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Abstract: The global spread of antimicrobial resistant (AMR) bacteria represents a considerable public
health concern, yet their detection and identification of their resistance mechanisms remain challeng-
ing. Optimal diagnostic tests should provide rapid results at low cost to enable implementation in
any microbiology laboratory. Lateral flow assays (LFA) meet these requirements and have become
essential tools to combat AMR. This review presents the versatility of LFA developed for the AMR
detection field, with particular attention to those directly triggering β-lactamases, their performances,
and specific limitations. It considers how LFA can be modified by detecting not only the enzyme, but
also its β-lactamase activity for a broader clinical sensitivity. Moreover, although LFA allow a short
time-to-result, they are generally only implemented after fastidious and time-consuming techniques.
We present a sample processing device that shortens and simplifies the handling of clinical samples
before the use of LFA. Finally, the capacity of LFA to detect amplified genetic determinants of AMR
by isothermal PCR will be discussed. LFA are inexpensive, rapid, and efficient tools that are easy to
implement in the routine workflow of laboratories as new first-line tests against AMR with bacterial
colonies, and in the near future directly with biological media.

Keywords: lateral flow immunoassay; antibiotic resistance; ESBLs; carbapenemases; detection

1. Introduction

Since their first use in the late 1930s, antibiotics have become a valuable tool in
the fight against bacterial infections, leading to a considerable improvement in clinic
and public health [1,2]. However, subsequent to their use, overuse, and misuse, bac-
teria resistant to these molecules have emerged [3–5]. Antimicrobial resistance (AMR)
is today universally recognised as a global threat because of the rapid emergence and
dissemination of resistant bacteria and genes among humans, animals, and the envi-
ronment on a global scale. AMR thus represents a heavy burden for healthcare sys-
tems all over the world. ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa et Enterobacter spp.)
combined with antibiotic resistance have greatly increased the risk of morbidity and mor-
tality, especially in ICU settings [6].

Moreover, resistant bacteria are easily transferred from one reservoir to another, and
consequently so are the resistance genes they carry [7].

AMR hinders the fight against infectious diseases [8], and the development of new
antibiotics is slower than the emergence and spread of resistant organisms [9]. Their
dissemination has obvious health impacts, but also economic effects in high- as well as in

Diagnostics 2022, 12, 1744. https://doi.org/10.3390/diagnostics12071744 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12071744
https://doi.org/10.3390/diagnostics12071744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-6497-4889
https://orcid.org/0000-0002-6071-8255
https://orcid.org/0000-0001-9937-9572
https://orcid.org/0000-0001-7165-3218
https://doi.org/10.3390/diagnostics12071744
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12071744?type=check_update&version=1


Diagnostics 2022, 12, 1744 2 of 26

low- and middle-income countries [6,10,11]. Indeed, actions have to be taken, and the One
Heath approach aims to ensure that antimicrobials are optimally used in both human and
animal health, but also in agriculture. In the veterinary field, the amounts of antibiotics
used, especially those with an important medical value, have been significantly decreased
in order to preserve their efficacy in human medicine [12]. Another essential action is the
early detection of resistant bacteria in clinical settings to allow implementation of efficient
infection control measures and identification of resistance mechanisms so that the most
appropriate antibiotic therapies can be proposed. Implementation of rapid point of care
(PoC) diagnostic tests is mandatory to achieve this goal [13].

In general, for clinical diagnostic laboratories to identify an antimicrobial-resistant
pathogen, it must first be isolated from the matrix (blood, urine, rectal swab) before an-
timicrobial susceptibility testing (AST) can be performed. AST is a bacterial growth test
in the presence of antibiotics that allows the pathogen’s susceptibility or resistance to a
given antibiotic to be determined. Several techniques are available such as disc diffusion
(e.g., Bio-Rad, Oxoid, Hercules, CA, USA), broth dilution (e.g., Micronaut [Bruker]; Sen-
sititre [Thermo Fisher Scientific, Waltham, MA, USA], antibiotic gradient test (e.g., E-test
[BioMérieux]), and also automated systems (e.g., Vitek systems [BioMérieux]; Phoenix [Bec-
ton Dickinson Diagnostic Systems]; Microscan WalkAway plus system [Beckman Coulter]).
These tests are often time-consuming, and results generally take 16–24 h.

Nucleic acid amplification technology (NAAT) such as that used in PCR-based technics,
both conventional and real-time formats, can be performed. These tests target genetic
determinants of resistance. Compared to phenotypic resistance tests, they can be performed
directly using clinical samples with a shorter turnaround time providing earlier information
regarding the resistance profile of the clinical strain. Nevertheless, the presence of the
resistance gene is not always correlated with a phenotypic resistance, which may also
depend on its level of expression [14].

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF
MS) in the context of resistance profile determination can be used to highlight the hydrolysis of
antibiotics while incubated with a strain by detecting degradation products [15].

All these methods are complex and require technical skills and expertise or depend on
expensive equipment. In case of an infection with a resistant isolate, the situation requires
immediate, on-site identification with rapid, economical, and user-friendly methods. In
this regard, the lateral flow assay technique (LFA), also known as rapid diagnostic test
(RDT), has proven valuable in the detection and identification of antibiotic resistant isolates.
LFA meets all the prerequisites defined by the World Health Organization for an ideal PoC
test, or in general for any point of need (PoN) test, known as ASSURED [16,17] (Affordable,
Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable).
Moreover, LFA can integrate the P5 medicine model, which is becoming prominent in
the healthcare system. This model relies on a personalized, predictive, preventive, and
participatory approach, with as a final objective the implementation of therapy most
suitable for the patient [18].

In this paper, we review the use of LFA for early and rapid identification of AMR
strains. These assays are based on the interaction of antigen-antibody (Lateral Flow Im-
munoAssay: LFIA) or DNA-DNA hybridization (Nucliec acid Lateral ImmunoAssay:
NALFIA or Nucleic Acid Lateral Flow: NAFL) [19–21].

2. General Presentation of LFIA
2.1. Components and Principle

LFIA tests generally consist of a strip supporting different porous compounds on
which liquids migrate by capillarity. The sample pad (SP), which is usually made of
cellulose, receives the sample that successively drains onto the conjugate pad (CP). Made
of glass fiber, the CP is the storage area for the conjugate, a labelled molecule that generates
the signal on the strip. This signal is located on a nitrocellulose membrane printed with
different compounds in order to form one test line and a control line (Figure 1). The test
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line captures the targets of interest while the control line serves as an inner control for
confirmation of correct flow and compatible test conditions. Finally, the wicking pad
acts as a pump as well as a reservoir for the liquid dispensed on the SP, and its capacity
influences the volume of sample that can be analyzed. All components overlap one over
the other and are generally enclosed in a plastic cassette. This cassette provides pressure
points to maintain close contacts, providing efficient flow of the reagents through the strip,
protection, easy handling, a localized sample dispensing area, and a reading frame.
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Figure 1. Lateral flow assay formats: components and principle. Presentation of three lateral flow
immunoassay formats with, from left to right, their structure (pink panel), immunological detection
principle (green panel), and results interpretation (yellow panel). The monoplex format able to detect
only one target is presented in the upper panel, a multiplex detection format with one test line and
no possible identification of the target is in the central panel, and a multiplex detection format with
spatial separation of the test lines and identification of the target(s) detected is presented in the
lower panel.

Migration begins once the sample has been loaded on the SP that, depending on the
nature of the samples, can be pre-treated in order to reduce matrix effects. The sample solu-
tion resuspends the conjugate that forms complexes with the analyte if present. Capillary
pressure transports the complexes along the nitrocellulose membrane, and they accumulate
on the test line and the excess of conjugate on the control line.

Most of the time, the test line and the conjugate involve antibodies specific for the target
being detected, and two formats of LFIA are available. The first, known as non-competitive
or sandwich immunoassay format, is for large molecular weight analytes such as proteins
that provide several antigenic sites. In this case, a colored test line represents a positive
result. The second format, known as competitive or inhibition immunoassay format, is
dedicated to small molecular weight antigens, and an attenuated or absent test line indicates
a positive result.
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2.2. Advantages of LFIA

LFIA are one-step assays that require no washing and only a small sample volume. The
time to results, following an easy sample handling, is short (15–30 min), which positions
LFIA as a good candidate for primary screening at PoC or PoN. They are inexpensive and
do not have specific storage constraints, such as refrigeration, making them accessible to
third-world countries [22,23]. The qualitative interpretation of the result can be visual,
and no particular skills are required. Moreover, depending on the parameters of the test,
results can also be semi-quantitative or even quantitative through the use of a reader [24,25].
In addition, if the reagents are available, the development time to market of an LFIA is
relatively short, which can be useful to respond to an urgent sanitary crisis, as illustrated
with the recent COVID-19 pandemic. The LFIA, due to its configuration, allows the
detection of multiple analytes such as proteins, haptens, or nucleic acids [20].

Interest in LFIAs is best illustrated by the increase in publications describing their
use in different fields of application over the last 10 years, especially in the clinical do-
main (Figure 2).The search query used was (Scopus format): TITLE-ABS-KEY (lateral
AND flow AND immunoassay) OR TITLE (lateral AND flow AND assay) OR TITLE (im-
munochromatographic) AND PUBYEAR > 2009 AND PUBYEAR < 2020 AND (LIMIT-TO
(DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)). The research has been
done in October 2020. Then, the articles were selected following the PRISMA guideline for
systematic reviews [22]. It is likely that the ease of use, speed, and specificity of these tests
are at the origin of their exponential use, including in the field of AMR.
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3. Classical Lateral Flow Assays and AMR

Bacteria possess four main mechanisms that can confer resistance to antibiotics:
(i) expression or overexpression of efflux pumps reducing antibiotic concentration within
the bacteria; (ii) decreased permeability of the membrane or cell wall leading to ineffective
drug concentration in the bacteria; (iii) changed target structure with affinity loss for antibi-
otics; and (iv) antibiotic degradation mediated by hydrolysis [26]. Any protein involved in
a mechanism of AMR can then become a privileged target for LFIA. As a result, a number
of LFIA tests have been developed, and some are commercially available.
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3.1. Monoplex LFIA to Address AMR Detection

As the number of antibiotic-resistant isolates has increased, LFIA tests have been
developed to target enzyme-mediated resistance traits in the clinically most important
bacteria, with the primary objective of detecting enzymes involved in the resistance of most
prevalent pathogens. A LFIA test detecting the expression of the Pseudomonas aeruginosa
6′-N-acetyltransferase AAC(6′)-Iae, which confers resistance to aminoglycosides, was
described in 2010 and has a sensitivity of 105 cfu/test [27]. Another LFIA targets ArmA
16S rRNA methylase, which is one of the most prevalent 16S rRNA methylase reported
and leads to pan-aminoglycoside resistance in Gram-negative bacteria (GNB) such as
Acinetobacter baumannii and Escherichia coli [28].

Methicillin-resistant Staphylococcus aureus (MRSA) is another major pathogen respon-
sible for severe morbidity and mortality in many hospitals worldwide, which also has
an efficient capacity for spreading in the community [29]. The early detection of methi-
cillin resistance, which confers resistance to all ß-lactams, is essential. It relies on the
detection of the penicillin-binding-protein 2a (PBP2a), which has a reduced affinity for
beta-lactam antibiotics. Antibody-based techniques for the detection of MRSA are chal-
lenging as S. aureus protein A binds to mammalian immunoglobulins. Nevertheless, the use
of IgY anti-PBP2a antibodies has been described by Yamada et al. [30], and another study
described an optimized LFIA with a detection limit of 104 cfu/mL [31].

Vancomycin-resistant enterococcus (VRE) is one of the most important nosocomial
pathogens worldwide [32–34]. The vancomycin resistance mechanism in Enterococcus faecium
and Enterococcus faecalis is mostly acquired and linked to the production of ligases. In
Europe, the most prevalent are VanA and VanB [32,35]. In this context, a LFIA for the
identification of VanA-VRE isolates was described with 100% sensitivity and 100% speci-
ficity and a limit of detection of 6.3 × 106 cfu and 4.9 × 105 cfu per test when the growth
was performed on MH or ChromID® VRE plates, respectively [36]. Another LFIA for the
detection of VanB-VRE isolates with a lower sensitivity and a mandatory pre-culture on
vancomycin-containing media for induction of VanB ligase has also been reported [37].

Beta-lactams represent the major family of antibiotics to treat infections due to Gram-
negative bacteria, but their use is currently challenged by the spread of beta-lactamases [38].
In particular, the spread of extended-spectrum beta-lactamases (ESBLs) among Enterobac-
terales represents a major threat as these enzymes are able to inactivate most beta-lactam
molecules (including 3rd and 4th generation cephalosporins and aztreonam), sparing only
carbapenems [39]. The most common family of the ESBL, the CTX-M, represented by
five sub-groups: CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, and CTX-M-25, has dissemi-
nated worldwide [40]. The increase in the prevalence of ESBL-producing Enterobacterales
has led to an increased use of carbapenems, a last resort antibiotic, to treat infections with
ESBL-producers. This has led to the selection and subsequent increase in bacteria resistant
to these antibiotics. Carbapenem-resistant Enterobacterales (CREs) are usually resistant
to most, if not all antibiotics, thus posing serious therapeutic issues in clinical practice.
Among CREs, carbapenemase-producing isolates are the most worrisome, as they are
capable of efficiently hydrolyzing carbapenems, and their genes are carried by plasmids
that may be exchanged between bacteria. Early identification of carriers is essential in order
to implement reinforced infection control measures, among which isolation of the patient is
a prerequisite. There are five major carbapenemases, KPC, NDM, OXA-48, VIM, and IMP.
LFIAs to detect KPC and OXA-48-like enzymes [41] (Coris Bioconcept, Gembloux Belgium),
IMP (the most prevalent metallo-β-lactamases in Japan [42,43]), and NDM [44,45] have
been developed, all with 100% sensitivity and specificity when used with isolated colony
from agar plates.

Faced with infections resistant to carbapenems, the paucity of therapeutic options
has led to the use of polymyxins such as colistin as last resort antibiotics [46]. Inexorably,
bacteria acquired colistin resistance. While most colistin resistance is due to chromosomic
mutations, plasmid-encoded mechanisms, such as MCR-1, have also been described. The
latter are considered particularly threatening, as the mcr genes are plasmid encoded, and the
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resistance phenotype is difficult to detect. MCR-1, initially described in 2015, mediates the
modification of the lipopolysaccharide by a phosphoethanolamine transferase activity [47].
More than eight different MCR-alleles have now been described [48]. Soon after the first
description of MCR-1, a LFIA directed against this allele was commercialized (NG-Test
MCR-1). This assay has been evaluated in a multicentric study against a collection of
human and animal enterobacterial isolates. The results revealed 100% sensitivity for MCR-1
expressing isolates, but some MCR-2 carriers were missed, and the assay did not detect
MCR-3, MCR-4, and MCR-5 carriers [49].

3.2. Multiplex LFIA in the AMR Field

Monoplex LFIAs have proven efficacy for the detection and identification of
resistance-determining markers. When targeting mechanisms involving a multitude of
variants, such as the CTX-M family, a wider specificity can be relevant. Multiplex LFIAs,
able to detect CTX-M enzymes but without discriminating the variant or subgroup to
which they belong, have been developed. For example, the NG-Test CTX-M MULTI (NG
Biotech, Guipry, France) is commercially available and relies on a cocktail of anti-CTX-M
mouse antibodies, immobilized on a unique test line (Figure 1, central panel). This test
allows the detection of the five CTX-M-subgroups. A recent study showed that the NG-Test
CTX-M MULTI could detect 98% of ESBL-producers from a French clinical setting, either
from colonies or positive blood cultures, missing only two SHV-ESBL producers [50]. A
study, conducted in Italy, reported that the NG-Test CTX-M MULTI was a reliable assay
for the detection of CTX-M-like ESBLs from bacterial pellets from blood culture broth,
showing excellent sensitivity and specificity [51]. A further study recently described the
detection of CTX-M-group-1, -2, and -9 producers using a monoclonal rabbit anti-CTX-M
antibody, and showed 100% sensitivity and specificity with clinical isolates grown on agar
plates [52]. Most resistance genes are carried by mobile genetic elements [53] and a single
strain can harbor more than one resistance determinant. In this scenario, the detection
and identification of more than one mechanism of resistance in a single test is relevant. To
do so, several test lines are printed on the same strip (Figure 1, lower panel) and target
identification is made through a spatial repartition [54]. Several multiplex assays have been
described, so far only for the identification of carbapenemase-producing strains. Several
versions of the RESIST LFIA test exist (from Coris Bioconcept), which are differentiated by
the number of carbapenemases that can be detected. RESIST-3 [55] can detect NDM, KPC,
and OXA-48 enzymes. This test has since been upgraded with the additional detection
of VIM (RESIST-4 [56]), and IMP or OXA-163 (RESIST-5 [57–59]). All these multiplex as-
says consist of two-independent cassettes that are used in parallel with the same bacterial
extract. Another assay, named NG CARBA-5 [60] (from NG Biotech, Guipry, France),
also targets NDM, IMP, VIM, OXA-48, and KPC carpabenemases, but a major difference
compared to the RESIST-LFIA test is that the sample has to be loaded onto one unique cas-
sette. The NG Carba-5 has been evaluated by the Antimicrobial Resistance and Healthcare
Associated Infections (AMRHAI) in London, with isolates covering the diversity of the
carbapenemases. It showed 97.31% sensitivity and 99.75% specificity, missing IMP-13- and
IMP-14-like enzymes [61], also not identified during a previous evaluation by the same
team [62]. Missing such enzymes could be an issue in countries with a high IMP prevalence,
and since the AMRHAI study, a new version has become available with improved detection
of IMP variants [63]. In Europe, NG CARBA-5 shows high sensitivity (97.3% to 100%) and
specificity (96.1% to 100%) according to recent studies [61,64–67]. NG CARBA-5 has also
received U.S. Food and Drug Administration clearance and evaluation at three medical cen-
ters in the USA confirmed its accuracy for detecting and identifying the five most common
carbapenemases [68]. NG Carba-5 is often compared to the molecular Xpert Carba-R test
(Cepheid) and shows a very high correlation with Carba-R [68–71], but with the advantages
of time efficiency and lower cost. LFIAs targeting carbapenemases using the CIM method
and its various versions (mCIM, zCIM, and eCIM) make detection of most common and
rare variants rapid, simple, and inexpensive [72,73]. Most studies have described the use
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of NG Carba-5 with Enterobacterales isolates, but in France, it is also valuable for the
detection of carbapenemases produced by Pseudomonas spp., 89.4% detected compared
with only 12.9% of carbapenemase-producing Acinetobacter spp. Indeed, the most prevalent
carbapenemases in this organism are not targeted by this test [64].

3.3. Limitations of LFIA in the Context of AMR

Despite the many possibilities that LFIA offer, there are some limitations. For example,
variations in sample volume loaded on the device can both reduce the accuracy of the
result and impact the sensitivity of the test. Moreover, LFIA performance relies mostly on
antibody affinity and specificity. However, even if the latter is determinant, we can only
detect what we are looking for; thus, the specificity is a limitation in respect of the diversity
of enzymes involved in bacterial resistance mechanisms. Implementation of an LFIA test in
the clinical setting has to take into account the local epidemiological context in terms of
prevalence of resistance mechanisms. The user should keep in mind that any new enzyme
variant harboring a mutation in the epitope recognized by any of the antibodies involved
in the test may give a reduced signal or a false negative result. Moreover, isolates with
an AMR profile but which harbor a mechanism not targeted by the assay will also give a
negative result. As for all diagnostic tests, interpretation of results must be made in light
of the clinical data and viewed critically. Most LFIAs have been evaluated on colonies
grown on agar-containing plates. The ability to use directly from clinical samples would
therefore be an important improvement as it would increase turn-around time. For this to
be achieved, the sensitivity of the assays has to be improved (on average 105–106 cfu), and
interferences with the different biological matrixes needs to be evaluated. The sample or
the matrix analyzed may require an additional sample pre-treatment to avoid interferences.
Indeed, sample viscosity may prevent efficient migration on the nitrocellulose membrane
leading to invalid results, or the matrix may generate interferences leading to false positive
or negative results. Current LFIA systems must therefore be improved before they can be
used directly with clinical samples [20,74]. Finally, LFIAs only detect the enzymes for which
they have been developed. This is the case for the NG-Test CTX-M MULTI that detects the
main ESBLs and CTX-Ms, but misses minor ESBLs, and plasmid-encoded cephalosporinase.
Combining it with an LFIA that detects hydrolytic activity instead of the enzyme itself
would therefore be a major improvement.

4. LFIA: A Phenotypic Method
4.1. Classical Phenotypic Methods

Unlike LFIAs, phenotypic methods allow the detection of all enzymes and variants
while maintaining good sensitivity and specificity. They detect the enzymatic activity using
a panel of antibiotics, given as an indicator of resistance. These multiple methods are based
on different technologies (each test is described in the Figure 3).

1. The diffusion disc test (antibiogram, combined disc synergy test, inhibition test), is
one of the reference methods [75–78]. The principle consists of placing the culture of
bacteria in the presence of one or more antibiotics and observing the consequences on
their development and survival in a Petri dish (Figure 3A).

2. The modified Hodge test consists of inoculating Mueller–Hinton agar with the refer-
ence bacterial strain, wild type Escherichia coli ATCC 25,922, at 0.5 McFarland diluted
1:10. A disc containing carbapenem (meropenem or ertapenem) is placed in the centre
of the agar. Colonies of the test strain are picked and plated in a line from the disc
to the periphery of the plate. The presence of a carbapenemase is demonstrated by a
cloverleaf indentation of Escherichia coli ATCC 25,922 that develops along the growth
line of the isolate in the diffusion zone of the disc [79] (Figure 3B).

3. The colorimetric tests detect β-lactamase activity via a color change in the reactive
medium related to hydrolytic activity. This change in color is due to a biochemical
change in the medium such as acidification. Here, three of them are presented: the
Carba NP test, the β-Carba test, and the β-Lacta test [80–82] (Figure 3C,D).
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4. The electrochemical test is based on the analysis of conductivity variations within an
electrode, composed of eight probes, coated with a conductive polymer, polyaniline.
This variation is induced by changes in pH and redox potential related to an enzymatic
hydrolysis reaction of imipenem [83] (Figure 3E).

5. Mass spectrometry is used to detect the degradation of antibiotics by measuring
their mass. Currently, among the different mass spectrometry technologies the
MALDIO-TOF is the most used for this application. After ionization, the ionic
molecules are accelerated in an electric field and projected towards a detector. This
detector allows the ions to be separated and analysed according to their time of flight,
which depends on their mass [84,85] (Figure 3F).

6. The selective media tests are composed of chromogenic substances, rich nutrients,
as well as specific antibiotic depending on the desired detection. Thus, they allow
the identification of the strains involved through differential staining induced by the
presence of characteristic enzymes [86] (Figure 3G).

7. The carbapenem inactivation method consists of lysing the bacterial colonies to be
tested in order to recover the suspension containing the possible β-lactamases. This
lysate is divided into two separate tubes containing, respectively, a 10 µg meropenem
disc (carbapenemase detection) and a 5 µg cefotaxime disc (ESBL detection). In
parallel, two Mueller–Hinton agar plates were inoculated with an Escherichia coli
ATCC 25,922 strain, known as a β-lactam sensitive strain. After incubation for 2 h at
36 ◦C, the meropenem and cefotaxime discs are transferred successively to the two
plates. A further incubation is carried out for 4 h at 37 ◦C, followed by a reading
and interpretation of the diameter of the inhibition zones. The absence of inhibition
zones around the disc reflects degradation of the antibiotic during the first incubation,
indicating hydrolytic activity of β-lactamases [87–89] (Figure 3G).

8. Ultraviolet (UV) spectroscopy is an electron spectroscopy technique allowing the detec-
tion of the hydrolysis of the β-lactam core by a difference in absorbance between the
non-hydrolysed and hydrolysed form (called ∆A), at a given wavelength [90,91] (Figure 3I).
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Figure 3. (A) The disc diffusion antibiogram is based on the use of several classes of antibiotics and
measures the diameter of the zone of growth inhibition [78] (Reprinted/adapted with permission
from [78]. 2014, Nordmann P. and Poirel L.). The smaller the zone, the stronger the resistance to the
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antibiotic. Other techniques such as the E-test or broth micro-dilution can be used to determine
the minimum inhibitory concentration (MIC) to complete the data. Antibiotic susceptibility testing
can often be accompanied by inhibition tests based on the synergy between β-lactamase inhibitors
and β-lactams. Based on the inhibition zone diameters, it is possible to orient resistance towards a
β-lactamase class. (B) The modified Hodge test, considered as a confirmatory test, is based on the
ability of a resistant strain to hydrolyze a third-generation cephalosporin or carbapenem to allow
the growth of a non-resistant E. coli strain, which is thus synonymous with bacterial resistance [92].
(C) The Carba NP test or the ESBL NDP test uses a colored indicator to track a change in pH.
The hydrolysis of a β-lactam induces the opening of the β-lactam ring and an acidification of the
medium [78] Reprinted/adapted with permission from [78]. 2014, Nordmann P. and Poirel L.)
(D) The β-lacta or β-Carba are based on the use of chromogenic substrates. The hydrolysis of the
latter induces the release of the chromophore, which causes a change in the color of the medium.
(E) The electrochemical test is based on the use of electrodes that register differences in conductance
when the β-lactam substrate is hydrolyzed [93]. (F) Mass spectrometry highlights the structural
changes that a β-lactam undergoes upon hydrolysis. Thus, the appearance of peaks at expected
molecular weights indicates the presence of bacterial resistance [94]. (G) Chromogen-based selective
media are composed of specific antibiotics and a chromogen substrate. The hydrolysis of the substrate
and the antibiotics present are representative of a type of resistance. Thus, there are several selective
media to identify the resistance group [95]. (H) The CIM is based on an antibiotic disc that is incubated
for 2 h with a resistant strain. This is collected and placed on an agar plate containing non-resistant
E. coli. The diameter of the inhibition zone thus reflects resistance [96]. (I) The UV spectrophotometric
technique involves measuring the spectrum of a substrate before and after incubation with a resistant
strain. The opening of the β-lactam cycle is reflected by a decrease in absorbance at wavelengths
around 260 nm.

Some methods are associated with high costs, require dedicated equipment, long train-
ing courses (MALDI-TOF, UV spectrophotometry), or require that kits be commercialized
(BYG Carba). Other methods, such as LFIA, are often inexpensive, have rapid results,
require low staff skill levels, and are easy to use (disc diffusion antibiogram, modified
Hodge test, Carba NP, β-lacta or β-Carba, Chromogen-based selective media, CIM). How-
ever, these methods also have some limitations such as: difficulty differentiating enzymes
within a resistance group such as extended-spectrum β-lactamases, carbapenemases, and
plasmid-mediated cephalosporinases [77]; sensitivity and specificity of the tests dependent
on β-lactamases and their hydrolytic activities [97]; and sometimes ambiguous interpreta-
tion, especially for colorimetric tests, which may leave room for misinterpretation [98]. It is
therefore important that laboratories are vigilant in the interpretation and identification
of certain emerging resistances. In some cases, confirmation by genotypic methods is
necessary, delaying the delivery of results.

The following table summarizes the characteristics of different tests (Table 1). For the
commercialized tests, some suppliers have been stipulated.

It may therefore be interesting to combine the advantages of phenotypic tests (disc
diffusion antibiogram, modified Hodge test, Carba NP, β-lacta or β-Carba, Chromogen-
based selective media, CIM) and LFIA tests in a new format.

4.2. Evolution of LFIA in the Detection of Antibiotic Resistance
4.2.1. Detection of Enzymatic Activity Using LFIA

Recently, a LFIA was developed to monitor the hydrolysis of a cephalosporin, using
an anti-cefotaxime monoclonal antibody. It is based on the very high specificity of the
monoclonal antibody for the intact form of the cefotaxime, which is not recognized by this
antibody after hydrolysis (Figure 4A(AB)). In this test format, the colloidal gold-labelled
antibody recognizing intact cefotaxime is dried between the sample pad and the nitrocel-
lulose membrane. On the nitrocellulose membrane, there is a test line (intact cefotaxime
coupled to BSA) and a control line (antibodies recognizing the colloidal gold labelled
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antibodies). At the top of the strip, the absorption pad allows the sample to migrate along
the strip (Figure 4B).

Table 1. A summary of the turnaround time, intrinsic performance, information provided, simplicity
of performance, and major limitation(s) of each β-lactamase test.

Tests Products Time
Intrinsic Performance

(Variable between
Studies)

Information
Provided Easy to Implement Main Limitation(s)

Hydrolysis of
β-lactams

Antibiotic
susceptibility test
(from bioMérieux,

Servilab . . . )

16–24 h High Points to ESBL or
carbapenemases

Little
expertise needed

Accumulation of large
amount of information

Chromogenic media
(from bioMérieux,

Oxoïd,
CHROMagar)

16–24 h Medium to high Points to ESBL or
carbapenemases

Little
expertise needed

Non-detection of enzymes
with low activity

Modified
Hodge Test * 16–24 h Medium to high Points to ESBL or

carbapenemases
Medium

expertise needed

Recurrent FP appearance +
Difficulty in

detecting MBLs

Carba NP (from
bioMérieux, Rosco

Diagnostics)
2 h Medium to high Points to

carbapenemases
Medium

expertise needed

No standardisation Faulty
interpretation
(FN possible)

Blue Carba (from
Rosco Diagnostics) 2 h High Points to

carbapenemases
Medium expertise

needed

No standardisation
Distorted interpretation

(FN possible)

β-Carba
(from Bio-Rad) 0.5 h High Points to

carbapenemases
Little

expertise needed

Incubation >0.5 h for
strains with

0XA-48 enzymes

ESBL NDP (from
Rosco Diagnostics) 2 h High Points to ESBL Medium

expertise needed

No standardisation Faulty
interpretation
(FN possible)

β-Lacta
(from Bio-Rad) 0.25 h High Points to ESBL Little

expertise needed
Overexpression of AmpC

can lead to→ FP

Mass spectrometry
(Bruker,

BioMérieux,
Beckman Coulter)

0.5–3 h High Points to ESBL or
carbapenemases

Equipment needed
+ significant

expertise needed

Visualisation of
degradation products

sometimes problematic

UV spectroscopy * 1 h High Points to ESBL or
carbapenemases

Equipment needed
+ significant

expertise needed

Interference present +
standardisation of

OD difficult

BYG Carba * 0.5 h High Points to
carbapenemases

Equipment needed
+ significant

expertise needed

No commercialised kit, nor
evaluation of the technique

Carbapenem
inactivation

method *
6 h Medium to high Points to ESBL or

carbapenemases
Little

expertise needed
Variability of inhibition

zones→ FN

Inhibition of
β-lactamases

Combined discs
(from Rosco

Diagnostics, Mast
Groups)

16–24 h High Points to ESBL or
carbapenemases

Little
expertise needed

Variable antibiotic
distribution + some

inhibitors not
very effective

Double synergy
(from bioMérieux,

Servilab . . . )
16–24 h High Points to ESBL or

carbapenemases
Little

expertise needed

Questionable zones of
interpretation + some

inhibitors not
very effective

E-Test (from Rosco
Diagnostics,
bioMérieux)

16–24 h High Points to ESBL or
carbapenemases

Little
expertise needed

Difficulty in detecting
OXA-48 type enzymes +

some inhibitors not
very effective

Lateral flow
iiimmunoassays

RESIST (from Coris) 0.25 h High

Four of the five
major

carbapenemases in
two tests (VIM,

OXA-48,
NDM, KPC)

Little
expertise needed

Does not detect IMP
enzymes or all new

variants + use of 2 tests

NG-Test (from
NG-Biotech) 0.25 h High

All five
carbapenemases in
one test + CTX-M

Little
expertise needed

Does not detect all
new variants

High intrinsic performance: >90%; medium: 70–90%; low: <70%; * No commercial tests.
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Figure 4. (A): (A) Cefotaxime with β-lactam ring. (B) Hydrolysed cefotaxime with the open β-lactam
ring. (B): Next to the sample pad, the colloidal gold-labelled antibody recognizing intact cefotaxime
is dried. On the nitrocellulose membrane, there is a test line (intact cefotaxime coupled to BSA) and a
control line (antibodies recognizing the colloidal gold labelled antibodies). The absorption pad allows
the sample to migrate along the strip. (C) Case 1: In the absence of cephalosporinase expressing
strains, the cefotaxime in the sample reacts with the anti-cefotaxime mAb after its re-solubilization.
As all the mAb paratopes are occupied, the mAb cannot react with the cefotaxime immobilized on the
test line. The mAb is immobilized by goat antibodies on the control line: if only one line appears, the
test is negative. Case 2: In the presence of enzymatic activity, hydrolyzed cefotaxime is not recognized
by mAbs, thus free paratopes are able to react with immobilized cefotaxime on the test line. A signal
appears on the test line and the control line: if two lines appear, the test is positive.
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To conduct the test, the sample is grown overnight at 37 ◦C on culture medium. A
single, isolated colony is selected and added to a buffer containing cefotaxime. Following
an incubation period of 30 min, the solution is deposited on the test strip. After 10 min of
migration, the results are read with the naked eye. There are two scenarios depending on
whether or not the strain produces an enzyme with cefotaximase activity [99] (Figure 4C).

Unlike phenotypic assays, which generally detect hydrolyzed products, in this new
test, the antibodies detect the intact antibiotic. Thus, the presence of enzymatic activity
is reflected by the appearance of a signal on the test line, although this is a competitive
test format. It allows an analysis similar to that of enzyme detection (positive test when
a test line appears) and is simpler because it is easier to detect the appearance than the
decrease of a signal. A study comparing this method to other phenotypic methods has been
conducted and showed better performance and interpretation of results with LFIA [100].

The new test can detect the hydrolysis of third generation cephalosporins, regardless
of the bacterial isolate or β-lactamase variant involved. It is based on the appearance of a
signal that is easier to interpret than a slight color change used in colorimetric detection
tests. The test is sensitive, specific, inexpensive and, produces rapid results. However, one
of the disadvantages is that it does not, on its own, allow the identification of the enzyme
involved, whether it is an ESBL, a carbapenemase, or an AmpC [101].

4.2.2. Enzymatic Activity Detection Coupled to Enzyme Detection Using LFIA

Recently, we combined on one strip the enzymatic activity test and the previously
developed CTX-Ms detection test [50]. This new format allows the simultaneous detection
of the presence of β-lactamase activity and the identification of CTX-M enzymes with a
specificity and sensitivity close to 100% [101].

These results open new perspectives for developing LFIA to detect other AMR mecha-
nisms and so make efficient diagnostic tools available to most healthcare professionals.

At the same time, direct detection methods from clinical samples are of increasing
interest because results would be obtained faster than from bacterial colonies. Neverthe-
less, this detection is often complex because the constituents of the media can interfere
with LFIA.

5. Direct Detection of Antibiotic-Resistant Bacteria in Clinical Samples

The detection of antibiotic-resistant bacteria is performed with clinical samples such
as blood cultures, urine, and rectal swabs. Between the collection of the sample and the
rendering of the results, there is a very important step: the processing of the sample. This
step modifies the characteristics of the sample so that it can be analyzed accurately by the
selected technology. Depending on requirements, this may involve a varying number of
steps, using different technologies, and having a variable duration.

The oldest (more than 100 years) and most commonly used method is the culture of
samples on an agar plate [102]. This allows the concentration of bacteria to be increased
and the eventual isolation of bacteria present in the sample. Depending on the composition
of the media used, this method can allow the identification of bacterial strains [103]. The
addition of antibiotic to the culture medium allows the direct detection of resistant bacteria.
Sample culture can also be combined with the different methodologies used for the detec-
tion and identification of antibiotic resistance (molecular, immunological, biochemical, and
mass spectrometry methods). Sample culture is inexpensive and simple but takes a long
time (between 16 and 24 h).

Another processing method combines centrifugation and washing steps. It allows
the bacteria from the clinical samples to be concentrated and the elimination of potential
interferences due to elements present in the sample. This method has been applied to
sample processing before AMR detection using LFIA [66], mass spectrometry [104,105],
and biochemical techniques [106]. Although it may appear simple, a number of steps
are involved, requiring pipetting and the use of a centrifuge. This process takes between
30 and 60 min.
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Following the introduction of microfluidic and its application in the biological domain,
new devices have been developed that integrate sample processing and target detection. All
the steps in these assays, which use PCR or RT-PCR technology [107–109], are automated.
These all-in-one tests have been applied to the direct detection of antibiotic resistance
genes in clinical samples [110,111]. While these systems are easy to use and provide rapid
results (around 1 h), they are expensive and require costly specific equipment which limits
their use.

Until recently, immunochromatographic tests were used after sample culture on
agar [60] or after centrifugation and washing steps [112].

5.1. Direct Detection Using Centrifugation/Washing Steps

Several studies [55,65,67,113,114] have shown that it is possible to detect carbapene-
mases directly from blood cultures using immunochromatographic tests (LFIA tests). In
these studies, centrifugation and washing steps were performed to eliminate potential
interferences present in the sample. The test was then performed using the final pellet
and an extraction buffer. This procedure has been also used for the detection of CTX-M in
blood culture [115]. Concentrations of bacteria in blood cultures are high and one study
has shown that it would be possible to directly detect carbapenemases in blood cultures
without centrifugation and washing steps [66].

Other teams have used centrifugation and washing steps for the detection of carbapen-
emases from rectal swabs using LFIA. However, for this sample matrix, prior incubation in
the presence of an antibiotic is necessary [116,117].

5.2. Direct Detection Using a Dedicated Device

The objective of one of our research projects was to directly detect beta-lactamases
in clinical samples using immunochromatographic tests in order to decrease the time to
result by skipping the culture step. To maintain the advantages of LFIA tests, the sample
processing had to be simple, economical, fast, without instrumentation, and had to integrate
detection. To reach these objectives, we designed and produced using 3D printing a device
named SPID for «Sampling, Processing, Incubation, Detection».

SPID has three elements: (i) a filtration element including a syringe adaptor, a cup
with a membrane of 0.2 µm pore size, and a lower element; (ii) an extraction element
including a cap with a plunger and a tank; and (iii) a detection element consisting of a
plastic cassette integrating a lateral flow immunochromatographic strip. The filtration and
extraction elements form the processing part (Figure 5).
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For AMR detection with the SPID platform, the sample is collected with some air using
a syringe. The syringe is then screwed on to the filtration device and the plunger pressed
to filter the sample through the cup membrane. The filtration element is then opened, and
the cup is transferred into the tank by sliding it inside. Extraction buffer is added to the
cup and the tank is closed by screwing the cap. During this operation, the plunger of the
cap will push the extract through the membrane into the tank. The tank is then placed on
top of the cassette and pressed firmly until the operculum breaks down. This will release
the extracted sample onto the strip, launching the migration. After 15 to 30 min, the results
can be read with the naked eye (Figure 6).
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The entire sample preparation takes about 2 min and the time to result with SPID for
direct AMR detection in clinical samples is around 30 min.

This device has been evaluated in three different hospitals for the detection of CTX-M
and the five major carbapenemases (NDM; KPC; OXA48; VIM; and IMP) directly in clinical
samples. Three types of samples were used: blood culture, urine, and rectal swabs. The
results showed that the device allows direct detection of these beta-lactamases in 30 min
from blood cultures and urine, with a sensitivity and specificity between 98 and 100% for
the detection of CTXM and between 94 and 100% for the detection of carbapenemases.
For rectal swabs, an enrichment step is necessary to achieve the same performance for the
detection of CTXM and carbapenemases (publication submitted).

This device is simple to use, low cost, and requires no equipment, and has the advan-
tage of being adaptable to all existing immunochromatographic tests. These characteristics
make the device perfectly adapted to the detection of AMR in the veterinary and environ-
mental area.

6. Detection of Amplicons by LFIA

Conventionally, microbiology laboratories use phenotypic testing which involves
incubating bacteria with antibiotics for AMR detection (disk diffusion, other systems
calibrated by EUCAST). These methods take several days and require trained personnel.
Rapid diagnosis helps reduce the spread of AMR, allows early isolation of the patient, and
hence rapid and correct treatment. It also avoids unnecessary isolation and saves resources
and money. Nucleic acid amplification technology (NAAT), immunochromatographic tests,
electrochemical methods, microarrays, micro/nanoparticles, and mass spectrometry are all
considered rapid detection tools. In this section, we will focus on nucleic acid amplification.
With this powerful tool, it is not necessary to purify the nucleic acids, and the technology
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allows rapid diagnosis partly because it uses patient samples without enrichment and
because many genes can be targeted from the same sample [118]. Furthermore, genetic-
based tests are more accurate for tracing the spread of resistance genes [119].

6.1. Polymerase Chain Reaction (PCR)

Polymerase chain reaction (PCR) allows the replication and amplification of a target
DNA through the Taq polymerase (or another thermostable enzyme). PCR is quite a fast
test, sensitive, and reproducible [120]. It takes places in three steps: denaturation (95 ◦C),
annealation (50–55 ◦C), and elongation (72 ◦C). These steps are repeated over several cycles
to generate a large number of copies (30–35 cycles). Samples are then loaded on to agarose
gel for electrophoresis and a single band for each target can be observed [121]. Multiplex
PCR methods exist and can also be visualized by agarose gel electrophoresis [122]. There
are two approaches: the first is known as specific PCR with specific primer targeting a
single microorganism and the second as broad-spectrum PCR with primers targeting a
gene (which may be present in several microorganisms) [120].

Many groups have developed different commercial kits depending on the application
or the target (e.g., ThermoFisher, Biorad, Niotron, Sentinel, Norgen biotek corp, Biolabs,
Altona diagnostic, Biobase, Redcaptain, and Biotron).

Unfortunately, PCR remains expensive for routine analytics or PoC testing as it is
necessary to buy kits and complex devices for temperature variation.

Moreover, in complex matrices, inhibitors can disrupt amplification. This loss of
information is avoided by processing the samples before analysis [119]. One of the possible
solutions is to detect amplicons on LFA test. Some studies have used LFA as a detec-
tion method after PCR [123–126]. This technology is known as nucleic acid lateral flow
immunoassay (NALFIA) or nucleic acid lateral flow (NALF). NALFIA involves reporter
oligonucleotide probes, whereas NALF involves nucleic acid with hapten labels [74]. As
PCR requires an instrument, the usefulness of a LFIA after PCR seems limited. Moreover,
with real time PCR, detection is performed directly on the thermocycler.

Convective PCR (cPCR) is a new alternative to classic PCR that allows rapid ampli-
fication of DNA (less than 30 min) without complex equipment (Figure 7). The cPCR is
performed on a heat block at 95 ◦C for 30 min, and the amplicons are analyzed on LFIA. With
this technique, amplification and detection could be achieved with portable devices [127].
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To use the PCR technique in PoC testing, several methods of amplification exist
using particular enzymes that allow an amplification reaction at a constant temperature
(NASBA [128], RCA [129], SDA [130], RPA [131], HAD [132], and LAMP [133]).
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6.2. Loop-Mediated Isothermal Amplification (LAMP)

Loop-mediated isothermal amplification (LAMP) is an isothermal DNA amplification
method developed by Notomi et al. in 2000 [133]. It can be performed in less than 1 h. The
DNA polymerase (Bst polymerase) has a strong strand displacement activity, which allows
the technique to be performed at a lower and constant temperature (between 60 and 65 ◦C).
This method employs a set of specific primers that recognize different sequences on the
target: the inner primer (FIP, BIP), the outer primer (F3, B3), and the loop primer (LF, LB).
An illustration of the amplification process is provided in Figure 8 [134].
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Figure 8. LAMP principle. The amplification starts when the FIP primer hybridizes to the F2c region
of the strand. The F3 primer hybridizes to the F3c fragment on the DNA strand which initiates DNA
synthesis by strand displacement. The strand bound to the FIP primer is then released and forms
a loop structure at one end. This last structure allows the BIP primer to initiate subsequent DNA
synthesis by strand displacement. This releases the sequence bound to BIP. The strand forms an
altar-like structure and serves as the base for the LAMP cycles. The exponential amplification process
then starts. BIP (or FIP) primer hybridizes to the loop structure. LF and LB primers are used to
accelerate the amplification [135].

Compared to PCR, LAMP is more robust (DNA extraction not always required), less
sensitive to inhibitor, and uses a smaller sample volume (blood, urine, stool). As a result,
LAMP is associated with reduced costs and can be used in low-resource field settings [118].

LAMP has been applied to the detection of many pathogens (virus, bacteria, and
parasites). In the last few years, more and more LAMP tests have been developed for the
detection of antibiotic-resistant pathogens. The method is increasingly used in this field as
it does not require complex equipment. Indeed, the amplification reaction can be realized
using a heat block or water bath. The detection of amplification product can be analyzed
using a range of common methods [136].
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6.2.1. LAMP Detection Methods

Several detection methods are compatible with LAMP (Figure 9). Indeed, the am-
plicons can be visualized by electrophoresis [137] and by monitoring the turbidity or the
fluorescence. It is possible to look for color changes induced by chemical reaction [137–139].
The amplicons can be also detected using labelled primers with fluorescent dyes [140] or
fluorescent intercalating dyes [137].
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change [139]; (D) Fluorescent primers, fluorescence monitoring [140]; (E) Chemical reaction, in
real-time, turbidity monitoring [138].

6.2.2. LAMP Coupled to LFA Detection

Recently, LFA has been used as a tool for the detection of LAMP product. Indeed,
few studies have focused on the use of LFA for the detection of antibiotic resistance
genes [136,141,142].

To detect amplicons on a test strip, primers must first be labelled, e.g., with FITC, Texas
red, biotin, Digoxygenin, FAM, or Hex. In addition to the labelled primers, other labelled
probes or biotin-labelled dUTPs can be introduced into the reaction mix [136,143–147].

Some of the labeled primers involved in amplicon detection will be recognized by
antibodies immobilized on the membrane. Frequently, streptavidin-gold-nanoparticles are
dried and immobilized on the conjugate pad to reveal the captured amplicon [148] (Figure 10).
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Gong et al. developed a LAMP assay combined with LFA for the detection of col-
istin resistance mcr-1 gene [142]. The detection of amplicons is performed with a gold-
nanoparticle-based lateral flow biosensor. The time-to-result (including sample treatment,
LAMP reaction, and detection) is about 85 min, which is at least 90 min faster than mcr-1
PCR. Moreover, the LAMP test is ten-fold more sensitive than the mcr-1 PCR assay [142].

Multiplexing is important in the detection of antibiotic resistance as with a single test,
several targets may be detected allowing the diagnosis to be refined. Chen et al. tried to
simultaneously detect mecA, femB, and nuc genes. They compared multiplex PCR and three
reactions with LAMP (one for each gene). The authors chose to detect LAMP amplicons
with 2% agarose gel electrophoresis, and the addition of dye, which allows a color change of
the solution. They found that multiplexing with these detection methods was not possible
for LAMP. Indeed, a smear was observed on gel electrophoresis, and it was impossible to
define which gene was amplified [149].

To solve this problem, Chen et al. developed a protocol to detect MSSA (targeting
femA) and MRSA (targeting mecA) using LFA [141]. The FIP primers were labeled with
digoxigenin (for femA) and with FAM (for mecA); both LF primers were also labeled with
biotin. This protocol has been validated with biological samples and the results were similar
using LFA-LAMP and traditional techniques. Similarly, Liu et al. developed a multiplex
LAMP assay coupled with LFA to detect Mycobacterium abscessus and Mycobacterium
massiliense. These mycobacteria are resistant to several antimicrobial agents [136].

The main drawback of LFA is that it is not a quantitative method. LAMP reactions are
performed with small volumes that can limit the sensitivity of the test.

6.2.3. Other Amplification Methods for AMR Detection

There are many isothermal amplification methods; those used for AMR detection are
those that require the fewest steps and/or the least amount of enzyme. The methods used
are as follows: GEAR, RPA, SDA, SMAP/SMAP2, HDA, NASBA, RCA, and TMA. [150,151]

LAMP remains the most suitable technique with a more efficient direct amplification,
more resistance to matrix interference, and more sensitivity. In addition, LAMP seems to
be more adapted to a POC application [150,151].
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7. Conclusions

The development of LFA in the field of antibiotic resistance has continued to grow. The
first generation of tests, based on the detection of the enzyme responsible for the resistance,
avoided some of the limitations encountered in genotypic methods (detection of resistance
genes by PCR) or in phenotypic methods (detection of enzymatic activity by modification
of the antibiotic). The two main drawbacks of this first generation of tests were the
non-detection of certain new variants of enzymes involved in resistance and the difficulty
of detecting resistance directly in biological media. These issues have been overcome
with the second generation LFA, which have consolidated their position as rapid, efficient,
inexpensive, and easy-to-use tools. Additional developments include LFIA tests capable of
directly detecting enzymatic activity (LFIA-CTX test), a SPID system to allow rapid and
reliable detection in biological media with LFIA, and a LFA test associated with LAMP for
improved test reliability and performance. These advances have considerably increased the
involvement of LFA in the field of antibiotic resistance. All of the LFA tools are inexpensive,
rapid, efficient, and are easy to implement in the routine workflow of laboratories as new
first-line tests on bacterial colonies, and in the near future on biological media.
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