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 1 
 2 

Diagnosis of planktonic trophic network 3 

dynamics with sharp qualitative changes 4 

5 

ABSTRACT 6 
Trophic interaction networks are notoriously difficult to understand and to diagnose (i.e., to 7 
identify contrasted network functioning regimes). Such ecological networks have many direct 8 
and indirect connections between species, and these connections are not static but often vary 9 
over time. These topological changes, as opposed to a dynamic on a static (frozen) network, can 10 
be triggered by natural forcings (e.g., seasons) and/or by human influences (e.g., nutrient or 11 
pollution inputs). Aquatic trophic networks are especially dynamic and versatile, thus suggesting 12 
new approaches for identifying network structures and functioning in a comprehensive manner.  13 
 14 
In this study, a qualitative model was devised for this purpose. Applying discrete-event models 15 
from theoretical computer science, a mechanistic and qualitative model was developed that 16 
allowed computation of the exhaustive dynamics of a given trophic network and its environment. 17 
Once the model definition is assumed, it provides all possible trajectories of the network from a 18 
chosen initial state. In a rigorous and analytical approach, for the first time, we validated the 19 
model on one theoretical and two observed trajectories recorded at freshwater stations in the 20 
La Rochelle region (Western France). The model appears to be easy to build and intuitive, and it 21 
provides additional relevant trajectories to the expert community. We hope this formal approach 22 
will open a new avenue in identifying and predicting trophic (and non-trophic) ecological 23 
networks.  24 
 25 
Keywords: Interaction network; Freshwater ecosystem; Qualitative model; Discrete-event model, 26 
Plankton  27 
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INTRODUCTION 28 

Trophic networks (TNs) form the backbone of ecosystem functioning, as they simultaneously condition 29 
food acquisition, prey and predator demography, individual and population behaviors, and phenotype 30 
selection, among other consequences (Lindeman 1942, Johnson 2000, Majdi et al. 2018). Trophic processes 31 
are responsible for most matter and energy fluxes within ecosystems, but the fates and properties of 32 
ecosystems are hard to predict, mainly due to the lack of knowledge (Mouquet et al. 2015). Trophic processes 33 
have been extensively studied in ecology, although mostly considered as frozen in time, i.e., with a fixed (or 34 
static) topology and fixed signed interactions. This simplification may be due to a lack of long-term data as well 35 
as to equation-based models dedicated to flux and abundance variations on a frozen network (e.g., Thébault 36 
and Fontaine 2010, Kéfi et al. 2015). In this study, we provide an original framework to handle TNs with sharply 37 
changing structures and to model their possible dynamics.  38 

 39 
To date, TNs have been difficult to understand and handle, in other words, hard to diagnose between 40 

contrasted functioning under changing environmental conditions. Any new functioning involves specific 41 
ecosystem components and interactions, thus justifying why we have focused on qualitative functioning 42 
regimes rather than quantitative component abundances and interaction intensities. In addition, TNs usually 43 
gather a large number of populations or species in an even larger number of trophic interactions. Hence, 44 
understanding trophic dynamics would require not only modeling a large and realistic number of components 45 
but also being able to calibrate the weights (coefficients) of each component and each interaction involved 46 
(Ings et al. 2009, Wallach et al. 2017, Majdi et al. 2018). For this reason, most trophic models to date have 47 
focused on wide categories of populations, with functional categories, such as carnivores, herbivores, and/or 48 
detritivores (e.g., Thébault and Fontaine 2010), and approximate their trophic parameters. Even powerful 49 
models aimed at bypassing such limitations, such as qualitative models based on differential equation systems, 50 
are limited in size (May 1973, Dambacher et al. 2003).  51 

 52 
There is an even more pronounced limitation of trophic studies in ecology, as they mostly assume a frozen 53 

network of interaction (Thébault and Fontaine 2010, Kéfi et al. 2016). Not only is it harder to handle a network 54 
that changes in terms of topology (structure), but it is also not known how such a network may change over 55 
time and, thus, how to model it. Indeed, as soon as the study covers several generations of some of the species 56 
involved in the network, other species may invade and/or become extinct (Mooney and Hobbs 2001, Warren 57 
et al. 2005). Hence, these events greatly modify the network structure and, in turn, the system dynamics. 58 
Equation-based models are not well suited to handle dynamic systems on dynamic structures (sometimes 59 
called DS², Giavitto and Michel 2003), whereas certain tools developed in theoretical computer science are 60 
perfectly adapted to this task. In particular, discrete-event systems such as graph transformations or Petri nets 61 
are able to handle sharply changing networks by formalizing the way components and interactions can appear 62 
or disappear (König et al. 2018, Gaucherel and Pommereau 2019). While graph transformations directly 63 
add/remove some nodes and edges, Petri nets only mimic such addition/removal by marking the 64 
presence/absence of the handled nodes and edges with some tokens. In this study, we developed a Petri net 65 
to model any interaction network topological change, and we illustrate its use on a realistic planktonic TN.  66 

 67 
Planktonic TN models are usually composed of a fixed number of functional nodes that gather groups of 68 

individuals sharing the same ecological function. Mass fluxes (usually in carbon or nitrogen) between nodes 69 
are predefined according to trophic interactions. In a context of an emerging biological oceanography 70 
discipline and considering the limited computing resources, the first planktonic TN (or food web) models simply 71 
consisted of mass fluxes between nutrients, phytoplankton, and zooplankton nodes (Steele 1958, 1974). These 72 
so-called NPZ models (NPZD, NPZDB, or even NPZF when detritus, bacteria, or fishes are comprised, 73 
respectively) coupled to observed or simulated physical conditions have demonstrated their predictive ability 74 
to capture bulk system properties (biomass and primary production) at both regional and global scales (Mitra 75 
et al. 2007, Kriest et al. 2010, Oke et al. 2013, Hernández-Carrasco et al. 2014, Turner et al. 2014, Kumar and 76 
Kumari 2015). 77 

To better understand biogeochemical cycling (e.g., export fluxes, carbon sequestration, organic matter 78 
recycling, microbial loop), planktonic TN should be delineated, and planktonic compartments in models could 79 
thus be refined into Planktonic Functional Types (PFTs). Plankton groups are thus defined according to 80 
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common ecological functions (e.g., nitrogen fixers, calcifiers, and silicifiers), sizes (e.g., picophytoplankton, 81 
nanophytoplankton, microphytoplankton), and/or key taxonomic groups (e.g., diatoms, flagellates) (Le Fouest 82 
et al. 2013, Villaescusa et al. 2016, Kerimoglu et al. 2017, Petersen et al. 2017, Maar et al. 2018, Meddeb et al. 83 
2019). However, refinements of planktonic TN models greatly complicate model formalization and 84 
parametrization, as well as requiring more data, which increases uncertainties in terms of the model outcomes 85 
and fluxes between defined groups (Anderson 2005). 86 

 87 
To address gaps in ecological knowledge and lacking data, inverse modeling is aimed at deriving flows of 88 

energy within TNs from simple biomass estimates and rate measurements. Vézina and Platt (1988) were the 89 
first to use this for inferring mass fluxes through a planktonic TN in the English Channel. Inverse modeling is, 90 
therefore, advantageous when dealing with underdetermined systems and results in a space of possible 91 
solutions that fulfill a set of linear equalities and inequalities. A preferred solution is then selected by 92 
optimization or statistical methods. While vital rates and biomass can be readily measured for high trophic 93 
levels (e.g., fishes), their quantification for low trophic levels (e.g., bacteria, autotrophic plankton) remains 94 
uncertain and questions the robustness of inverse modeling for the study of planktonic compartments (Vernet 95 
et al. 2017, Saint-Béat et al. 2018). Overall, biological constants (production, consumption, assimilation), 96 
biomass, and ecological interactions are, therefore, not easy to measure in planktonic TNs, resulting in an 97 
oversimplification of planktonic TN models (Anderson 2005, Flynn 2006). For all of these reasons, our main 98 
objective in this study consisted of developing a model able to identify (diagnose) any qualitative functioning 99 
regimes of the same TN under changing environmental conditions.  100 

 101 
We here addressed the leading question: what are all the possible trajectories (pathways) of such an 102 

aquatic TN? A trajectory is defined here as a sequence of TN states (regimes) and transitions in time, possibly 103 
exhibiting bifurcations and not necessarily being quantitative. More specifically, we aimed to identify the 104 
various qualitative regimes the system can reach between winter and summer environmental conditions. As a 105 
second subquestion, we assessed whether a detailed model could exhibit new or counter-intuitive TN 106 
trajectories. We assumed that the system may be qualified and thus exhibit a finite number of states, 107 
computed and gathered into a Petri net state space (Pommereau 2010, Reisig 2013). A detailed and automatic 108 
analysis of this state space then exhaustively provides the possible fates (e.g., stabilities, collapses, if any) of 109 
the studied system. We chose to illustrate this original method with a well-studied plankton TN in wetlands, 110 
namely freshwater marshes of the Charente Maritime region (Western France, Tortajada et al. 2011). Such a 111 
system is well instrumented (measured) and will provide an expected theoretical trajectory of changing TN, as 112 
well as two observed trajectories at different stations (Masclaux et al. 2014). The succession of planktonic TN 113 
and the different regimes of the planktonic TN are well known according to the season (Masclaux et al. 2014). 114 
We developed the corresponding Petri net of this system and then validated it, for the first time, on theoretical 115 
and observed trajectories. We finally discuss the power and drawbacks of such discrete and qualitative models 116 
for trophic ecology. 117 

MATERIALS AND METHODS 118 

Aquatic trophic networks  119 
The Charente-Maritime marshes of the French Atlantic coast (Fig. 1) are the second largest French wetland 120 

zone (more than 1000 km²). The type of freshwater marshes is unreplenished drained marshes, which 121 
constitute a significant artificial hydrographic network of channels and ditches. To mitigate and prevent drying 122 
of the marshes, locks control the channels and ditches (for more details, see Masclaux et al. 2014). Samples of 123 
the planktonic TN were recorded at two stations (stations A and B) on successive dates (eight weeks during 124 
winter and spring 2012) to reconstruct the network trajectories and their environment over time (Masclaux et 125 
al. 2014). All of the details have been presented in the publication by Masclaux et al. (2014). Briefly, the water 126 
parameters studied were the temperature, nutrients (nitrates, etc.), the dissolved organic matter (DOC) 127 
concentration, the biomass and production of bacteria, the biomass and primary production of phytoplankton 128 
by size class (microphytoplankton for > 20 µm; nanophytoplankton for 3–20 µm; and picophytoplankton for < 129 
3 µm), the bacterial biomass, the protozoa biomass, and the metazoan microzooplankton and 130 
mesozooplankton biomasses. Different fluxes between preys and predators were measured: micro- and 131 
mesozooplankton grazing rates on the three phytoplankton size classes, as well as mesozooplankton grazing 132 
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rates on protozoa (Masclaux et al. (2014). The TN regimes were determined with a hierarchical ascendancy 133 
classification (HAC, Euclidean distance, and Ward method). The planktonic TN regime changed during the 134 
winter to spring transition, from biological winters, followed by herbivorous TNs, to finally reach TNs qualified 135 
as multivorous and distinguishing three levels of multivory (weakly multivorous, multivorous, and highly 136 
multivorous) (Masclaux et al. 2014).  137 

 138 

Figure 1 - Location of the study site and the two sampled stations (A and B, inset) along the Atlantic coast 139 
of France. 140 

The model was built with several categories of variables (Fig. 2): Phytoplankton, Zooplankton, Resources, 141 
Microbes, and Abiotic components characterizing the environment. The main functional groups were: 1) 142 
phytoplankton by size class (microphytoplankton for > 20 µm: MicroP; nanophytoplankton for 3–20 µm: 143 
NanoP; and picophytoplankton for < 3 µm: PicoP) all in green (Fig. 2); 2) metazoan microzooplankton (MicroZ) 144 
and mesozooplankton (MesoZ) in red; 3) resources as nitrates (Nit) and Dissolved Organic Matter (DOC) in 145 
brown; 4) microbes such as bacteria (Bact) and protozoa (Proto) in blue; and 5) abiotic variables in grey with 146 
the component envir, which corresponds to the temperature and light conditions and renew which 147 
corresponds to the possible renewal of water (i.e., flush) in the marshes depending on the rainfall and water 148 
usages (agriculture, breeding, etc.). In more detail, the planktonic TN and all the possible fluxes (interactions) 149 
between components concern grazing fluxes with some preferential predation, and potential competitions 150 
between organisms (Fig. 2). Protozoa graze on bacteria, PicoP and NanoP, and are grazed by MicroZ and MesoZ. 151 
MicroZ graze on bacteria, PicoP, NanoP, and Proto. MicroP is grazed mainly by MesoZ, which used MicroZ, 152 
NanoP, and Proto as preys. Two preferential interactions force the model: i) competition between bacteria 153 
and PicoP, suggesting that each may survive and be detrimental to the second one, and ii) preferential grazing 154 
of MicroP by MesoZ and preferential grazing of NanoP by MicroZ. In brief, plain upward edges correspond to 155 
prey-predator interactions, while dashed downward edges are the resulting detritus (toward the DOC 156 
variable). 157 
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 158 

Figure 2 - The detailed interaction network used in this study. The trophic and non-trophic components 159 
are displayed as nodes with various colors (Phytoplankton: green, Zooplankton: red, Resources: brown, 160 
Microbes: blue, and Abiotic components characterizing the environment: grey). Predation interactions 161 
are displayed as plain (upward for trophic) and dashed (downward for degradation) edges, with preferred 162 
prey populations highlighted with red doted-dashed edges. 163 

Petri Nets and a simplistic Prey-Predator model 164 
We first summarize the successive steps required to build any ecosystem Petri net and we then illustrate 165 

these steps with a toy model. Our generic approach to model ecosystems has been called the EDEN (Ecological 166 
Discrete-Event Network) modeling framework and is specifically applied here to an aquatic trophic TN. Any 167 
ecosystem Petri net is developed in three successive steps (Fig. 3): i) an intuitive graph (i.e., a set of nodes and 168 
edges) is built to represent the studied ecosystem with its components and their related processes, focusing 169 
on the leading question addressed by the model (Fig. 3a); ii) this ecosystemic graph, now called the interaction 170 
network, is then transformed into a formal model based on a discrete-event Petri net and its associated rules 171 
(as explained in the next paragraph, Fig. 3b); iii) the Petri net is run (computed, Fig. 3c) and analyzed (Fig. 3d) 172 
to determine the entire range of the ecosystem dynamics. However, the Petri net (steps i and ii) is hidden from 173 
the (ecologist) user and is automatically built (in Python language, see Suppl. Mat.) once the ecosystem 174 
components and processes have been chosen by the ecologists. Additional technical details regarding the 175 
principle and use of Petri nets, in particular the way they are computed, can be found in the literature 176 
(Pommereau 2010, Reisig 2013, Gaucherel and Pommereau 2019).  177 

 178 
We here illustrate the basic functioning of the model using a simplistic prey-predator system (Fig. 3). Any 179 

ecosystem network can be represented as a directed graph (with parallel edges). In this graph, every material 180 
component of the ecosystem (e.g., abiotic: temperature; biotic: a population; anthropogenic: nitrate inputs) 181 
is represented by a node (or variable), with two Boolean states: “present” (the component is functionally 182 
present in the system, or above a chosen threshold, also denoted “+”) and “absent” (functionally absent from 183 
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the system, or below the same threshold, denoted “-”). In the prey-predator toy model, only two nodes are 184 
defined: the prey and the predator populations. Any state of the ecosystem is defined by the set of “+” and “-185 
” nodes (Fig. 3b), and “±” in the tables of this paper, when they may oscillate between successive states. The 186 
state of a node depends on the nodes to which it is connected, while a connection between nodes is assumed 187 
as soon as one process explicitly connects the different components (Figs. 3a-b). The rules correspond to any 188 
physicochemical and/or bio-ecological processes (e.g., if the prey population is below a chosen threshold (-), 189 
the predator population also ends up below its associated threshold), and thus represent all possible 190 
interactions between the components comprising the studied ecosystem. In the prey-predator system, only 191 
two rules are defined: R1, the predation itself: the predator eats the prey, and R2, the mortality: without prey, 192 
the predator dies (Figs. 3a and c). In the Petri net language, nodes are called places, and rules are called 193 
transitions, both being connected through oriented arcs (Fig. 3b).  194 

 195 

Figure 3 - Illustration of a simplistic prey-predator system (a), with its associated Petri net (b), its 196 
qualitative dynamics (c), and the computed marking graph, also called state space (d). The system 197 
comprises two components, the prey (N) and predator (P) populations, and two interactions connecting 198 
them (rules R1 and R2, (a)). The corresponding Petri net comprises four places (P+, P-, N+, and N-) and 199 
two transitions, R1 and R2, linked by unlabeled and unweighted arcs (b). Starting with the presence of 200 
both populations, it is possible to list all system states encountered {d1, d2, and d3} (c), and to connect 201 
them with the rules (absent nodes and inactivated rules are displayed in grey). The net is depicted in the 202 
initial state (c), and the successive states can be deduced from the token (black dot in (a)) movements 203 
between places (b). The marking graph of the Petri net (d) is depicted with each state number {d0, d1, and 204 
d2} referring to the dynamics described above (b). It should be noted that a specific state of the system 205 
{d4} may not be reached from this initial condition and with these rules (d). 206 

Discrete and qualitative dynamics 207 
Any rule of such discrete-event models combines the left-hand condition and right-hand realization as: 208 

“transition’s name: condition >> realization”. For a rule to be applied, the state of the node (variable) must 209 
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satisfy its application condition; the rule is then designated as enabled. If so, the application of the rule modifies 210 
the state of the node as stipulated in its realization part; the rule is then fired (i.e., executed or applied). In the 211 
prey-predator system (Fig. 3), the rules are written as R1: P+, N+ >> N- and R2: N-, and P+ >> P-. Since the rules 212 
modify node states, they change the overall system state (i.e., the state of the system aggregates all node 213 
states). Therefore, the entire system shifts from one state to another through the successive applications of 214 
the enabled rules (Fig. 3c). Computation of the defined Petri net produces the state space, which provides the 215 
set of all system states reachable by the rules defined (Fig. 3d). As a corollary, the system states are also 216 
connected to each other by some of these rules in the state space. The size of this state space is usually much 217 
smaller than the number of possible system states (2n, where n is the number of components or 218 
nodes/variables), because the computation starts from a specific initial condition and because the rules have 219 
specific application conditions. Following the computer science community, we developed certain tools to 220 
automatically divide large state spaces into merged (simplified) state spaces, as explained in the next 221 
subsection.  222 

 223 
Firing a rule independently of some others often leads to unrealistic trajectories (e.g., flushing water 224 

without removing the plankton in it). Therefore, we defined constraints, which prevent the model from 225 
simulating such unrealistic trajectories. Constraints have a condition and a realization part, just as rules stricto 226 
sensu do, and the model inevitable (mandatory) transitions given the system state. The sole difference 227 
between rules and constraints is that constraints have priority over stricto sensu rules. In the prey-predator 228 
system, the system state d1 = {N-, P+} is unrealistic; so, the rule R2 has to be transformed into a constraint C1: 229 
N-, P+ >> P-. From a given state, the model first simulates all trajectories opened up by the defined constraints, 230 
and then, when all the system states obtained are realistic (i.e., there is no longer any enabled constraint), 231 
only the enabled rules are fired (Fig. 3d). It should be noted that the modeled system can remain an indefinite 232 
time in any of the computed states, as no rule forces it to leave the qualitative state (i.e., the system can 233 
experience quantitative dynamics, yet without sharp qualitative changes). In brief, the discrete model 234 
proposed here is qualitative, mechanistic (the processes are explicit), non-deterministic (no stochasticity yet 235 
several possible outcomes from each state), and asynchronous (i.e., all rules are applied as soon as possible, 236 
no rule conflict) (Reisig 2013, Gaucherel and Pommereau 2019). The EDEN models are also causal and 237 
chronological yet non-temporized, i.e., transitions and time steps are not quantified (and not probabilized).  238 

 239 

TN trajectories and validation methodology  240 
The theoretical plankton TN modeled here combines nine different components, associated with the 241 

dominant functional groups that may be present in the channel freshwater marshes, and two additional 242 
components featuring environmental conditions (Table 1, Fig. 2). To connect them, we defined 34 processes 243 
and seven constraints encompassing at least four trophic levels (Tables 2-3, Fig. 2). To validate the TN model, 244 
one theoretical trajectory was defined and two observed trajectories were recorded at two distant stations 245 
(Supplementary Materials, Tables SM1-2). For the model to be validated, we expect not only to detect these 246 
successive states (e.g., {S0, S1, S2, S3}) in the modeled state space but also to detect them in the correct 247 
succession order. To determine whether the model was able to recover the expected trophic regimes, we 248 
tested two variants of the model: i) the full model intending to encompass the TN functioning, and ii) a similar 249 
model (called seasonal) yet without a return to winter conditions (R0, Table 2), thus resulting in the model 250 
being stuck in summer conditions. The model starts in winter conditions or with a flush in summer conditions, 251 
with only the node Renew present, which returns a source of inorganic nitrogen to the system (Table 1).  252 

 253 
For the full and seasonal models, we computed the state space and the merged state space, and we 254 

checked whether the observed trajectories were correctly recovered. A merged state space is a simplified state 255 
space gathering the sets of mutually reachable states of the modeled system, a topological structure called a 256 
structural stability, into the same nodes. This type of structure is interpreted as a stable regime as, by 257 
definition, any state in this stability can be reached by any other state belonging to it. Other stabilities can be 258 
identified automatically, such as terminal stabilities, from which the system can no longer exit, basins gathering 259 
states that have the same following states, and deadlocks, which are single states from which the system can 260 
no longer exit. Merged state spaces are much more compact than full state spaces, and summarized 261 
trajectories are readily revealed.  262 
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Table 1 - The plankton TN components and their associated modeled variables, with their abbreviations 263 
and descriptions. Whether these ecological components are present (+) or absent (-) in the initial state is 264 
also indicated (second column). 265 

Acronym In initial state Description 
Bact - Bacteria 
PicoP - Picophytoplankton 
NanoP - Nanophytoplankton 
MicrP - Microphytoplankton 
Proto - Protozoa 
MicrZ - Microzooplankton (metazoa) 
MesoZ - Mesozooplankton 
DOC - Dissolved organic matter 
Nit - Nitrates, linked to seasons or flush 
Envir - Environmental and climate conditions 
Renew + Water and Nitrate inputs (rain or humans) 

 266 

Table 2 - Trajectories of the theoretical expert elicitation and observed at stations A and B. For each 267 
trajectory, theoretical and observed regimes are listed in columns, and present (+)/absent (-) components 268 
of the trophic network are listed in rows. The corresponding regimes displayed in Figs. 5a-c are listed in 269 
the last row of each trajectory, with a single index A1 to A3 and B1 to B4 for successive regimes. 270 

THEORY Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 
Bact - - - + + + 
PicoP - - - + + + 
NanoP - + + + - - 
MicrP - + + - - - 
Proto - - - + + - 
MicrZ - - + + + - 
MesoZ - - + + - - 
Nit + + + - - - 
DOC - - + + + + 
Envir - + + + + + 
Renew + + - - - - 

Regimes 
(Fig. 5) 

Biological 
winter 

Low 
herbivorous 

TN 

Herbivorous 
TN 

Multivorous/Highl
y multivorous TN 

Microbial 
TN 

Microbial 
loop 

 271 
 272 

RESULTS 273 

State spaces and computed dynamics 274 
The full model provides a state space comprising 765 states gathered into a single dynamic structure (a so-275 

called structural stability, Fig. SM1a). The seasonal model becomes stuck in a high number (12, plus two basins) 276 
of successive structural stabilities of various sizes (Figs. 4 and SM1b). When oriented downward in time; i.e., 277 
following causality and chronology, the whole system inevitably converges toward a small terminal stability 278 
(made up of four states) in which the system is in a biological winter (i.e., few living species, in green, Fig. 279 
SM1b). Some of the stabilities that are reached exhibit a large number of states and may keep the system into 280 
such specific stabilities for an indefinite time (in purple, Figs. 4 and SM1b). In brief, the seasonal model displays 281 
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the same state space as the full model, but with a possible return to the initial biological winter regime, thus 282 
connecting the bottom states (in red, Fig. 4a) to the top states (in pink, Fig. 4a). This is why we observed a 283 
single cycling stability in the full model state space (Fig. SM1a).   284 

Table 3 - Rules and constraints used in both the full and seasonal models, with their formal expression 285 
(first column) and descriptions (second column). Only the rule N°0 (in italics and bold) is discarded in the 286 
seasonal version of the model. 287 

CONSTRAINTS Descriptions 
DOC- >> Bact-                                             C1 Without organic matter (DOC), Bacteria disappear 

Nit- >> NanoP-, MicrP-, DOC+                            
 C2 Without Nitrates, all types of phytoplankton except 
Pico disappear (and produce organic matter) 

Bact+, PicoP-, NanoP- >> Proto-, DOC+                   
 C3 Without all its preys (but Bacteria), Protozoa disappear 
(and produce organic matter) 

Bact-, Proto-, PicoP-, NanoP- >> MicrZ-, 
DOC+           

 C4 Without all its preys (but Bacteria), Microzooplankton 
disappear (and produces organic matter) 

Proto-, MicrZ-, NanoP-, MicrP- >> 
MesoZ-, DOC+           

 C5 Without all its preys, Mesozooplankton disappear (and 
produces organic matter) 

Envir- >> PicoP-, NanoP-, MicrP-                        
 C6 In winter, all Phytoplankton disappear (and do not 
produce organic matter) 

PicoP+, NanoP+, MicrP+ >> Nit-                           C7 With all Phytoplankton (present), Nitrates disappear 
  
RULES  
Envir+ >> Envir-, Renew+                                R0 After summer (and spring) comes winter  
Envir- >> Envir+                                         R1 After winter comes summer (and spring), with a bloom  

Envir+, Renew+ >> Nit+, Renew-                          
R2 Nitrate input is due to water flush from human 
management or rainfall 

Envir-, Renew+ >> Nit+, DOC-, Bact-, 
Proto-, PicoP-, NanoP-, MicrP-, MicrZ-, 
MesoZ-   

R3 In winter, the Reset of the system is due to water flush 
from rainfall (but there is a Nitrate input) 

Envir-, Renew+ >> Renew-                                R4 In winter, we stop the flush after its action (reset) 
DOC+ >> Bact+                                            R5 Bacteria use organic matter, without removing it  
Bact+, DOC+ >> DOC-                                     R6 Bacteria use organic matter and remove it   

Envir+, Nit+ >> MicrP+, NanoP+                          
R7 Microphytoplankton and Nanophytoplankton use 
Nitrates in summer, without removing them  

Envir+, Nit+ >> PicoP+                                  
R8 Picophytoplankton use Nitrates, without removing 
them 

Bact+ >> Proto+                                          R9 Protozoa graze on Bacteria, without removing them 

Bact+, Proto+ >> Bact-, DOC+                            
R10 Protozoa graze on Bacteria, which disappear and 
produce organic matter 

PicoP+ >> Proto+                                         
R11 Protozoa graze on Picophytoplankton, without 
removing it 

PicoP+, Proto+ >> PicoP-, DOC+                          
R12 Protozoa graze on Picophytoplankton, which 
disappears and produce organic matter  

NanoP+ >> Proto+                                         
R13 Protozoa graze on Nanophytoplankton, without 
removing it 

NanoP+, Proto+ >> NanoP-, DOC+                          
R14 Protozoa graze on Nanophytoplankton, which 
disappears and produce organic matter  

MicrP+ >> MesoZ+    
R15 Mesozooplankton graze on Microphytoplankton (its 
PREFERED prey), without removing it 
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MicrP+, MesoZ+ >> MicrP-, DOC+   
R16 Mesozooplankton graze on Microphytoplankton, 
which disappears and produces organic matter   

MicrP-, NanoP+ >> MesoZ+    
R17 Mesozooplankton graze on Nanophytoplankton, 
without removing it 

MicrP-, NanoP+, MesoZ+ >> NanoP-, 
DOC+     

R18 Mesozooplankton graze on Nanophytoplankton 
(secondary preferential prey), which disappears and 
produces organic matter   

MicrP-, Proto+ >> MesoZ+    
R19 Mesozooplankton graze on Protozoa, without 
removing them 

MicrP-, Proto+, MesoZ+ >> Proto-, 
DOC+     

R20 Mesozooplankton graze on Protozoa, which 
disappears and produces organic matter   

NanoP+ >> MicrZ+   
R21 Microzooplankton graze on Nanophytoplankton (its 
PREFERED prey), without removing it 

NanoP+, MicrZ+ >> NanoP-, DOC+   
R22 Microzooplankton graze on Nanophytoplankton, 
which disappear and produce organic matter   

NanoP-, PicoP+ >> MicrZ+                                
R23 Microzooplankton graze on Picophytoplankton 
(secondary preferential prey), without removing it 

NanoP-, PicoP+, MicrZ+ >> PicoP-, 
DOC+                   

R24 Microzooplankton graze on Picophytoplankton, which 
disappear and produce organic matter   

NanoP-, Proto+ >> MicrZ+                                
R25 Microzooplankton graze on Protozoa, without 
removing them 

NanoP-, Proto+, MicrZ+ >> Proto-, 
DOC+                   

R26 Microzooplankton graze on Protozoa, which 
disappear and produce organic matter   

NanoP-, Bact+ >> MicrZ+                                 
R27 Microzooplankton graze on Bacteria, without 
removing them 

NanoP-, Bact+, MicrZ+ >> Bact-, DOC+                    
R28 Microzooplankton graze on Bacteria, which disappear 
and produce organic matter   

MicrZ+ >> MesoZ+                                        
R29 Mesozooplankton graze on Microzooplankton, 
without removing it 

MicrZ+, MesoZ+ >> MicrZ-, DOC+                          
R30 Mesozooplankton graze on Microzooplankton, which 
disappears and produces organic matter  

 288 

Four TN regimes were revealed by the full and seasonal models (Fig. 4a and Table SM1): the S0 biological 289 
winter regime, without planktonic bloom, with oscillations of both zooplankton feeding on bacteria and 290 
organic matter; the S1 regime, in which all components are present because the environment is favorable to 291 
the development of organisms with many fluctuations of them; the S2 multivorous regime, with a mix of preys 292 
and various predators such as protozoa and both zooplankton (MicrZ and MesoZ), and finally, the S3 regime, 293 
centered on protozoa and mesozooplankton with a few preys but oscillation of Bacteria (Fig. 4a and Table 294 
SM1). The trajectories passing through different regimes were diverse and depended on the rules fired from 295 
the initial state (Fig. 4b): either the TN system shifts between various types of S0 regimes, or it successively 296 
crosses regimes S0 to S1, S2, and S3 (with possible ways back) and then back to S0.  297 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.06.29.547055doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.29.547055
http://creativecommons.org/licenses/by-nc-nd/4.0/


 298 

Figure 4 - The merged state space of the seasonal model (a, as in Fig. SM1a), in which each node 299 
corresponds to a structural stability (i.e., a set of mutually reachable states), and each edge corresponds 300 
to irreversible transitions between successive stabilities. Here, structural stabilities are labeled with 301 
system components that are systematically present (+) in their associated states (see Fig. SM2). To see 302 
components that are systematically absent in stabilities). This figure helps identify the various regimes (b, 303 
and Table SM1) reached by the TN system along to the (downward) trajectories computed. 304 

Model validation 305 
All states of the theoretical trajectory were correctly predicted by the model and, as the model exhibited 306 

a single stability, the system is certain to successively reach all these states (although we do not know by which 307 
complicated trajectories, Fig. 4a, Table SM1). This observation definitely validates the model. The theoretical 308 
planktonic TN trajectory (Table 2 and Fig. 5a) started by an (immature) regime found during the biological 309 
winter. It then evolved toward low herbivorous TN, herbivorous TN, and variable multivorous TN (from weak 310 
to highly multivorous regimes, with protozoa, microzooplankton, or mesozooplankton, respectively), and a 311 
microbial TN regime, to finally reach a microbial loop regime. When the water in the marshes was renewed 312 
(Renew+), the TN returned to the biological winter regime, as can the herbivorous regimes as well. All these 313 
TN regimes were recovered by the model (Fig. 5a), yet with slightly different stabilities. Figure 5 is not meant 314 
to demonstrate this validation stage (already achieved by identification of the successive trajectory states), 315 
rather than showing that all predicted states (colored nodes) were correctly recovered in the computed state 316 
space, and indeed connected through successive transitions (bold edges). Note that this modeled trajectory 317 
crossed many other intermediate states (Fig. 5a) not found in the observations of (Masclaux et al. 2014). In 318 
the seasonal model (rule R0 deactivated), the theoretical trajectory was also predicted (colored states, Fig. 5a), 319 
yet with the last two states (blue states at the bottom) in the reverse order, as the fourth multivorous regime 320 
can directly reach the last depleted one.  321 

 322 
The data recorders at stations A and B, and associated with observed trajectories, were also correctly 323 

recovered. At station A, three regimes succeeded over time, from A1 to A3 (Table SM2, and Fig. 5b). The TN 324 
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started with biological winter for four weeks with the presence of nitrates and organic matter, but it did not 325 
reach favorable conditions for biological development. Then, the favorable conditions at week five allowed the 326 
development of phytoplankton (micro- and pico-plankton), and thus their zooplankton predators with 327 
bacteria. This situation was typical of situations between herbivorous and multivorous TNs. A multivorous 328 
regime of TN then took hold until week eight. At station B, the observed succession displayed four regimes, 329 
from B1 to B4 (Table SM2 and Fig. 5c). The TN started with biological winter for three weeks and favorable 330 
conditions occurring at week four, which allowed the presence of multivorous TN (“weak multivorous TN” 331 
according to (Masclaux et al. 2014)) and at week five an herbivorous TN. Then, a multivorous regime of TN 332 
took hold from week six to week eight. 333 

 334 

Figure 5 - The full (not merged) seasonal state space highlighting the three trajectories used in this study 335 
(Table 2), namely the theoretical (a), station A (b), and station B (c) ones (Table 2 Suppl.). Here, each node 336 
corresponds to a TN state, connected to each other by downward transitions. The specific states 337 
underlying the three trajectories are highlighted by node colors other than red and identifiers 338 
corresponding to their numbers (last rows of trajectories in Table 2) and by bold edges. 339 
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DISCUSSION 340 

The discrete-event and qualitative model of trophic networks (TN) presented here can be computed 341 
instantaneously (< 0.01 s) and provided, once the model was defined and assumed, all possible trajectories 342 
of this system (Fig. 4). To our knowledge, this is the first attempt to exhaustively model a detailed TN (11 343 
components, Table 1) and to accurately validate its qualitative dynamics. 344 

Complex dynamics of aquatic trophic networks  345 
In the Charente-Maritime trophic system, we discovered that this TN may have followed other 346 

trajectories than the one identified by experts in the theoretical model and in the ones observed (Fig. 5 347 
and Supplementary Materials tables). First, station B showed that DOC may be present in winter, thus with 348 
the TN fluctuating in intermediary states before reaching the usual trajectory observed in Masclaux et al. 349 
(2014). Indeed, DOC in winter could be an allochthonous input from the terrestrial environment (Del Gorgio 350 
and Davis 2003). After winter (i.e., when Renew+ and Envir+ were present, Table 1), all the modeled 351 
trajectories and all the TN regimes appeared at reach. The TN can return to biological winter system states 352 
due to the nitrate inputs (Nit+, with R2) and to anthropogenic activities (Tortajada et al. 2011). This 353 
situation occurs when the water renewal is substantial and no planktonic biomass accumulation is possible 354 
(David et al. 2020). Moreover, rainfall could occur and favor nitrate leaching (R3), thus pushing back the 355 
planktonic TN to biological winter system states. The model confirmed the key role of organic matter (DOC), 356 
as the system trajectories differed depending on whether or not organic matter was present at the 357 
beginning of winter.  358 

 359 
From the initial state of the TN, the trajectories could pass through slightly different biological winter 360 

regimes (Figs. 4a-b) with oscillations in organic matter, bacteria, and micro- and mesozooplankton. 361 
Similarly, Masclaux et al. (2014) found two types of Biological winter regimes, mainly depending on the 362 
presence or absence of bacteria, and on some prey and predator combinations. The model correctly 363 
recovered different states of biological winters. The regime of multivorous TN was also well recovered by 364 
the model (Masclaux et al. 2014). The multivorous TN is known to be highly stable (Legendre and 365 
Rassoulzadegan 1995). However, the microbial loop, which has a transient nature (Legendre and 366 
Rassoulzadegan 1995) did not appear as a structural stability in the model either.  367 

 368 
The regime gathering protozoa and mesozooplankton (Proto/MesoZ cycles) characterized by the 369 

presence of predators with a few preys but oscillation of bacteria was not found in the observations 370 
(Masclaux et al. 2014). The modeled trajectory crossed many intermediate states (Figs. 5a-c) not sampled 371 
in the field. The field sampling frequency or the structural characteristics of the sampled wetlands likely 372 
did not allow capture of all the possible states of TN: this reveals the ability of the model to explore many 373 
other possible states of the planktonic TNs and other trajectories of TN. In particular, the predicted 374 
Proto/MesoZ regime has not yet been identified at the Charente Maritime sites, but work in progress at 375 
other Atlantic arc territories has identified related TNs (F.-X. Robin, pers. comm.). Finally, bacteria were 376 
frequently present in the ecosystem, and they occupied a prominent place in the model (Table SM1–2, 377 
Table 2). Bacteria appeared to oscillate frequently (Fig. 4a), although this was not visible in the merged 378 
state space (i.e., bacteria frequently appear and disappear within structural stabilities). The model 379 
confirmed that bacteria are frequently grazed by their grazers, as are small protists (Pernthaler 2005, Šimek 380 
et al. 2013). Indeed, the high level of control of bacteria by the protozoa in freshwater ecosystems is already 381 
known. 382 

Power and drawbacks of discrete-event models 383 
An increasing number of TN models have been developed (Mitra et al. 2007, Kriest et al. 2010, Thébault 384 

and Fontaine 2010, Turner et al. 2014, Kéfi et al. 2016, Hansen and Visser 2016, Kloosterman et al. 2016). 385 
But they still suffer from three main limitations: limited size and complexity, and a frozen (static) network 386 
with frozen (i.e., topology) interactions. In this study, we proposed a novel model family (called the EDEN 387 
framework (Gaucherel and Pommereau 2019, Cosme et al. 2022)) to bypass these limitations. Our model 388 
is based on a discrete-event system, well-known to computer scientists and more recently also some 389 
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molecular biologists (Thomas and Kaufman 2001, Reisig 2013). The price to pay for using our qualitative 390 
model is that no quantitative and detailed dynamics are available; but in turn, no difficult parameterization 391 
and construction are required. Consequently, such an approach is fully complementary to already existing 392 
models in (trophic) ecology. Here, to the best of our knowledge, we provide for the first time a discrete 393 
and qualitative model of TN to bypass such limitations. Of note, in continuity with previous theoretical 394 
attempts (May 1973, Dambacher et al. 2003), we here open a new avenue for the use of such novel 395 
qualitative models in (ecosystem and trophic) ecology. The foundations of this proposition, yet beyond the 396 
present scope, are based on a theoretical consideration that assumes that ecosystems are informational 397 
systems comprised of material components and immaterial processes (Gaucherel 2019) summarized into 398 
their interaction networks. 399 

 400 
Such a model is intuitive, easy to build, tractable, and rigorous (i.e., no trajectories have been forgotten 401 

or added according to the mathematical Petri net engine). In addition, we claim that it does not require 402 
any detailed or quantitative calibration, as no parameter is required. The central assumption of this 403 
approach is that it is possible to summarize ecological processes into qualitative rules, possibly interpreted 404 
as long-term and discrete events. Other studies have shown that this approach is not limited to trophic 405 
processes and can be applied to a high diversity of social-ecosystems (Gaucherel and Pommereau 2019, 406 
Mao et al. 2021). In this study, we were fortunate enough to collate several theoretical and observed 407 
trajectories with which to validate the model, thus confirming that it is conform and accurate (Fig. 5). 408 
Another quality of this type of model is to be heuristic, to force scientists questioning the knowledge they 409 
have regarding the studied system and to collate it into a single coherent framework.  410 

 411 
As perspectives, it appears suitable to model many TN stressors such as pollution, cleaning, drought, 412 

invasive species, and/or climate changes (Mooney and Hobbs 2001, Mouquet et al. 2015). Any 413 
complexification of the studied social-ecosystem is also possible, in theory, as the model is still far from 414 
reaching its limits in terms of components, processes, and their nature diversity. It may then be used in a 415 
more applied manner, for exploration of other scenarios by changing the initial conditions. Coupling this 416 
model with other components describing the mechanisms behind these stressors would provide a relevant 417 
territorialized model to anticipate trends in a context of global warming and coastline changes. In the near 418 
future, it would be relevant not only to improve the model’s realism but also to develop analysis tools 419 
already used in similar studies focusing on social-ecological systems (Mao et al. 2021, Cosme et al. 2022). 420 
Additionally, it would be relevant to complexify our discrete and qualitative approach by using quantitative 421 
and multivalued schemes, to bridge the gap with more traditional (e.g., equation-based or individual-422 
based) models (Vézina and Platt 1988, Kéfi et al. 2016).  423 

 424 
In brief, by modeling trophic networks with a novel (EDEN) framework, we recovered theoretical as 425 

well as observed trajectories. With such qualitative models, the dynamics and predicted new states and 426 
new trophic network functioning regimes that may be observed in the field can be better understood. We 427 
illustrated these with a specific and well-documented freshwater trophic network. Such models provide an 428 
intuitive and robust approach to diagnosing any trophic (and non-trophic) network by computing all 429 
possible trajectories it can reach from a given chosen initial state. The known processes at play in the 430 
system help identify all of the possible dynamics and thus counter-intuitive trajectories of such complex 431 
(social-eco-)systems. Connecting such biotic dynamics to human-related activities can be expected to 432 
provide additional insightful understanding of trophic systems.  433 

 434 

APPENDICES 435 

Additional Tables and Figures (Appendix 1) 436 
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