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cropping systems.

@ Targeted and untargeted metabolomics analyses on
54 Camelina sativa lines grown under three different
conditions (control, heat, and drought stress).

Untargeted LC-MS: (Luna et al. 2020)

- Raw features : 11680

- After SN > 10 : 10869

- After CV QC < 30% : 3016 final features
Targeted measurements:

- 9 major biomass components

Greenhouse data acquisition - Starch, citrate, glucose, sucrose, malate,
@ The same 54 lines were also phenotyped in field -On leaves of plants grown in greenhouses chlorophyl A&B, protein and amino-acid
. . under control and stress conditions —
trials across Europe (France, England, Italy and Spain) “Targeted and untargeted metabolomics
and genotyped. -‘ n}Jling of the 54 lines

@ We used machine-learning and data analysis to link

greenhouse metabolome and field phenotypes of b e o OO
the different Camelina sativa lines. L Wt

mass spectrometry
(thermoScientific)

Phenotyping data acquisition in fields
- Under agronomical conditions
- In four different locations accross Europe

Cluster Dendrogram

Control vs Drought
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Control vs Heat

_. Hierarchical clustering and ADMIXTURE analysis of the Untwist lines and publicly available
. : Foe ~accessions. IBG distances were hierarchically clustered and 9 sub-populations were assumed.
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Global metabolic responses of Camelina lines to drought and heat stress
(A) PCA score plots of normalised untargeted features (B-C) Volcano plots of metabolic markers
that were accumulated (red) or depleted (blue) in response to drought (B) or heat stress (C).

(D-E) Venn diagrams showing specificand common metabolic markers identified by volcano plots.
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Metabolomic responses of individual camelina lines to drought and heat stress.
Volcano plots for each individual Camelina line were constructed. The resulting accumulated and depleted markers
were stacked for drought (A) and heat stress (B). Colored stars correspond to highlighted lines in the genetic clustering

@ Camelina sativa lines have very diverse metabolic responses to different stresses
@ Stress response from metabolic point of view seems not entirely linked to the

******** genetic background of the lines

C @ Predictive metabolomics enabled the prediction of an agronomic trait of interest
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Correlation between predicted
and measured TKW

asf] " | S using data coming from greenhouses
. Control Drought Heat Controlo rigian)fu?I:te tota Heat Control Drought Heat ) . . . . . . .
Predictive metabolomics tor Thousand Kernel Weight in three locations @ More predictions are ongoing using other machine-learning models and to predict
using three datasets. Machine-learning models were build using Ridge, elastic-net and other physiological variables e )

LASSO regression models splitting randomly the dataset into 80/20% one hundred time, using @ Annotation of the different metabolic markers in progress
a 3 time 10-fold CV for training. Best models were chosen based on RMSE and correlation

between measured and predicted values is displayed.
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