
HAL Id: hal-04398209
https://hal.inrae.fr/hal-04398209

Preprint submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Beyond variance: simple random distributions are not a
good proxy for intraspecific variability in systems with

environmental structure
Camille Girard-Tercieux, Ghislain Vieilledent, Adam T Clark, James S. Clark,
Benoit Courbaud, Claire Fortunel, Georges Kunstler, Raphael Pelissier, Nadja

Rueger, Isabelle Marechaux

To cite this version:
Camille Girard-Tercieux, Ghislain Vieilledent, Adam T Clark, James S. Clark, Benoit Courbaud, et
al.. Beyond variance: simple random distributions are not a good proxy for intraspecific variability in
systems with environmental structure. 2024. �hal-04398209�

https://hal.inrae.fr/hal-04398209
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Beyond variance: simple random distributions are not a
good proxy for intraspecific variability in systems with

environmental structure

Camille Girard-Tercieux1,∗, Ghislain Vieilledent1, Adam Clark2, James S.
Clark3,4, Benoit Courbaud4, Claire Fortunel1, Georges Kunstler4, Raphaël
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Abstract

The role of intraspecific variability (IV) in shaping community dynamics and species
coexistence has been intensively discussed over the past decade and modelling studies
have played an important role in that respect. However, these studies often implic-
itly assume that IV can be represented by independent random draws around species-
specific mean parameters. This major assumption has largely remained undiscussed,
although a great part of observed IV is structured in space or time, in particular when
environmental dimensions that influence individual performance are imperfectly char-
acterised or unobserved in the field. To test the impact of this strong assumption on the
outcome of community dynamics models, we designed a simulation experiment where
we varied the level of knowledge of the environment in virtual communities, resulting
in different relative importance of explained vs unexplained spatial individual variation
in performance. We used a community dynamics simulator to generate communities
where the unexplained individual variation is, or is not, added as an unstructured ran-
dom noise. Communities simulated with unstructured IV never reached the community
diversity and composition of those where all the variation was explained and structured
(perfect knowledge model). This highlights that incorporating unstructured IV (i.e.
a random noise) to account for unexplained (but structured) variation can lead to in-
correct simulations of community dynamics. In addition, the effects of unstructured
IV on community diversity and composition depended on the relative importance of
structured vs unstructured IV, i.e. on the level of knowledge of the environment, which
may partly explain the contrasting results of previous studies on the effect of IV on
species coexistence. In particular, the effect of unstructured IV on community diversity
was positive when the proportion of structured IV vs unstructured IV in the model was
low, but negative when this proportion was high. This is because unstructured random
noise can either limit the competitive exclusion of inferior competitors in low dimen-
sions or destabilise tight niche partitioning in high dimension. Our study suggests that
it is crucial to account for the sources and structure of observed IV in real communi-
ties to better understand its effect on community assembly and properly include it in
community dynamics models.

Keywords—community dynamics, community model, ecological niche, environmental filtering,
high-dimensional environment, individual variation, species coexistence
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Introduction

The role of intraspecific variability (IV) in shaping community dynamics has been intensively dis-
cussed over the past decade (Bolnick et al. 2011; Albert et al. 2011; Violle et al. 2012; Des Roches
et al. 2018; Raffard et al. 2019). Observed IV, i.e. the variability among measured individual at-
tributes (functional or demographic traits, or any proxy of individual performance) within a species5

has indeed been reported to be large within communities (Siefert et al. 2015; Poorter et al. 2018).
Modelling studies have played an important role to decipher the effect of IV on species coexistence
(e.g. Lichstein et al. 2007; Vieilledent et al. 2010; Courbaud et al. 2012; Hart et al. 2016; Uriarte
and Menge 2018; Crawford et al. 2019), offering opportunities of virtual experiments out of the
scope of empirical approaches. These studies have led to contrasting results however, letting the10

debate unresolved: IV could either (i) blur species differences, thus promoting transient or unstable
coexistence (Vieilledent et al. 2010; Crawford et al. 2019), (ii) disproportionately advantage the
strongest competitor, thus hindering coexistence (Courbaud et al. 2012; Hart et al. 2016), or (iii)
promote coexistence in specific spatial configurations (Uriarte and Menge 2018). While a unifying
framework differentiating whether IV affects niche traits or hierarchical traits has been recently15

proposed to explain these discrepancies (Stump et al. 2022), a major assumption usually made
in modelling studies, namely that IV is unstructured in space or time and can be represented by
independent random draws around species-specific mean parameters, remains largely undiscussed
(Girard-Tercieux et al. 2023).

The IV observed in individual attributes is not necessarily purely random and can emerge20

from various genetic and environmental processes (Violle et al. 2012; Moran et al. 2016). Most
of these additional processes are unlikely to generate unstructured IV in the form of a random
noise, whereby the site and date of measurement would have no influence on the measured attribute
value (unstructured IV, henceforth denoted uIV). Previous works have already explored the role of
genetically heritable traits variability (Ehlers et al. 2016). In contrast, much less attention has been25

given to IV generated by structured variation of environmental gradients in space or time (structured
IV, henceforth denoted sIV). It is, however, well-known that many species attributes respond to
environmental gradients (Bonnier 1890; Kropotkine 2015; Jung et al. 2010; Niinemets 2015; Rixen
et al. 2022). As a result, high-dimensional (and potentially unobserved) variation of the environment
can lead to large observed IV. For instance, in a highly controlled clonal experiment, IV in tree30

growth within clones was larger than genetically-driven IV between clones (Girard-Tercieux et al.
2023). Indeed, differences in attributes among conspecific individuals can result from differences
in environmental dimensions that are unobserved or mischaracterised due to a mismatch between
the individual scale and the scale of the measurements. Consequently, these observed differences
do not necessarily mean that conspecific individuals substantially differ in their response to the35

environment. While it is widely accepted that environmentally-driven sIV is ubiquitous in natural
communities (Nicotra et al. 2010), the consequences of its substitution by random uIV on species
coexistence and community dynamics remain to be thoroughly tested in models (Clark 2010; Girard-
Tercieux et al. 2023).

Here, we explore the effect of considering IV either as structured by environmental dimensions40

(sIV) or as an unstructured random noise (uIV), through a virtual experiment designed to provide
a first proof-of-concept, performed using a simulator of community dynamics. To do so, we first
created a virtual plant community, where individual performance is fully determined by species-
level responses to 15 environmental dimensions varying in space (Fig. 1A). This extreme scenario,
although unrealistic regarding its level of environmental determinism, was subsequently used as a45

reference (henceforth denoted Perfect knowledge model) in our virtual experiment. We then consid-
ered imperfect knowledge models, where this 15-dimensional individual performance is estimated
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using 0 to 15 supposedly “observed” environmental dimensions, while the remaining IV (or unex-
plained variation) resulting from the effect of “unobserved” environmental dimensions, is ignored
(Imperfect knowledge models without uIV ) or is included as random unstructured IV (Imperfect50

knowledge models with uIV, Fig. 1B). These three performance models are used to independently
run the same community dynamics simulator in order to compare their effects on species coexistence
and community dynamics.

Specifically, we are asking two questions. First, how well does random unstructured IV (uIV)
mimic the effect of environmentally-driven structured IV (sIV) on diversity and community com-55

position? To answer this question, we compare communities simulated under the Perfect knowledge
model and under Imperfect knowledge models with uIV. Importantly, these models share the same
amount of total variation across individuals, but partitioned differently between sIV and uIV, de-
pending on the amount of knowledge of the environment, i.e. on the number of “observed” envi-
ronmental dimensions (Fig. 1C, arrow 1). Second, how does the effect of adding uIV on diversity60

and community composition vary with the knowledge of the environment (Fig. 1C, arrow 2), i.e.
with the relative importance of sIV and uIV in our model? To answer this question, we compare
pairs of models with the same amount of sIV, i.e. with the same knowledge of the environment,
but including or excluding uIV. This latter comparison corresponds to the approaches proposed in
previous studies testing the effects of IV on coexistence (Vieilledent et al. 2010; Courbaud et al.65

2012; Hart et al. 2016).
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Figure 1: Conceptual framework. Consider an environment that is varying spatially in many
dimensions, X1 to X15. Each dimension influences individual performance in a species-specific way, as
illustrated in A for one species (where the variation of performance with all environmental variables is
projected separately for each variable in 2-dimensional plots). In practice, several of these environmental
dimensions are often unobserved in the field. The effect of these unobserved environmental dimensions
on individual performance results in an observed intraspecific variability (IV) in the species response to
observed dimensions. As an illustration, in B, only X6 is observed and used to fit a polynomial function
to the performance data (teal curve), and the remaining variation is estimated through a variance term
(gray envelope). This variability is often represented as a probability distribution, which is used to simulate
the variation in performance among conspecific individuals through random draws that are independent
and unstructured in space (density panel in B). We propose a framework to assess the consequences of
representing the variation resulting from unobserved environmental dimensions, which is structured in space
and time, by such unstructured IV (uIV) on community dynamics, and how these consequences vary with
the level of knowledge of the environment (C). To do so, we varied from 0 to 15 the number of dimensions
that are observed and used for estimating the 15-dimensional performance (panel B providing an example
with one dimension). By increasing the number of observed dimensions, we thus increased the proportion of
structured IV (sIV) that is accounted for in estimating individual performance (C, horizontal axis; see also
Fig. 2). For a given number of observed dimensions, or % of sIV, the variation resulting from unobserved
dimensions can be either added as uIV or not (C, vertical axis). For each way to estimate performance (with
uIV or not, and with different numbers of observed dimensions), we simulated community dynamics using
the same simulator. We then compared the simulated communities in terms of diversity and composition
(e.g. species richness in colored points in C). By comparing communities simulated with uIV with the one
with 100 % sIV (arrow 1) we tested the effect of substituting sIV with uIV on community dynamics. By
comparing communities simulated with and without uIV, for a given % of sIV (arrow 2), we mimicked the
approach of previous modelling studies testing the effect of intraspecific variability on community dynamics
and species coexistence. By comparing this difference between communities simulated with and without uIV
across different % of sIV (arrow 3), we tested whether the results of previous studies can be influenced by
the level of knowledge of the environment.
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Materials and methods

Environmental variables

We considered a grid of M = 25 × 25 = 625 sites. Each site m was characterised by K = 15
environmental variables x1, . . . , xK . To confer some realism to our virtual experiment and the re-70

sulting illustrations (Fig. S5.17), each environmental variable was spatially auto-correlated, as it
is often the case in nature (Tymen et al. 2017; Zellweger et al. 2019), and independently derived
from a conditional autoregressive model, with a normal distribution centered on 0 and of variance 1.
Therefore, environmental variables were not uniformly distributed, some habitats being more fre-
quent than others. Environmental variables were then rescaled to [0, 1] to ensure that each variable75

had the same effect on species performance on average. We here assumed that the environmental
variables do not vary in time and therefore restricted our experiment to environmental variation in
space.

Individual performance

For parsimony’s sake, we here focus on an attribute (or trait) that has a direct link with performance,80

hereafter “individual performance”. We considered J = 20 species, whose individual performances
were computed in three alternative ways, as follows.

The Perfect knowledge model

We first considered a simple model representing the functioning of a plant community in a hypo-
thetical world where all determinants of individual performance would be environmental and known85

- named Perfect knowledge model and henceforth considered as the reference. Individuals within a
species did not have any intrinsic differences and could therefore be considered as clones, and we
assumed no genetic variation among individuals. We considered that the environment was mul-
tidimensional and partitioned among species. To this end, in this model, the performance of an
individual i of species j (j ∈ [1, . . . , J ]) was maximal at one point in the multidimensional environ-90

mental space, denoted x∗j = (x∗1,j , . . . , x
∗
K,j). For an environmental axis k (k ∈ [1, . . . ,K]), x∗k,j was

drawn in a uniform distribution in [0, 1]. Then, the performance of an individual i of species j on
site m, pi,j,m, was computed as the opposite of the normalised Euclidean distance between x∗j and
the local environment at the site where the individual resided, xm = (x1,m, . . . , xK,m) (Eq.1).

Therefore, at each site, one species outperformed all the others. The number of sites where each95

species had the highest performance varied between species, since the environmental variables were
not uniformly distributed. For some species, there was no site where they were the most competitive.
Importantly, all individuals of a given species j responded in the same way to the environment, the
performance of conspecifics differing only because they resided in a different environment. Individual
variation was thus fully environmentally-driven and structured in space (0% uIV and 100% sIV in100

Fig. 1C).

pi,j,m = −(di,j,m − µd)/σd

di,j,m =

√√√√ K∑
k=1

(x∗k,j − xk,m)2
(Eq.1)

where µd and σd are the mean and variance of dj,m across all species j and sites m.
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The Imperfect knowledge models

As it is typically unfeasible to fully characterise all relevant dimensions of the environment at fine
scales in the field, we then assumed that only nobs < 15 environmental variables were measured105

and accounted for when estimating individual performance. These performances were thus esti-
mated from a statistical model fitting the individual performance pi,j,m provided by the Perfect
knowledge model (Eq.1, representing what actually happens in the field and is measured, assuming
no measurement error) against the nobs observed environmental variables (Fig. 1). We considered
the common case where ecologists, in absence of exact knowledge of the underlying processes, here110

depicted by the Perfect knowledge model, assume a quadratic relationship between performance and
each observed environmental variable, thus approaching the triangular shape (i.e. increasing then
decreasing piecewise linear) of the actual relationship of the Perfect knowledge model (Eq.2). The
use of an intercept to estimate species performance in averaged environmental conditions is also a
common practice among ecologists.115

pi,j,m = β0,j +

nobs∑
k=1

(β1,k,jxk,m + β2,k,jx
2
k,m) + εi,j,m

εi,j,m ∼ N (0, Vj)

(Eq.2)

This statistical model was fitted using the “lm” function of the “stats” R package. Species pa-
rameters (βj = {β0,j , β1,k,j , β2,k,j}) and residuals εi,j,m were retrieved. In this model, Vj represented
an unstructured observed IV which was estimated for each species j. This variability emerged from
the spatial variation in environmental variables that were not measured and accounted for, namely
[xnobs+1, . . . , xK ].120

In Imperfect knowledge models, the individual performance p̂i,j,m was computed with the pa-
rameters obtained at different levels of knowledge of the environment using Eq.2, i.e. with nobs

varying from 0 to 15. εi,j,m thus accounted for the K−nobs unobserved environmental variables, re-
spectively. In the Imperfect models without uIV, the residual variation, εi,j,m, was neglected (Eq.3),
while in the Imperfect knowledge models with uIV, it was included as a random noise δi,j,m gen-125

erated through independent individual draws in a normal distribution of variance V̂j (Eq.4). The
Imperfect knowledge models with uIV therefore shares the same amount of total variation across
individuals with the Perfect knowledge model, but partitioned differently between sIV and uIV: for
a given number of observed environmental dimensions, random IV V̂j was used as a substitute of
the environmental variation that was not observed.130

Importantly, in the Imperfect knowledge models without uIV, conspecific individuals responded
similarly to the environment as in the Perfect knowledge model for the observed environmental
dimensions, but lacking information on the other environmental dimensions (0% uIV in Fig. 1C).

p̂i,j,m = β̂0,j +

nobs∑
k=1

(β̂1,k,jxk,m + β̂2,k,jx
2
k,m) (Eq.3)

In contrast to the Perfect knowledge model and the Imperfect knowledge models without uIV,
in the Imperfect knowledge models with uIV, conspecific individuals could perform differently in135

the same environment (0 to 100% uIV in Fig. 1C), due to the contribution of the random term
δi,j,m to the performance. Note that this contribution, which mimics what was typically done in
previous studies, can lead to a trend of increasing average performance over iterations in simulations
of community dynamics, especially due to the unbounded, normal distribution of δi,j,m.
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p̂i,j,m = β̂0,j +

nobs∑
k=1

(β̂1,k,jxk,m + β̂2,k,jx
2
k,m) + δi,j,m δi,j,m ∼ N (0, V̂j) (Eq.4)

The three types of performance models (Eq.1, Eq.3, Eq.4) were then implemented in the same140

simulator of community dynamics, in order to disentangle the effects of random, unstructured IV
on the one hand, and of the imperfect characterisation of the environment on community dynamics
and species coexistence on the other hand. Note that, when comparing simulation outcomes with
performance computed with the Perfect Knowledge and the Imperfect Knowledge models, differences
can actually result from two main aspects: (i) the model mis-specification (i.e. the use of a quadratic145

function including an intercept, Eq.2, Eq.3, Eq.4, instead of a distance, Eq.1), and (ii) the number
of observed dimensions. Change in the latter actually results in a change in the proportion of uIV,
but also in the number of variables that can be used to compute the site-dependent (or environment-
dependent) part of performance. Moreover, the presence of an intercept in models ( Eq.2, Eq.3,
Eq.4) can lead to a hierarchy in species performances fostering species extinctions. We tested the150

magnitude of the effect of the intercept and of the model mis-specification, using an Imperfect
knowledge model with a distance function, with and without intercepts, which did not substantially
change our results (see Reviews and discussion below).

Community dynamics simulation

Our simulator of community dynamics was inspired by Hurtt and Pacala (1995). However, several155

of our modelling choices differed. First, we explicitly used several environmental dimensions to
account for niche multidimensionality, while they used a one-dimensional environmental index.
Second, we randomly drew species optima, therefore leading to various sizes of the environmental
space where each species outperforms all the others, while they used equally wide ecological niches
across species. This allowed us to test several configurations of niche partitioning. Finally, mortality160

and recruitment were stochastic in their model, while we chose a deterministic process to stabilise
coexistence and limit the sources of uncertainty to the effect of IV, although we also tested a
stochastic alternative (see details below).

For a given simulation of community dynamics, the simulated community was initialised with ten
individuals of each of the 20 species, located randomly in the landscape. The performance of these165

individuals was computed using either the Perfect knowledge model (Eq.1), an Imperfect knowledge
model without uIV (Eq.3), or an Imperfect knowledge model with uIV (Eq.4). Mortality events
resulted in vacant sites for which species then competed for recruitment. To test the robustness
of our results to the choices made in building the community dynamics simulator, we implemented
alternative ways to simulate mortality and fecundity. In the following formulas, performance pi,j,m170

is replaced by p̂i,j,m for Imperfect knowledge models. For mortality, we explored the three following
approaches: (i) the one percent less performing individuals in the landscape die at each timestep,
henceforth denoted deterministic mortality ; (ii) one percent of the individuals die at each timestep,
and the probability θi,j,m of each individual j to die is inversely proportional to its performance,
θi,j,m = logit−1(0.5 × pi,j,m), henceforth denoted stochastic mortality ; (iii) θi,j,m is computed as a175

function of individual performance, θi,j,m = logit−1(logit(0.01) − 0.5 × pi,j,m), henceforth denoted
logistic stochastic mortality. Death events are then drawn in a binomial distribution B(ns, θ) with
θ the vector of all θi,j,m. For fecundity, we explored the two following approaches: (i) the number
of propagules λj,t depends on species abundance Aj,t: λj,t = round(0.5× Aj,t), henceforth denoted
the abundance-dependent fecundity ; or (ii) each species present in the community produces ten180

offspring per timestep, henceforth denoted the fixed fecundity. In both cases, propagules were then

8
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randomly distributed among all vacant sites. If several propagules landed on the same vacant site,
the propagule with the highest individual performance outcompeted the others and won the site.
A species that was not the best at a site could win “by forfeit” and be recruited at this site.
When individual performance was computed using the Perfect knowledge model, the colonisation of185

a vacant site only depended on the species optima. When individual performance was computed
using an Imperfect knowledge model without uIV, this colonisation depended on the estimated species
parameters (the β̂j), and, for an Imperfect knowledge model with uIV, also on a random individual
variation (the random term δi,j,m), that enabled potential inversions of competitive hierarchy locally.

Overall, multidimensional niche partitioning and environmental filtering were the main coex-190

istence mechanisms within the simulated communities: mortality and recruitment were controlled
by performance, which depended on the local environment in a species-specific way. Therefore,
individuals that were maintained and recruited on a site were filtered by the environment, and
performance on each site increased rapidly. As population sizes were relatively low, communities
were also subject to ecological drift (i.e. extinctions due to demographic stochasticity). Note that195

our community dynamics simulator is spatially-implicit, i.e. the fate of an individual on a site does
not depend on its neighbours neither on the environment in the neighbourhood (the spatial auto-
correlation of the environmental variables does not directly influence in the dynamics and here was
only used for illustration, Fig. S5.17). Spatial processes that could contribute to species coexistence
(e.g. Wiegand et al. 2021) were thus absent from our simulator, whose aim was not to provide all200

potential coexistence mechanisms. When using the performance models without uIV (i.e. Perfect
knowledge and Imperfect knowledge models without uIV ), each species tends to occupy its preferred
habitat defined by its optima (perfectly or imperfectly estimated) in many environmental dimen-
sions. It should be noted that species favorable habitats were not equally frequent across species,
thus intrinsically defining rare and dominant species in the landscape. Few species that had a205

rare favorable habitat and whose initial individuals randomly landed on unfavorable sites, could be
excluded from the community.

As most results remained qualitatively unchanged across the different alternatives for simulat-
ing mortality and fecundity, we present below the results for the deterministic mortality and the
abundance-dependent fecundity only, and refer the reader to Appendix 1 for the other alternatives.210

Experimental setup and analyses

For each model of individual performance and number of observed environmental dimensions, we
used ten different Environment × Species optima (E×S) configurations, each prescribed randomly.
Within each E×S configurations, ten simulations differing only in their initial conditions (location
of the initial individuals) were run. Each simulation of community dynamics was run for 10,000215

generations (Table 1). The ten E × S configurations were the same across models of individual
performance and number of observed environmental dimensions and the ten initial conditions were
the same across E × S configurations. In total, this led to 3,300 simulations.

9
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Table 1: Experimental setup.

Experimental setting Number Comments

Model of individual
performance

3 Perfect knowledge, Imperfect
knowledge without uIV, Imperfect

knowledge with uIV

Number of observed
environmental dimensions nobs

0 to 15 Except for the Perfect knowledge
model

E × S configuration 10 The same configurations were used
across the models of individual

performance and number of observed
environmental dimensions

Initial conditions 10 Determined by the locations of the 10
individuals per species within the

landscape

Generations 10000 Sufficiently long so that changes in the
community are very slow

In order to compare simulation outputs, we studied several aspects of final communities: (1)
community diversity, (2) the similarity in community composition between simulations, and (3) site220

sorting. Community diversity was estimated using species richness and the Hill-Shannon diversity
index (Roswell et al. 2021). Similarity in community composition was estimated as the pairwise
percentage similarity of final species abundances between pairs of simulations. For two vectors of
species abundances A = (a1, . . . , aj , . . . , aJ) and B = (b1, . . . , bj , . . . , bJ), the percentage similarity
was computed as225

PS =
2×

∑J
j=1min(aj , bj)∑
aj +

∑
bj

(Eq.5)

To quantify site sorting, we computed for each simulation the final community mean performance
as the performance obtained with the Perfect knowledge model, averaged across all individuals at
the end of the simulation. This community mean performance thus corresponded to the strength
of the environmental filtering in community assembly, i.e. the site sorting: the higher the mean
performance, the stronger the effect of the environment on community assembly.230

Results

Final community diversity

Final community diversity, both in terms of species richness and Hill-Shannon index, was lower
with unstructured IV than with the Perfect knowledge model whatever the number of observed
environmental dimensions, i.e. whatever the relative importance of structured vs unstructured235
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IV (Fig. 3A and B). This diversity increased with the number of observed dimensions. In most
cases, adding unstructured IV reduced the community diversity with respect to the corresponding
Imperfect knowledge model without uIV (Fig. 3C and D). However, this effect varied with the
number of observed dimensions (but see in case of alternative mortality implementation, Appendix
1): below 50% of explained variance (i.e. up to three observed environmental dimensions, Fig. 2),240

adding unstructured IV resulted in a higher or similar diversity than with the Imperfect knowledge
models without uIV (but see in case of alternative mortality implementation, Appendix 1). This
difference first decreased and then increased as the number of observed dimensions increased, while
staying negative from 3 to 15 observed dimensions.

Figure 2: Observed IV depending on the level of knowledge of the environment.
Each point represents the unstructured IV inferred for one species, and each colour represents an E ×
S configuration (twenty points per colour for the twenty species). Unstructured IV was inferred using a
statistical model (Eq.2) taking 0 to 15, out of 15, dimensions into account to fit the performance provided
by the Perfect knowledge model ; the pink points, curve and ribbon correspond to the mean and standard
deviation of the R2 of these statistical models (computed over the ten different configurations for each
number of observed dimensions). As expected, observed unstructured IV decreased with the number of
observed dimensions, i.e. with the level of knowledge of the environment.
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Figure 3: Effect of the structure of individual variation on community diversity.
Each point represents the diversity, either computed as the species richness – left panels – or the Hill-Shannon
diversity index – right panels – of a final simulated community. Each colour represents an E×S configuration
(ten points per color, for the ten initial conditions). The horizontal axis corresponds to the number of
observed environmental dimensions, which is proportional to the ratio of structured and unstructured IV in
the performance models. Each number of observed dimensions corresponds to a level of explained variance
in individual performance (see Fig. 2) depicted with the pink arrow at the bottom. The top panels show
the final community diversity obtained with the Imperfect knowledge models with uIV (0 to 15 observed
dimensions) and with the Perfect knowledge model (PK, red, far right). This is useful to examine our first
question (Fig. 1C, arrow 1). The bottom panels show the difference in the final community diversity obtained
with the Imperfect knowledge models with and without uIV. Points that are above zero (horizontal dashed
line) correspond to a higher diversity when adding unstructured IV. This is useful to examine our second
question (Fig. 1C, arrows 2 and 3), by comparing the effect of adding unstructured IV at different levels
of knowledge of the environment. The Imperfect knowledge models with uIV never reached the diversity
obtained with the Perfect knowledge model (A and B). Moreover, adding unstructured IV as a random noise
had an effect on community diversity that varied with the number of observed environmental dimensions
(C and D). Results shown here were obtained with a deterministic mortality and an abundance-dependent
fecundity (see main text).

Final community composition245

Similarity (as measured by PS, Eq.5) of the Imperfect knowledge models with uIV with the Perfect
knowledge model was low when few environmental dimensions were observed, i.e. when the relative
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importance of structured (vs unstructured) IV was low. This similarity increased with the number
of observed dimensions (from 0.55 to 0.9, Fig. 4A). Adding unstructured IV increased the similarity
with the Perfect knowledge model at low numbers of observed dimensions (from 0 to 2 dimensions,250

i.e. below 50% explained variance) but decreased it at higher numbers of observed dimensions, with
respect to the corresponding Imperfect knowledge model without uIV (Fig. 4C, but see in case of
alternative mortality implementation, Appendix 1). This negative effect became stronger (from 3 to
8 observed dimensions) before becoming weaker (from 9 to 15 observed dimensions). See Appendix
2 for the similarity within models.255
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Figure 4: Effect of individual variation on the similarity in final species abun-
dances between models and on the site sorting. Each colour represents an E×S configuration.
For the similarity - left panels -, each point represents the pairwise percentage similarity (PS) in the final
species abundances between two simulations with the same E × S configuration and the same initial condi-
tions (ten points per color), but obtained using the Perfect knowledge model on the one hand and one of the
Imperfect knowledge models on the other hand. For the site sorting - right panels -, each point represents
the community mean performance of the final communities. This mean performance was calculated with the
Perfect knowledge model and averaged across all individuals at the end of the simulation. The top panels
show these two metrics for communities simulated with the Imperfect knowledge models with uIV (0 to 15
observed dimensions) and with the Perfect knowledge model (PK, red, far right). The bottom panels show
the difference in these metrics for communities obtained with the Imperfect knowledge models with and with-
out unstructured IV. Points that are above zero (horizontal dashed line) correspond to a higher similarity or
mean performance when adding unstructured IV, respectively. The similarity between the Perfect knowledge
model and the Imperfect knowledge models with uIV was low with few observed dimensions and increased
with the number of observed dimensions (A). The effect of adding unstructured IV to Imperfect knowledge
models on the similarity with the Perfect knowledge model varied with the number of observed environmental
dimensions (C). The mean performance obtained for communities simulated with the Imperfect knowledge
models with uIV as well as its difference with the Imperfect knowledge models without uIV varied with the
number of observed dimensions (B, D). Results shown here were obtained with a deterministic mortality and
an abundance-dependent fecundity (see main text).

The mean performance of communities simulated with the Imperfect knowledge models with uIV
increased with the number of observed dimensions (except between 14 and 15 observed dimensions),
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i.e. with the relative importance of structured and unstructured IV (Fig. 4B). Below ten observed
dimensions, it remained lower than that of the communities simulated with the Perfect knowledge
model, but was higher above ten observed dimensions. Adding unstructured IV decreased the mean260

performance of the final species community from zero to six observed dimensions but increased it
at higher numbers of observed dimensions, with respect to the corresponding Imperfect knowledge
model without uIV (Fig. 4D). This difference increased with the number of observed dimensions,
except between 14 and 15 observed dimensions.

Discussion265

Random unstructured individual variability generates communities
with lower diversity that are dissimilar from communities generated
with structured individual variability

Ecologists often have only access to an imperfect characterisation of all the environmental dimen-
sions that actually lead to individual variation, be it due to some overlooked dimensions or variables,270

or a monitoring at a scale coarser than the one of the variation that actually influences individuals.
This mischaracterisation can result in an observed but unexplained intraspecific variability in data.
To account for it in community dynamics models, it has often been (implicitly) assumed that some
unstructured variation could be added to the explained part of variation to reach the actual ob-
served total variation. To test this assumption, in our simulation experiment, we varied the level of275

knowledge of the environment and incorporated the remaining (unexplained) variability in individ-
ual performance as unstructured noise, thus varying the ratio of structured and unstructured IV.
Using a modelling experiment, we showed that this difference in the nature of IV can have strong
consequences on community structure and composition.

Within our modelling framework, and compared to the reference communities simulated with a280

15-dimensional individual performance, the communities simulated with a performance estimated
with fewer dimensions and to which the remaining variance was added as a random noise were
less diverse (see also Appendix 3 for further explanation on simulated species richness). Beyond
the community diversity per se, community composition was dissimilar from the reference when
the number of observed dimensions was low, i.e. when the relative importance of structured vs285

unstructured IV was low: the strength of environmental filtering in shaping community assembly
was too low to generate species abundances similar to the one of the reference communities. As the
relative importance of structured IV increased, both the strength of environmental filtering and the
similarity of the final species abundances with the reference ones increased.

While the intercepts included in the Imperfect knowledge models resulted in a species hierarchy290

leading to a drop in species richness at low numbers of observed dimensions, this effect quickly
weakened as the number of observed dimensions increased. Overall this effect alone did not explain
the observed patterns and our results were qualitatively robust to the use of a distance rather than
a quadratic function in Imperfect knowledge models (see Reviews).

Finally, random intraspecific variability is not a good substitute for species response to un-295

observed environmental dimensions for studying community dynamics. Moreover, interpreting
observed IV as unstructured differences in conspecifics’ response to the environment can lead to
misinterpretations regarding the ecological mechanisms driving the community dynamics. It would
mistake the response of species to environmental variation (a niche mechanism) with random vari-
ability (typically a neutral mechanism, i.e. affecting all species in the same way), and present IV300

as a coexistence mechanism per se without taking into account the species-specific responses to
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environmental variations in high dimensions from which IV can actually result. Hence, maintaining
the variance observed among individuals is not sufficient to capture the community dynamics, the
structure and nature of this individual variability is also critical.

The effect of adding a random IV depends on the relative impor-305

tance of structured vs unstructured individual variability

Previous modelling studies that explored the role of IV on community dynamics usually did not
maintain the total level of variance among individuals. They typically compared communities with
and without additional random variability, for the same level of explained individual variation
(Imperfect knowledge model without uIV vs Imperfect knowledge model with uIV ). Our results310

showed that the effect of adding a random IV depends on the level of explained variance, i.e. in
our case on the number of observed dimensions.

When structured IV accounted for less than 50% of the total individual variation, the addition
of a random unstructured variation increased community diversity in our simulations. This positive
effect was due to the inversions in competitive hierarchy produced by adding a random variation of315

relatively high variance to individual performance; it allowed more species to be maintained in the
community although there were few theoretical winners (i.e. species that are the best performing
somewhere in the landscape) because of the projection of their niches on few environmental dimen-
sions. Similarly, when the proportion of structured IV was low, adding unstructured IV increased
the similarity of the simulated final species abundances with the one of the reference communities.320

This increase in similarity was however for a great part due to the higher number of species reached
when adding unstructured IV (the higher number of zero abundances with the Imperfect knowl-
edge models without uIV decreases the estimated similarity with the abundances obtained with the
Perfect knowledge model).

When the proportion of structured IV increased, this positive effect of adding random IV on325

community diversity vanished and was even reversed (but see in case of alternative mortality im-
plementation, Appendix 1). This is because the destabilisation of the niche partitioning between
species - due to unstructured IV - decreased. Indeed, as expected, the lower unstructured IV was
(i.e. the higher the number of observed dimensions), the greater community mean performance
(i.e. site sorting) was in comparison to the communities simulated without unstructured IV (see330

Appendix 3 for further explanation on the absolute differences in community mean performance).
This negative effect first increased but then decreased with the number of observed environmental
dimensions, because the magnitude (and therefore the effect) of the added unstructured IV became
lower. Finally, adding unstructured IV in models is most likely to move simulated community
composition away from the reference (here represented by the so-called Perfect knowledge model),335

because this type of variation blurs the species differences that are (although imperfectly) captured
with the observed dimensions. In other words, adding randomness does not compensates for lack of
knowledge and can even blur the limited knowledge obtained from field data, although this is not
the case at a very low level of knowledge of the environment.

Previous modelling studies that tested the effect of adding intraspecific variability on species340

coexistence provided contrasting results (Lichstein et al. 2007; Vieilledent et al. 2010; Courbaud
et al. 2012; Hart et al. 2016; Uriarte and Menge 2018; Crawford et al. 2019). Stump et al. (2022)
proposed a framework to explain part of these discrepancies, by differentiating the nature of the
traits - niche vs hierarchical traits – on which variation was added. While our virtual experiment
only considered additional variability in a hierarchical trait (performance) sensu Stump et al. (2022),345

our results here evidenced an additional source of discrepancies when testing the effect of adding a
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random variability on community dynamics: the relative importance of explained and structured vs
unexplained and unstructured individual variance. Overall both features, the nature of the traits
and its link with performance on the one hand, and its structure or source of variation on the
other hand, can explain these contrasting results. Future studies should thus pay great attention350

to each of these aspects when testing its effect on communities and move away from the systematic
approach of adding an unstructured noise.

Accounting for a high-dimensional environment in community dy-
namics models

Most previous modelling studies have modelled IV as a random noise around species means (Lich-355

stein et al. 2007; Vieilledent et al. 2010; Courbaud et al. 2012; Hart et al. 2016; Uriarte and Menge
2018; Crawford et al. 2019), and did not represent environmental variations that generate individual
variation (e.g. Lichstein et al. 2007; Courbaud et al. 2012), or did so in a way that does not mirror
multidimensional variation: Uriarte and Menge (2018) provided two different habitats, Vieilledent
et al. (2010) used site effects at a much larger scale than individuals, Crawford et al. (2019) repre-360

sented biotic interactions with resources that are constant through space and time, and while Banitz
(2019) is the first to test the consequences of IV resulting from a spatially-structured environmental
index, coexistence relied on trade-offs and random disturbances in a one-dimensional environment.
Our results, although inevitably dependent on some modelling choices, provided evidence that
using independent random draws is not a suitable approach to represent environmentally-driven365

intraspecific variability in most cases (Girard-Tercieux et al. 2023). To do so, environment-species
interactions should be better taken into account in models.

Improving the knowledge of the environment: a costly but worthy endeavour

The environment can vary in many ways, even if the number of resources is limited, as it is likely
the case (Craine 2009). Indeed, many other biotic and abiotic variables can influence the ability370

to use available resources and individual performance (e.g. soil microbiome and texture, micro-
climate, pathogens, Fortunel et al. 2018; Averill et al. 2022). Moreover, species can partition the
same environmental variable (e.g. light) by responding non-linearly to it (e.g. with different light-
performance slopes at different light levels), further increasing the dimensionality of their responses
to environmental variation in space and time. As monitoring environmental variables and species375

responses at fine spatio-temporal scales remains difficult and costly despite technological advances
and continuous effort in the field (Estes et al. 2018), part of the environmental variation that
influences individuals’ attributes is typically not properly measured in ecological studies.

Our results suggest that improving the characterisation of environmental variation by monitor-
ing additional independent environmental variables (i.e. moving to the right in Fig. 2, 3, and 4) is380

a worthy endeavour. Using one dimension out of 15, 41% of the variation in individual performance
is accounted for. The corresponding simulated communities, in absence of any additional random
variation, reached less than half the species richness of the communities simulated with the actual
15-dimensional individual performance (median of 4 vs 18, Fig. S4.1) with relatively dissimilar
community composition (median of similarity in abundance of 0.43 vs 0.95, median of mean perfor-385

mance of 1.15 vs 1.54, Fig. S4.2). Adding a second dimension allowed to increase the proportion
of explained variance in individual performance to 46%, and simulated species richness to a median
of 7, with more realistic communities (median of similarity in abundances of 0.59 and median of
mean performance of 1.19). The identification of the most influential environmental variables or
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dimensions in species responses using ecological knowledge (Rüger et al. 2009; Bartlett et al. 2016;390

Soong et al. 2020) is of course valuable to optimise and prioritise these efforts in the field.
Another way to improve the characterisation of the environment could be to better capture the

spatio-temporal structure of the already monitored variables (Tymen et al. 2017; Estes et al. 2018;
Zellweger et al. 2019; De Frenne et al. 2021), i.e. to monitor them at finer scales in space and time.
In our simulation, where we focused on spatial variation, the scale of the environmental variation395

was the same as the individual (prescribed by the grid mesh size) across all models of individual
performance. Testing the effect of degrading the resolution of the observed environmental variation
in the case of an imperfect characterisation of the environment could be explored in the future.
Finally, improving the characterisation of species responses to a few major environmental variables
can also enable to better reveal the realised niche partitioning operating within communities. While400

niche partitioning is more easily achieved with a high number of environmental dimensions, high
level of coexistence can also be reached with only one axis if it is well partitioned among species (e.g.
Hurtt and Pacala 1995; Detto et al. 2022), thus building a high-dimensional space where each species
can perform better somewhere. This is in agreement with several studies that showed significant
improvement in the similarity of simulated communities with the reference by only adding a second405

dimension to species responses in community models (Falster et al. 2017; Rüger et al. 2020).

Structuring variation: a first step towards accurate representation of multidi-
mensionality

Our virtual experiment builds on an extreme case in which conspecific individuals have exactly
the same response to environmental variation and where performance is completely determined by410

environmental factors, which is unlikely to be the case under the joint effect of environmental and
genetic variation in the field, as well as the effect of neutral mechanisms. Partitioning observed IV
between genetically-driven, environmentally-driven and unexplained IV using existing data, would
be a first step to better understand the nature of IV and to provide hypotheses regarding the re-
sulting structure of IV. This is the goal of many G × E studies and meta-analyses encompassing415

several ecosystems (e.g. Nicotra et al. 2010; Napier et al. 2023). However, while the intraspecific
variation that is added in models as a noise around species means is not structured in space and
time, IV, whether it is environmentally- or genetically-driven or both, is actually highly likely to
be structured in space and time (Girard-Tercieux et al. 2023). This structure could appear in
space when IV results from spatially-structured environmental variables or from limited dispersion420

or local adaptation (Marrot et al. 2021; Schmitt et al. 2021; Westerband et al. 2021). As shown
here for spatial variation, this has profound consequences on the properties of the simulated com-
munity. Importantly, whatever its source, the spatio-temporal structure of individual variation is
an emergent property of conspecific individuals responding more similarly to the environment than
heterospecifics locally (Clark 2010; Girard-Tercieux et al. 2023), an important condition for stable425

species coexistence (Chesson 2000).
Observed or inferred IV, whatever its source (genetic, environmental or an interaction of both,

Westerband et al. 2021), can be structured at the individual scale (”individual variability”) using
individual effects when one individual is repeatedly observed at one site (Clark et al. 2003). Such
individual effects are then typically randomly attributed to individuals in the landscape however430

(e.g. Clark et al. 2007), which is almost equivalent to adding a random noise. Alternatively, the
spatial structure of individual effects could be conserved when injected in a model of community
dynamics so that a part of observed IV is spatially structured. Pioneer studies have started to
explore some aspects of the spatial structure of IV (Purves and Vanderwel 2014; Uriarte and Menge
2018; Banitz 2019), and future work should further explore this direction to generalise its use in435
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community dynamics models. Another source of environmental variation that was not tackled in
this study is temporal variation. This variation is often structured, at different temporal scales
(seasons, years, El Niño/La Niña events, etc.) and this structure should be accounted for in models
by expliciting those temporal scales after detection in the data.

Overall, our results suggest that it is crucial to explore the structure of observed IV in real440

communities to better understand its impact on diversity and community dynamics.

Acknowledgments

This paper is a joint effort of the working group “INTRACO” supported by CESAB, the syn-
thesis center of the French Foundation for Research on Biodiversity (FRB) and sDiv, the syn-
thesis center of iDiv (DFG FZT 118, 202548816). CGT’s work is supported by a PhD grant445

provided by the Laboratoire d’Excellence CEBA (Center for the study of Biodiversity in Amazo-
nia; http://www.labex-ceba.fr/en/). CEBA is funded by an “Investissement d’Avenir” grant
of the French National Research Agency (CEBA: ANR-10-LABX-25-01). This work has been re-
alised with the support of MESO@LR-Platform at the University of Montpellier, and authors thank
particularly Thomas Arsouze and Philippe Verley for their support in the use of the platform.450

Supplementary information and code access

Appendix 1: Alternative implementations of mortality and fecundity
Appendix 2: Stability of the simulations
Appendix 3: Role of suboptimal species depending on the implementation of mortality and fecun-
dity455

Appendix 4: Comparisons between communities simulated with the Imperfect knowledge models
without uIV and with the Perfect knowledge model
Appendix 5: Spatial illustration of the experiment

The code used for this study is available in a GitHub repository460

(https://github.com/camillegirardtercieux/coexist) and has been permanently archived on
Zenodo (https://doi.org/10.5281/zenodo.6929042).

Statements of author roles

CGT, IM and GV conceived the initial ideas and coordinated the INTRACO working group. All
authors contributed to the study design and ideas within the INTRACO working group. CGT led465

the analyses. CGT, IM and GV wrote the first draft of the manuscript, and all authors contributed
substantially to revisions.

Declaration of Interests

All authors declare that they have no conflict of interest.

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2024. ; https://doi.org/10.1101/2022.08.06.503032doi: bioRxiv preprint 

http://www.labex-ceba.fr/en/
https://github.com/camillegirardtercieux/coexist
https://doi.org/10.5281/zenodo.6929042
https://doi.org/10.1101/2022.08.06.503032
http://creativecommons.org/licenses/by/4.0/


References470

C. H. Albert, F. Grassein, F. M. Schurr, G. Vieilledent, and C. Violle. When and how should
intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology,
Evolution and Systematics, 13(3):217–225, Sept. 2011. ISSN 14338319. doi: 10.1016/j.ppees.2011.
04.003. URL https://linkinghub.elsevier.com/retrieve/pii/S143383191100028X.

C. Averill, C. Fortunel, D. S. Maynard, J. van den Hoogen, M. C. Dietze, J. M. Bhatnagar, and475

T. W. Crowther. Alternative stable states of the forest mycobiome are maintained through
positive feedbacks. Nature Ecology & Evolution, 6(4):375–382, Apr. 2022. ISSN 2397-334X. doi:
10.1038/s41559-022-01663-9. URL https://www.nature.com/articles/s41559-022-01663-9.

T. Banitz. Spatially structured intraspecific trait variation can foster biodiversity in disturbed,
heterogeneous environments. Oikos, 128(10):1478–1491, 2019. doi: 10.1111/oik.05787. URL480

https://onlinelibrary.wiley.com/doi/10.1111/oik.05787.

M. K. Bartlett, Y. Zhang, J. Yang, N. Kreidler, S. Sun, L. Lin, Y. Hu, K. Cao, and L. Sack.
Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple
processes. Ecology, 97(2):503–514, Feb. 2016. ISSN 0012-9658, 1939-9170. doi: 10.1890/15-0468.1.
URL https://onlinelibrary.wiley.com/doi/10.1890/15-0468.1.485
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