j1=1

P1[i1, j1, k1, γ1]

Q2[γ1, i2, k2, γ2] =

n∑
j2=1

P2[γ1, i2, j2, k2, γ2]

Q3[γ2, i3, k3] =

n∑
j3=1

P3[γ2, i3, j3, k3],

(B12)

with
Matrix Size Coefficients as a tensor
Q1(i1, k1) 1× r2 Q1(i1, k1)[γ1] = Q1[i1, k1, γ1]
Q2(i2, k2) r2 × r2 Q2(i2, k2)[γ1, γ2] = Q2[γ1, i2, k2, γ2]
Q3(i3, k3) r2 × 1 Q3(i3, k3)[γ2] = Q3[γ2, i3, k3].
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Then

C[(i1, i2, i3); (k1, k2, k3)] =

r2∑
γ1,γ2=1

Q1[i1, k1, γ1]Q2[γ1, i2, j2, γ2]Q3[γ2, i3, k3]

= Q1(i1, k1)Q2(i2, k2)Q3(i3, k3),

(B13)

which is a the expression of C as a TT-matrix of rank r2.

This calculation can be extended to TT-matrices with more than 3 cores. Let us
recall that, in general, A,B have m cores, labelled by µ with 1 ≤ µ ≤ m, of size r× r
(except for the first and last one), and that

A[(i1, . . . , im); (j1, . . . , jm)] =

m∏
µ=1

Mµ(iµ, jµ)

B[(i1, . . . , im); (j1, . . . , jm)] =

m∏
µ=1

Nµ(iµ, jµ),

with 1 ≤ iµ, jµ ≤ n. Then, there are n2 matrices Qµ(iµ, kµ) indexed by (iµ, kµ) for a
given µ. A matrix Qµ(iµ, kµ) has r

2 terms, each being a sum of n terms of a matrix
Pµ(iµ, jµ, kµ) (see equation (B12)), each term of a Pµ being a product of two real
coefficients. So, there are n products for a term of a Qµ(iµ, kµ), nr

2 products for a
matrix Qµ(iµ, jµ), and n3r2 products for all matrices Qµ(iµ, kµ) for a given µ, and
mr2n3 products for all matrices Qµ(iµ, kµ) for all cores µ. Hence, the complexity of
the matrix product in TT-format is in O(mr2n3). This is for the product of 2 matrices.
The complexity of the product of p matrices is in O(mrpn3), and grows exponentially
with p. Each matrix A,B has dimensions nm × nm, hence their product requires in
general (nm)

3
= n3m products, versus mr2n3 in TT-matrix format.

Appendix C Computation of matrices Ai(zi) for a
WSBM

The expression of matrices Ak(zk) is given here specifically for a WSBM, with two
steps, as for general graphical model (see section 4): (i) adding non essential variables,
and (ii) computation of matrices Ak(zk) with mixed product property of Kronecker
product.

Adding non essential variables.

Let us show it first on a toy example, with n = 4, i = 2 and j = 4 and E being
{(i, j) : 1 ≤ i < j ≤ n}. We have

ψ24(z2, z4) =M24[z2]V42[z4] with

{
M24[z2] ∈ R1×Q

V 24[z4] ∈ RQ×1
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Completing with non essential variables (see step 2 in section 4) leads to the definition
of factor ψ24 with non essential variables z1, z3 which can be written in TT format as
follows (× is the matrices product)

ψ24(z1, z2, z3, z4) = G
(1)
24 [z1]×G

(2)
24 [z2]×G

(3)
24 [z3]×G

(4)
24 [z4]

with, ∀ z1, z2, z3, z4: 

G
(1)
24 [z1] = 1 ∈ R1×1

G
(2)
24 [z2] = M24[z2] ∈ R1×Q

G
(3)
24 [z3] = Iq ∈ RQ×Q

G
(4)
24 [z4] = V24[z4] ∈ RQ×1

which can be sketched as

ψ24(z1, z2, z3, z4) = •
1 M24[z2] Iq V24[z4]

1× 1 1×Q Q×Q Q× 1

The product of those matrices (1, 1), (1, Q), (Q,Q) and (Q, 1) is a real. This is vari-
able separation for the factor ψ24(z1, z2, z3, z4).

This can be generalized to any n by computing all G
(k)
ij [zk] for 1 ≤ k ≤ n as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k < i ⇒ G
(k)
ij [zk] = 1 ∈ R1×1

k = i ⇒ G
(k)
ij [zi] =Mij [zi] ∈ R1×Q

i < k < j ⇒ G
(k)
ij [zk] = Iq,q ∈ RQ×Q

k = j ⇒ G
(k)
ij [zj ] = Vij [zj ] ∈ RQ×1

k > j ⇒ G
(k)
ij [zk] = 1 ∈ R1×1

(C14)

Such a calculation is done for any pair (i, j) ∈ E. We then have

∀ 1 ≤ i < j ≤ n, ∀ 1 ≤ k ≤ n, ψij(z1, . . . , zn) =

n∏
k=1

G
(k)
ij [zk]

where the product is the matrices product. This is separation of variables for factor
ψij .
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Computation of the matrices Ak(zk).

Here, we can borrow the same paths as in Novikov et al. (2014). In our toy example,
it leads to

Ak(zk) = G
(k)
12 (zk)⊗G

(k)
13 (zk)⊗G

(k)
14 (zk)⊗G

(k)
23 (zk)⊗G

(k)
24 (zk)⊗G

(k)
34 (zk).

Here, Ak(zk) is the Kronecker product of matrices which depend each on zk. Then it
is a matrix which depends on zk. This can be generalised as

Ak(zk) =
⊗

1≤i<j≤n

G
(k)
ij (zk). (C15)

We then have

ψ(z1, . . . , zn) =

n∏
k=1

Ak(zk),

where the terms Ak(zk) are matrices and
∏

is the matrices product. This is variable
separation for the non normalised joint distribution ψ. Let us note that the TT-rank
of TT-matrix Ak(zk) is one, which is a useful property for deriving the fusion of cores
in the calculation. To show this, let us write Ak(zk) in TT-matrix format. Therefore,

let G
(k)
ij (zk) be with coefficients G

(k)
ij (zk)

[
α
(k)
ij , β

(k)
ij

]
with 1 ≤ α

(k)
ij , β

(k)
ij ≤ r. Then,

from the definition of the Kronecker product,

Ak(zk)
[(
α
(k)
12 , . . . , α

(k)
n−1,n

)
;
(
β
(k)
12 , . . . , β

(k)
n−1,n

)]
=

∏
1≤i<j≤n

G
(k)
ij (zk)

[
α
(k)
ij , β

(k)
ij

]
which can be written

Ak(zk)
[(
α
(k)
12 , . . . , α

(k)
n−1,n

)
;
(
β
(k)
12 , . . . , β

(k)
n−1,n

)]
=

∏
1≤i<j≤n

G
(k),zk
ij

(
α
(k)
ij , β

(k)
ij

)
by reordering the upper and lower indices, and shows that the TT-rank is one as
a product of scalars. It can be seen on a simpler example: Let A = G1 ⊗ G2 be a
matrix, with G1 := G1[i1, j1] and G2 := G2[i2, j2] with coefficients. Then, by defini-
tion of Kronecker product, A can be expressed as a TT-matrix of TT-rank one, by
A[(i1, i2); (j1, j2)] = G1[i1, j1]G2[i2, j2] = g1(i1, j1) g2(i2, j2) where g1, g2 are scalars.
As the TT-rank of Ak(zk) is one, the TT-rank of TT-matrix Bk =

∑
zk
Ak(zk) is Q.

Appendix D A situation where binary marginals
are product of unary ones.

Here we show that, given two variables Zi and Zj , taking value in {1, . . . , Q}, such
that there exists q with P(Zi = q) = 1, then, the binary marginals P(Zi, Zj) are
the products of the unary marginals. Let us have Q = 3. Binary marginals can be
organized as elements in a 3 × 3 matrix. The unary marginals are the row-wise or
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column-wise sums. It can be displayed as

a b c x
a′ b′ c′ x′

a′′ b′′ c′′ x′′

y y′ y′′ 1
with 

a+ b+ c = x
a′ + b′ + c′ = x′

a′′ + b′′ + c′′ = x′′

a+ a′ + a′′ = y
b+ b′ + b′′ = y′

c+ c′ + c′′ = y′′

and all terms and marginals in this matrix being in [0, 1]. Let us assume without loss
of generality that x = 1. So, x′ = x′′ = 0. From a′, b′, c′ ≥ 0 and a′ + b′ + c′ = x′ = 0,
it follows that a′ = b′ = c′ = 0, and the same for a′′, b′′, c′′. So, the matrix is

a b c 1
0 0 0 0
0 0 0 0
y y′ y′′ 1

We can observe that each term in the matrix is the product of the marginals of its row
and column. For example, a = y× 1 as y = a+0+ 0 = a. Note that is it not required
that y, or y′ or y′′ is 1 or 0. This demonstration can be extended to Q > 3.
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Fig. 1 Example of an histogram of the absolute difference between the value of PSCi,j computed
with the exact method and with GS, for each pair (i, j) of variables.
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