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A B S T R A C T

Inverse modeling (IM) is a valuable tool in agriculture for estimating model parameters that aid in decision- 
making. It is particularly useful when parameters cannot be directly measured or easily estimated due to 
logistical constraints in agricultural settings. Unlike other estimation methods, IM combines a mechanistic model 
with observations of its outputs to derive the parameters of interest, allowing for the integration of various 
sources of knowledge. The availability of numerous data sources, such as remote sensing and crowdsourcing, 
with high spatial and temporal resolution, has expanded the potential of IM in agriculture. Practitioners can now 
incorporate the spatial and temporal footprint of observational data into parameter estimation. However, 
common IM techniques currently applied in agriculture often struggle to account for effectively spatial and 
temporal variability. Relevant IM methods that address these challenges are usually isolated within specific 
developer and user communities and are not well known within the agricultural community. There is a lack of 
comprehensive reviews focusing on IM methods suitable for handling spatial and temporal data in agriculture. In 
parallel, the process of conducting IM in agriculture remains under-formalized. Typically, specific IM methods 
are chosen for specific combinations of models and types of observational data, but the rationale behind their 
selection is rarely explained in publications. The relationship between IM methods, models, and observational 
data is unclear, making it overwhelming for new practitioners to choose an appropriate method. This complex 
problem, along with the diversity of IM methods, has yet to be adequately addressed while taking into account 
the specificities of agricultural applications. To address these challenges, this review aims to provide a structured 
classification of IM methods based on the practical needs of new practitioners in agriculture. It examines a wide 
range of inversion methods applied in agriculture-related domains and covers four key topics: i) the essential 
elements and general process of IM, ii) the main families of IM methods in agriculture and their characteristics, 
iii) the circumstances in which practitioners prefer using IM over other approaches, and their motivations, and
iv) practical guidance on choosing a method family based on operational criteria. The review aims to help
readers develop a clear understanding of the practice of inverse modeling, gain insights into the diversity of IM
methods, and make informed choices when selecting a method family for their agricultural applications.

1. Introduction

Inverse modeling (IM) is used in a wide range of applications do-
mains such as crop and soil modeling (Cousin et al., 2022), groundwater 
modeling (Irsa and Zhang, 2012), atmospheric modeling (Hrad et al., 
2021) or environmental modeling (Lu et al., 2013). IM is considered as a 
powerful approach for estimating unknown parameters of mechanistic 

models based on observations of their output as well as the models 
themselves (Milledge et al., 2012). By utilizing both: a mechanistic 
model and observational data, IM is often used to estimate model pa-
rameters that correspond to useful information which are hard and 
tedious to measure due to logistical constraints (e.g. soil hydraulic 
properties (Pinheiro et al., 2019)), or conceptual variables (e.g. leaf 
structural parameters introduced in PROSPECT (Jacquemoud and Baret, 
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1990)). In agriculture, IM has gained recognition to estimate parameters 
for decision support (e.g. for crop water management (Araya et al., 
(2013), Kumar et al. (2022)), and/or to calibrate mechanistic models (e. 
g. crop model STICS (Wallach et al., 2011)). Depending on the appli-
cation, the variables estimated in agriculture by using IM are highly
diverse, including the estimation of plant available water capacity
(Morgan et al., (2003), Jiang et al. (2008), Florin et al. (2010), Todoroff
et al. (2010), Campos et al. (2016), Gaudin et al. (2017), Dewaele et al.
(2017), He et al. (2021), He et al. (2022)), soil water holding capacity
(Sreelash et al., 2017), plant growth traits (e.g. Leaf Area Index (LAI))
(González-Sanpedro et al., (2008), Dzotsi et al. (2015), Xu et al. (2019),
Wan et al. (2021), Wang et al. (2022)), plant root water uptake (Wang
et al., 2021), evapotranspiration (Angaleeswari and Ravikumar, 2019),
soil hydraulic properties (Ritter et al., (2003), Verbist et al. (2009),
Montzka et al. (2011), Charoenhirunyingyos et al. (2011), Dokoohaki
et al. (2018), Gabriel et al. (2019), Fernández-Gálvez et al. (2021)), soil
moisture (Del Frate et al., (2003), Ghorbanian et al. (2019), Liang et al.
(2021)), soil organic content and associated parameters (Kwon and
Hudson (2010), Gurung et al. (2020)), plant nutrient level (e.g. Leaf
Chlorophyll Content) (Houborg and Boegh (2008), Camino et al. (2018),
Chaabouni et al. (2021), Antonucci et al. (2023)), or aquaculture system
properties (Jamu and Piedrahita, 2002). This diversity highlights the
potential of IM in agriculture, as the approach allows accounting for
both general process-based simulation and specific observational data,
providing a cost-effective way to estimate unknown quantities, espe-
cially when data availability is low.

One of the main limitations of IM is that it is only possible when 
observations of output variables of the system are available. For many 
years, this limitation slowed the development of IM in agriculture 
because observations were difficult or expensive to obtain but in the last 
years, new sources of observations have emerged in agriculture. Indeed, 
new satellite constellations offering better temporal (Chintala et al., 
2022) and spatial (Cheng et al., 2020) resolutions, open-access data-
bases focusing on soil (Quiros et al., 2009) or vegetation (Mylonas et al., 
2022), point-cloud-based data like LiDAR (Akwensi et al., 2023), or 
projects of crowdsourcing collecting substantial number of ground ob-
servations (Minet et al., (2017), Pichon et al. (2022)) are reaching 
maturity. This availability of observations with better spatial and tem-
poral resolutions increased the potential of applying IM in agriculture. 
However, certain data sources are prone to errors in measurement or 
obtention (e.g. low-cost sensors (Satoh and Kakiuchi, 2021), observa-
tions made by farmers (Pichon et al., 2022) etc.). It is also important to 
note that not all accessible data directly correspond to the observations 
of mechanistic models: the exact coincidence between what a sensor 
measures and what a model simulates is rare (Zhang et al., 2021), which 
introduces extra uncertainty in inverse modeling. As a result, it is crucial 
to take into account uncertainty when making inverse modeling (Iizumi 
et al., 2009). Uncertainty information is however, often overlooked in 
agricultural IM applications (Uusitalo et al., 2015). 

In parallel, IM techniques that are commonly applied in agriculture 
often struggle to account for temporal and/or spatial variability (Cousin 
et al., 2022). Nonetheless, agricultural stakeholders regularly face dy-
namic systems related to plant growth and/or nutrient assimilation, 
which also manifest spatial variability (Kerry and Oliver, 2008). Rele-
vant approaches do exist in other scientific domains (Hendricks Franssen 
et al., (2009), Montzka et al. (2012)), but they seem to be little known in 
agriculture. Furthermore, the methodological choices made on inverse 
modeling and their justification related to the specificities of agricultural 
applications are rarely formalized and explained in the literature. Au-
thors seldom explain or justify why they applied inverse modeling, 
instead of other more straightforward approaches, like direct measure-
ments or statistical modeling. Indeed, most model parameters have 
physical meanings hence can be directly evaluated (e.g. soil critical 
humidity (Cousin et al., 2022)). While another approach that builds 
statistical models can predict a searched parameter with other explan-
atory variables, which is a common practice in agriculture (Song et al., 

2023). Additionally, the process of conducting IM in agriculture also 
remains under-formalized. Typically, specific IM methods are chosen for 
specific combinations of models and types of observational data, but it 
has been observed that the rationale behind their selection (if it exists) is 
rarely explained in publications. The relationship between IM methods, 
models, and observational data remains unclear, posing challenges for 
new IM practitioners to choose an appropriate inversion method. 

This review aims to fill these gaps by offering a comprehensive and 
structured classification of IM methods commonly used in agriculture. It 
covers a broad range of inversion methods employed in agriculture- 
related domains and focuses on four key topics. Firstly, it explores the 
fundamental elements required for conducting IM and provides a gen-
eral overview of various IM approaches (section 1.1). Secondly, it cat-
egorizes the main families of IM methods used in agriculture, and 
examines their unique characteristics (section 1.2). Thirdly, it in-
vestigates the circumstances in which practitioners prefer IM to other 
approaches for deriving model parameters. The review highlights not 
only the motivations of practitioners, but also the operational benefits of 
preferring IM approach to other approaches when it deals to provide 
estimations (section 2). Lastly, based on the literatures, it offers practical 
guidance for selecting an appropriate IM approach based on practi-
tioners’ specific situations, and emphasizes potential pitfalls to consider 
throughout the process (section 3). 

2. What is inverse modeling and which are available methods
for agricultural applications?

2.1. Definitions 

2.1.1. Forward modeling 
Forward modeling and inverse modeling are paired concepts. For-

ward modeling (or just modeling) refers to actions to build process- 
based models from modeler’s understanding of a natural or artificial 
system in agriculture (Wallach et al., 2014a). The objective of a process- 
based model (or mechanistic model) is to predict the future or unob-
served behavior of a system of interest, like the environmental or bio-
logical processes. A simplified description of the main elements of a 
process-based model is given in Fig. 1. 

A process-based model consists of, on the one hand, i) mathematical 
formulas and ii) parameters, which both describe how the system of 
interest works and are supposed to be strictly invariant; on the other 
hand, iii) explanatory variables describing external conditions that may 
impact the system. These latter can be independent (e.g. soil-depth) or 
dependent (e.g. weather data) on time. A process-based model can be 
either static or dynamic. Static models are independent on time, while 
dynamic models predict the temporal evolution of a system, by itera-
tively updating a set of state variables at each time step. The system 
modeled by a process-based model can either be dimensionless (i.e. 
aspatial models), or occupy a certain depth/surface/volume in space (i. 
e. spatial models). A spatial model requires parameters and explanatory
variables to be specified at each simulated location. The computer
program which accounts for all elements of a process-based model forms
a numerical model. Model simulation is the process in which a numerical
model generates outputs, or predictions. A process-based model can be
represented in a simple form by Equation (1).

Ŷ = f(u, θ) (1)  

where Ŷ is the vector of model predictions (i.e. model outputs), f is the 
function including mathematical formulas describing the studied sys-

Fig. 1. A simplified view of the main elements of a process-based model.  
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tem, u is the vector of explanatory variables and θ is the vector of pa-
rameters (u, θ are model inputs). Depending on whether the f is static or 
dynamic, aspatial or spatial, Ŷ could be predictions that are independent 
or dependent on time (Ŷ t) and location (Ŷ s). 

The difference between Ŷ and actual observed behavior of a studied 
system (observations: Y) is the model residual (ε). The presence of ε is 
generally inevitable, due to the uncertainties associated to the model 
structure, model inputs, and observations. The relationship between Ŷ 
and Y can be described by Equation (2). 

Y = Ŷ + ε = f(u, θ)+ ε (2)  

2.1.2. Inverse modeling 
Inverse modeling corresponds to the inverse principle of forward 

modeling (Fig. 2). Inspired from the definition of inverse problem 
(Nakamura and Potthast, 2015), inverse modeling can be described as a 
process which infers the “causes” that lead a certain system to produce 
certain behaviors (i.e. “effects”), by using observations on those be-
haviors and knowledge on that system (Hendricks Franssen et al., 
(2009), Zhou et al. (2014), Ghorbanidehno et al. (2020), Zhao and Luo 
(2021)). Hence, inverse modeling is not a singular method, but an 
ensemble of approaches which allow to retrieve unknown model pa-
rameters, and/or (initial) state variables, and/or explanatory variables, 
by using observations (Y) and a process-based model f. For simplifica-
tion, the unknown quantities mentioned above will be referred together 
as the estimated parameters, or θ* in the following text, with two 
specifications noted as θt

* and θs
*, respectively for θ* in dynamic and 

spatial models. Correspondently, observations used to retrieve θt
* and 

θs
* are noted as Yt and Ys. 

In the literature related to agriculture, two types of inverse modeling 
approaches satisfy the definition given above, hence are used to estimate 
θ*. The first type treats the forward model as a black box (Wallach et al., 
(2011), Lamsal et al. (2017)). This latter provides simulations which are 
essential for inversion. The fundamental idea behind this first type of 
methods is to reduce the incoherence (ε) between model simulations and 
real-life observations (ε) using various techniques. This type of inversion 
methods is referred to as simulation-based methods in this review. 

The second type of methods focuses on expressing θ* with an inverse 
model that incorporates observations (Román et al., 2011). The latter 
can be the explicit mathematical inverse function of the f , or an 
approximate solution based on some simplifications/reformulations. 
The key point of the second type of methods is to build an inverse model, 
then to use observations to directly calculate the estimated parameter. 
These methods are referred to as model-based methods. 

Depending on the specific problem to deal with, both types of 
methods can be found in agriculture. Sometimes they can even be used 
in a combinational way (Campos et al., (2016), Farthing et al. (2017)). 
However, such applications remain rare, and this review will focus on 
the most general approaches. 

2.2. Available methods of inverse modeling in domains of agriculture 

In the search for relevant literature to ensure a global coverage on 
inverse modeling applications in agriculture, the search strategy 
involved the use of specific keywords, including “inverse modeling”, 
“(model) inversion (methods)”, “inverse method/problem/model”, 
“parameter identification/retrieval/optimization”, “model/parameter 
calibration”, “optimization”, “Bayesian calibration”, “PROSAIL”, 

“RTM”, and “remote sensing + crop model”. The search encompassed a 
broad spectrum of agricultural science-related journals (e.g. Agriculture 
Water Management, Computers and Electronics in Agriculture, Euro-
pean Journal of Agronomy, Smart Agricultural Technology and etc.). 
Additionally, papers from journals in the fields of hydrology and remote 
sensing were included (e.g. Journal of Hydrology, Advances in Water 
Resources, Geoderma, Remote Sensing of Environment, Comptes 
Rendus Geoscience, International Journal of Applied Earth Observations 
and Geoinformation, ISPRS Journal of Photogrammetry and Remote 
Sensing and etc.). In total, 76 scientific papers were regarded as exam-
ples of inverse modeling in agriculture, hence were used for extracting 
the main approaches of model inversion. Among them, 25 papers 
focused on retrieving soil hydraulic properties (e.g. field capacity, per-
manent wilting point etc.) and/or soil/plant available water capacity, 25 
papers aimed at estimating plant growth traits and/or nutrient levels (e. 
g. LAI, leaf chlorophyll content), 13 papers strived for obtaining flow
properties of a groundwater system (e.g. hydraulic transmissivity, con-
ductivity etc.), 7 papers focused on retrieving soil moisture, while other
papers (n = 6) searched various parameters in crop modeling, like soil
organic matters, or canopy parameters.

Seven families of inverse modeling methods were identified: i) Fre-
quentist Parameter Estimation (section 1.2.1), ii) Bayesian Parameter 
Estimation (section 1.2.2), iii) Sequential Filters (section 1.2.3), iv) 
Geostatistical Inversion (section 1.2.4), v) Explicit Inversion, vi) 
Approximate Inversion, and vii) Hybrid Inversion (section 1.2.5). The 
classical usage of regressions, decision trees, neural networks, or other 
Machine/Deep Learning models for predicting searched parameters 
using explanatory variables, was not considered as inverse modeling 
approaches in this review, if no process-based model was used to train 
those models. However, readers can find further discussion on this topic 
in section Perspective 4.2.2. 

Frequentist and Bayesian Parameter Estimation are firstly presented, 
because they represent the majority of existing agricultural applications. 
Afterwards, the other families of method will be introduced. It should be 
acknowledged that the proposed organization aims at highlighting 
general differences between families of methods, and it is not intended 
to be exhaustive. For identifying more specific inversion algorithms, 
readers may consult the work of Zhou et al. (2014), Rajabi et al. (2018), 
Verrelst et al. (2019), and Ghorbanidehno et al. (2020). 

2.2.1. Frequentist parameter estimation (FPE) 
To date, Frequentist Parameter Estimation is the most applied family 

of methods of inverse modeling in agriculture, as it has been applied on a 
wide range of agricultural models (e.g. crop models (Zhang et al., 2011), 
canopy models (Wigneron et al., 1993), disease models (Jørgensen, 
2000), irrigation models (Dari et al., 2022) etc.) by using a generalizable 
optimization procedure. FPE methods are simulation-based inversion 
techniques. They rely on the estimation of the disagreement between 
simulated and observed model outputs through an objective function. 
The latter is minimized by searching the best possible vector of θ* values. 
The challenge lies on assuring that the searching algorithm will 
converge to an optimum solution of estimated parameters that is phys-
ically sound. The process can be considered as similar to a classical 
model calibration process (Wallach et al., 2014b). 

Illustrated by Fig. 3, the general optimization procedure consists of 
three common actions which are carried out iteratively: 

(i) Parameterization of the forward model. Firstly, parameters which
are not the goal of inversion, noted as θ− , must be specified with 
appropriate values and be fixed during upcoming steps. Secondly, a 
vector of θ* values (noted as θ*

i) selected from the parameter space of θ* 

is input into the forward model with the θ− . 
(ii) Simulation of the forward model. The forward model generates a

set of predictions,Ŷ i, using θ− and θ*
i. 

(iii) Evaluation of the selected θ*
i. An objective function O(Ŷ i,Y)

assembles model predictions and actual observations, hence quantifies
Fig. 2. A simplified view of the objective of inverse modeling.  

Y. Zhang et al.
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εi. The outcome is evaluated under a pre-defined criterion, which de-
termines whether a new vector of θ* values will be drawn, and step (i) 
will be repeated. The criterion must allow the optimum solution θ*

opt to 
satisfy Equation (3). 

min
{

O
(

Ŷopt, Y
)}

Ŷ opt = f
(
θ− , θ*

opt
)

(3)  

Although the objective of the FPE approach is to optimize θ*, the choice 
of θ− is critical. A realistic parameterization is indispensable for getting 
accurate values of θ*, while the opposite can ruin the estimation due to 
the compensation effect (Wallach et al., 2014b) (i.e. because the 
retained estimated parameters’ values can be selected to reduce the 
prediction errors only because of wrongly chosen θ− ). The parameteri-
zation can be improved through bibliographic research, in-field mea-
surements, or preliminary model calibration (Alkassem et al., 2022). 

The number of iterations depend a lot on the chosen optimization 
algorithm and the searching criteria provided by practitioners. 
Numerous optimization algorithms are open-sourced (e.g. gradient- 
based, sampling-based algorithms) (Chaabouni et al., 2021). Agricul-
tural communities commonly use black-box optimizers (e.g. PEST 
(Doherty, 2015)) or metaheuristic algorithms (César Trejo Zúñiga et al., 
2014) like the Genetic Algorithm (Ferreiro et al., (2016), Wallach et al., 
(2014c), Ghorbanian et al. (2019)). The search of θ*

opt can be facilitated 
by wisely setting initial values and boundary conditions. The objective 
function can account for multiple types of observations and take 
different forms for satisfying specific application context (Sreelash et al., 
(2012), Mahévas et al. (2019)). 

2.2.2. Bayesian parameter estimation (BPE) 
Bayesian Parameter Estimation methods are model calibration 

methods which are carried out under the probabilistic framework 
(Wallach et al., 2014c). In agriculture, BPE methods have become 
popular since two decades thanks to the growth of computational power 
(Makowski et al., 2002). Similar to the FPE approach, their applications 
can be found in various domains (e.g. hydrology (Lu et al., 2013), crop 
science (Gao et al., (2021), Hjelkrem et al. (2021))). The BPE methods 
consider θ* as random variables, which can take different values under 
certain associated probability according to a Probability Density Func-
tion (PDF). The objective is to obtain θ* posterior PDFs by optimally 
accounting for prior knowledge and observations. The use of probabi-
listic distributions permits also to describe possible interactions between 

estimated parameters (Wang et al., 2022). 
BPE algorithms are based on Bayes theorem (Equation (4): 

P(θ*|Y)∝ P(Y|θ*)* P(θ*) (4)  

Where P(θ*) is the PDF that reflects the prior belief of θ* (i.e. prior), 
P(Y|θ*) stands for the function of likelihood of observing observations 
given each value of θ*, and P(θ*|Y) represents the PDF of θ* updated 
from the prior using observations (i.e. posterior), ∝ means “is propor-
tional to”. 

In general, the exact mathematical expression of P(θ*|Y) cannot be 
obtained analytically (Lizumi et al., 2009). Consequently, the BPE 
approach usually strives for representing the posterior PDF with sam-
ples, whose general procedure is illustrated in Fig. 4. The individual 
prior PDF of each estimated parameter in θ* must be defined at first (step 
1). Each estimated parameter is usually assumed to be independent from 
the others, so the joint prior PDF of θ* can be computed as product of 
individual PDFs (step 2). Then, a possible combination of θ*

i is sampled 
from the joint prior PDF, and input into the forward model. This latter is 
used as a black-box to generate simulations (i.e. which makes the BPE 
approach a simulation-based inversion method) (step 3). A likelihood 
function that quantifies the plausibility of θ*

i given observations is 
computed, producing P(Y|θ*) (step 4). Depending on the algorithm, 
certain calculations are made to decide whether the θ*

i is accepted based 
on information from previous steps (step 5). Steps between step 3 and 5 
are repeated to obtain a set of accepted θ*

i, which represents the joint 
posterior PDF of θ*. At last, the individual posterior PDF of each esti-
mated parameter can be obtained by using the set of accepted values (i.e. 
samples). 

Typically, samples are combinations of possible estimated parameter 
values, and the high-density zones of the posterior PDF consist of values 
that are the most present among samples. Popular sampling algorithms 
are based on the Markov Chain Monte Carlo (MCMC) (Lu et al., 2013), 
Hamiltonian Monte Carlo (Neal, 2011), or the Sampling-Importance- 
Resampling (SIR) (Gurung et al., 2020). They approximate the poste-
rior PDF from a large number of model simulations. Some methods don’t 
search the entire posterior PDF, but only extract useful information of it, 
such as Generalized Likelihood Uncertainty Estimation (GLUE) (Sree-
lash et al., 2017), Look Up Table (LUT) (González-Sanpedro et al., 
2008), or Maximum-A-Posteriori (MAP) oriented optimization (Hip-
penstiel, 2017). These methods focus on searching the statistical mode 
of the posterior PDF, which can be interpreted as the most probable 
value of the estimated parameter. 

Fig. 3. The general optimization procedure in Frequentist Parameter Estimation.  

Y. Zhang et al.                                                                                                                                                                                                                                   
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Prior information can impact greatly the BPE outcome. Wallach 
et al., (2014c) showed that a BPE method using very flat prior PDF 
generates results close to those estimated by a FPE method. While 
excessively narrow priors can bring in too much impact on posterior 
PDF, making observations under-considered (Rajabi et al., 2020). It is 
common to put effort in preliminary literature research to obtain prior 
PDFs of θ*(Gimson and Uliasz, 2003). In agricultural applications, pa-
rameters often have some clear physical meanings, hence expert or 
background knowledge are also common sources of prior information 
(Zhang et al., 2021). In-field experiments can also be conducted to 
construct priors of estimated parameters (Sreelash et al., 2017). 

2.2.3. Sequential filters (SF) 
Sequential Filters are algorithms originally developed for estimating 

state variables which have been mostly used in the Data Assimilation 
community (Montzka et al., (2012), Jiang et al. (2014)). However, the 
SF approach can focus especially on estimating model parameters. They 
are considered as a family of simulation-based inverse modeling 
methods, because the approach also relies on simulations of a forward 
model. The SF approach makes use of high temporal resolution data 
streams (Yt) like satellite imagery or soil sensor data, to estimate θt

* in 
dynamic models (e.g. crop models (Huang et al., 2019), or hydrological 
models (Montzka et al., (2011), Chaudhuri et al. (2018))). SF methods 
can demonstrate how θt

* may evolve in time by estimating it each time 
when a new observation becomes available (Liu et al., 2020). 

The signature feature of SF methods consists in a duo-model 
formalism, which is composed by a process model and an observa-
tional model. A process model is a numerical object that is globally 
coherent with what is described by Equation (1), which generates sim-
ulations (Ŷ t). In the classical context where SF approach is applied, this 

model tends to be a set of equations representing the evolution of state 
variables. However, static model parameters can also be included in Ŷ t, 
by applying a Gaussian random-walk model to propagate their values 
from one time step to the next one (Zhang et al., 2021). The observa-
tional model, for its part, links what the process model simulates (i.e. Ŷ t) 
to what are actually observed (i.e. Yt). A simple linear model (Y = X) can 
be used (Zhang et al., 2021), but a more complex mechanistic model (e. 
g. PROSAIL) can equally be employed (Machwitz et al., 2014). This duo- 
model structure allows separately accounting for the uncertainty in 
model simulations and observational data. 

The inversion in SF methods consists of using the duo-model system 
through two steps: i) the forecast step: making a forecast of Ŷ t using the 
process model that is used as a black-box; ii) analysis step: transforming 
Ŷ t using the observational model and inputting the transformed forecast 
together with Yt into a mathematical structure (e.g. a likelihood func-
tion) to generate useful information that allows updating the forecast 
(which includes θt

*) in the previous step. The forecast and analysis step 
are carried out recursively, which means that the result from analysis 
step will be used in the next forecast step, whose output will then be 
updated again in the following analysis step. 

The update in analysis step can be done in two different ways. On the 
one hand, the explicit mathematical expressions representing estimated 
parameters’ PDF can be formulated under the Gaussian assumption (i.e. 
the computation of the Kalman Gain in Extended Kalman Filter (Ter-
ejanu, 2009) or Ensemble Kalman Filter (Evensen, 2003)). On the other 
hand, sampling and resampling techniques (e.g. Particle Filter (Gen 
Nakamura, 2015)) can be used to approximate θt

* distribution using 
samples of estimated parameters values. These methods do not require 
the Gaussian assumption on θt

*’s PDF, but takes more time in 

Fig. 4. The general procedure of Bayesian Parameter Estimation.  
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computation. 

2.2.4. Geostatistical inversion (GI) 
Geostatistical inversion methods are mainly applied in hydrology or 

other scientific domains focusing on large scale phenomena (Gómez- 
Hernández et al., 2003). They allow to produce a spatial map of θs

* 

under a certain discretization scheme. The main motivation behind the 
approach is that conventional geostatistical tools (e.g. ordinary kriging) 
produce too smooth estimates at unsampled locations, so the GI 
approach was developed to introduce local adjustments to improve 
estimation by conditioning them on observations of a forward model 
output (Franssen et al., 1999). A typical example can be the estimation 
of hydraulic conductivities over an entire field by inverting a water flow 
model (i.e. Richards’ equation) from multiple groundwater pressure 
measurements (Franssen and Gómez-Hernández, 2002). 

Hendricks Franssen et al. (2009) pointed out that most GI methods 
can be summarized into three steps: i) define and parameterize a for-
ward model so that black-box simulations can be made, ii) generate 
some initial guesses of θs

* while preserving their spatial variability using 
geostatistical tools, using ordinary kriging (Cressie, 1990) or a certain 
zoning algorithm (Hendricks Franssen et al., 2009) (i.e. obtain a smooth 
estimation), iii) using θs

* to make model simulations, and adjust itera-
tively their values in order to minimize an objective function that 
quantifies the difference between not only simulations (Ŷ s) and obser-
vations (Ys), but also the adjusted and initial guess of spatially dis-
cretized parameters (i.e. in order to adjust locally the smooth estimation 
so that they better fit to observations). 

The second step highlights that the GI approach usually requires 
some observed θs

* before making inversion, which allows to make 
appropriate geostatistical analysis (Kitanidis, 1995). Indeed, the GI 
approach does not invent the spatial structure of a parameter, but only 
preserve it from available data or knowledge. What the GI approach 
estimates, are parameter values at unsampled locations. 

The third step makes the GI approach inherently similar to the Fre-
quentist Parameter Estimation approach: they both make optimization 
under certain constrains. However, the GI approach is used to estimate a 
much larger number of estimated parameters (i.e. typically over 102). 
Actually, the number of θs

* is always greater than the number of 
available observations in GI applications (Miller et al., 2020). This 
implied multiple possibilities of θs

* exist given a set of observational 
data, thus the estimation uncertainty should be accounted for. For 
instance, the Self-Calibrating method produces multiple equally-likely 
inversion outcomes (Gómez-Hernández et al., 2003); specific methods 
can also be formulated in a Bayesian fashion (Woodbury and Ulrych, 
2000). 

2.2.5. Explicit Inversion (EI), Approximate Inversion (AI), and Hybrid 
Inversion (HI) 

Three families of model-based inversion methods are presented in 
this section. The Explicit Inversion (EI) and Approximate Inversion (AI) 
both aim at building an analytical inverse model of θ*, so that it can be 
directly calculated using Y. While the Hybrid Inversion (HI) relies 
partially on model simulations. 

The EI approach aims at obtaining an explicit mathematical inverse 
function of f: f − 1(Y), when the forward model processes an invertible 
mathematical structure. Few applications of this approach were found in 
agriculture, potentially because agricultural models are generally com-
plex and involve several modeling modules (Wallach et al., 2014a). 
Some examples can be found in groundwater studies, where the studied 
physical process is governed by a set of partial differential equations, 
and spatially discretized flow properties (i.e. θs

*) like transmissivity or 
conductivity are searched (William (1986), Irsa and Zhang (2012)). The 
EI approach consists of solving the partial differential equation under 
certain discretization scheme (Neuman, 1973). Nonetheless, this rep-
resents a very specific application, hence cannot be generalized in other 

domains in agriculture. 
Consequently, the AI approach builds an analytical inverse model 

g(Y) when f − 1(Y) is difficult or impossible to obtain. The approach relies 
on certain physical consistency within the studied system (e.g. the 
conservation of mass), as well as certain specific conditions imposed by 
modelers. The inverse model g(Y) may require less parameters, given 
that it is usually obtained by simplifying the studied process, or isolating 
it from a more complicated process. Even though, each reformulation is 
very specific to the model of interest. As a result, a generalized 
description of AI methodology can hardly be made. However, AI ap-
plications can be found more commonly among agricultural commu-
nities. Some representative examples can be cited: Gaudin et al. (2017) 
built an inverse model to represent Total Transpirable Soil Water by 
reformulating a simple soil water balance model. They expressed the 
vine transpiration rate using two different equations that are validated 
only under a specific climatic condition, which was coherent to the 
period and region of study; Boonstra et al. (1996) built a surrogate 
model to retrieve seasonal groundwater recharge using water level ob-
servations, by discretizing the studied area and inverting a soil water 
transport model in each discretized zone; Angaleeswari and Ravikumar 
(2019) built an inverse model to estimate evapotranspiration by refor-
mulating the original process-based model: HYDRUS-1D. 

Instead of building an inverse model analytically, the HI approach 
obtains an inverse model numerically through a learning process. Ap-
plications exist frequently in the Earth Observation community, where 
several θ* are searched (Wang et al., (2022), Announce et al. (2023)). In 
Precision Agriculture, Florin et al. (2010) also built an inverse model 
using Neural Network model. The numerical models are trained using 
synthetic datasets generated by simulations made by a process-based 
model, and a large number of combinations of θ* which are consid-
ered as realistic (Fig. 5 - Training step). Then, the trained numerical 
model is used to predict θ* with actual observations (Fig. 5 - Prediction 
step). This approach relies on an inverse model to derive estimated 
parameters, but that model is trained numerically using process-based 
model simulations. The HI approach combines the physical advantage 
of a process-based model, and the computational efficiency of a nu-
merical model (Verrelst et al., 2019). In agriculture, this approach has 
been used to estimate leaf chlorophyll content (Preidl and Doktor, 
2011), LAI (Banskota et al., 2013), or forest structural properties 
(Homolova et al., 2016). 

2.2.6. A decision tree for the classification of methods 
The seven families of methods mentioned previously can be orga-

nized in a tree form (Fig. 6). Simulation-based and model-based inverse 
modeling methods are distinguished by the first node (Node 1). Among 
simulation-based methods, some of them are developed specifically for 
accounting for the temporal and/or spatial variability of estimated pa-
rameters (Node 2). However, when θ* are independent on time or 
location, either frequentist or probabilistic methods can be used (Node 
3). On the contrary, the SF approach allows to consider temporal vari-
ability and the GI allows to consider spatial variability, for obtaining θt

* 

or θs
* (Node 4). As for model-based methods, only the EI approach 

searches an explicit mathematical inverse function of the forward model 
(Node 5). While the AI approach builds the inverse model under certain 
approximations, and the HI approach realizes that task numerically 
(Node 6). This simple classification covers a large range of inverse 
modeling applications related to agriculture. It should be noted that 
boundaries between these classes can be fuzzy sometimes, due to the 
actual diversity of tools which is constantly increasing. 

3. Which are the motivations of making inverse modeling in 
agriculture? 

Despite of the diversity of inversion methods presented in section 1, 
there are some common motivations which incite practitioners to choose 
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inverse modeling over other methods to derive parameters in agricul-
ture. Two types of motivations can be distinguished: the first type refers 
to the situations where other ways allowing to obtain parameter esti-
mation have certain drawbacks (section 2.1), while the second type of 
motivations are related to the possibility to transmit the spatial/ tem-
poral footprint of certain observational data to estimated parameters by 
making use of an existing mechanistic model (section 2.2). In the end of 
this section, a graphical presentation is proposed to summarize these 
motivations (section 2.3). 

3.1. Inverse modeling is more advantageous than alternatives 

Making inverse modeling is not the only way by which model pa-
rameters can be estimated. At least two alternative methods exist: i) 
directly measuring θ*, and ii) estimating them using statistical models. 
However, these approaches are prone to certain common constrains in 
agriculture, which makes inverse modeling becomes a more advanta-
geous solution. 

3.1.1. More advantageous than direct measurements 
Direct measurements depend on specific instruments and protocols 

to evaluate the unknown quantities of interest from the field/laboratory 
level (e.g. Nitrogen content (Li et al., 2008), soil hydraulic properties 
(Angulo-Jaramillo et al., 2000)). However, some common limitations of 
this approach can be identified. 

First of all, certain quantities are inherently inaccessible to direct 

measurements. This is the case of historical parameters, because they 
cannot be directly observed anymore (e.g. historical soil hydraulic 
properties (William, 1986)). Given the principle of inverse modeling, it 
is unnecessary that estimated parameters must be directly observable. 
For instance, in the work of Kwon and Hudson (2010), a simulation- 
based inversion method was used to retrieve historical soil carbon 
content: a mechanistic model generates simulations (Ŷd) that start back 
from the past towards the “future”, which are then compared with actual 
historical observations of the model outputs (Yd). 

In some models, some parameters are conceptual, and may be 
difficult to access or inaccessible (e.g. leaf structure parameter in the 
radiative transfer model PROSPECT (Jacquemoud and Baret, 1990)). 
Yet these parameters are essential for making accurate model simulation 
(Jacquemoud et al., 2009). Given that there is no direct measurement 
protocol for purely conceptual quantities, naturally, their values can 
only be obtained through an inverse modeling procedure, usually 
referred to as model calibration. The BPE approach is especially useful in 
this case, as certain prior knowledge on a conceptual parameter is often 
provided by the modelers or other model users (Wigneron et al., 1993), 
which can be formulated as the prior in the Bayesian framework. 

Meanwhile, many parameters in models used in agriculture can 
actually be directly measured. However, the necessary cost in time/ 
money is highly significant. For instance, the Soil Available Water Ca-
pacity (SAWC) is one of the most important model parameters in soil 
water balance and crop modeling (Cousin et al., 2022). The conven-
tional protocols for quantifying this parameter are complicated and 

Fig. 5. An illustration for the mechanism of Hybrid Inversion.  

Fig. 6. A classification of seven families of inverse modeling methods.  
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time-consuming, consisting in soil excavation and a series of laboratory 
analysis, while also taking into account possible soil heterogeneity 
(Bouthier et al., 2022). For obtaining SAWC, inverse modeling is a more 
cost-effective solution when relevant observational data are available, 
like soil moisture data (Pan et al., 2021). In some other cases, certain 
outputs of mechanistic models in agriculture are already monitored 
regularly, like soil organic carbon (Kwon and Hudson, 2010) or plant 
biomass (César Trejo Zúñiga et al., 2014), hence are available as ob-
servations (Y(d)) for model inversion. 

Last but not the least, most of direct measurements are point-based in 
space and time, which is inherently restrictive. For instance, traditional 
single-point measurements in groundwater studies (e.g. the measure-
ment of hydraulic conductivities) cannot easily be used to extrapolate 
the whole spatial distribution of θ* of the studied area (Liang et al., 
2021). This limitation greatly highlights the strength of inverse 
modeling, as a following section will discuss (section 2.2): IM allows 
obtaining model parameters at the same spatial/temporal scale as those 
of the observational data. 

3.1.2. More advantageous than statistical modeling 
Statistical modeling aims at predicting the estimated parameter 

using a set of explanatory variables with a mathematical structure 
generated by an algorithm (Kuhn and Johnson, 2013). Typical examples 
are various Machine/Deep Learning models, which have been applied 
for estimating model parameters like contaminant concentration (He 
et al., 2021), or soil moisture (Del Frate et al., 2003), and various 
vegetation biophysical variables (Bacour et al., 2006). An estimated 
parameter becomes the output of a statistical model, which uses 
explanatory variables as inputs. Nevertheless, this approach is prone to 
some significant drawbacks for applications in agriculture. 

Firstly, no statistical model can be built without training data. The 
latter is a dataset containing combinations of observed explanatory 
variables and observations of the targeted parameter, which allows al-
gorithms to learn the empirical relationship between them. Conse-
quently, the performance of a statistical model is closely related to the 
amount of training data (Atzberger et al., (2015), Fu et al. (2023)). 
Richetti et al. (2023) explored the minimum data size for machine 
learning and deep learning algorithms to predict crop yield, and showed 
that at least 234 samples must be acquired in their situation. A similar 
amount of data was also found in the work of Ren et al. (2022). 
Therefore, training a robust statistical model for agricultural applica-
tions should require at least an almost identical training data size, 
although the actual size depends largely on the specific relationship 
between the searched parameter and explanatory variables, hence the 
level of uncertainty in training data. Moreover, it is often essential to 
include contrasting combinations in training dataset, so that the statis-
tical model can learn from a diversity of situations (Carrera, 2005). This 
raises the cost of assembling training data, usually requiring intensive 
and/or continuous data acquisition. In contrast with the statistical 
modeling approach, inverse modeling does not need existing observa-
tions of an estimated parameter for model training. They can operate 
well with very parsimonious datasets (Dzotsi et al., (2015), Song et al. 
(2016)), while using easily accessible data like satellite imagery as 
observational data (Y(d)) (Wang et al., 2021). 

Another limitation of statistical modeling consists in its strong de-
pendency to the training dataset, making statistical models poorly 
suitable for their generalization to a wide range of situations (crop x 
environment x management) (González-Sanpedro et al., (2008), Kayad 
et al. (2022)). Concretely speaking, a statistical model which predicts 
well one situation may perform badly in another case (Zhang et al., 
2021). An example can be pedotransfer functions for estimating soil 
hydraulic properties, which are often site-specific (Vereecken et al., 
1990). This dependency to training data raises some great challenges in 
using statistical models in agriculture, because of the highly diverse 
situations. Consequently, Wan et al. (2021) and Verrelst et al. (2019) 
suggested that the physically-based inverse modeling approach is a more 

generic alternative for estimating quantities of interest. Instead of 
depending on one single source of information such as training data used 
for statistical modeling, IM results are generated by using multiple 
sources of information: process-based equations in the mechanistic 
model (allowing estimated parameters to generate meaningful simula-
tions), observational data (allowing to quantify the adequacy of chosen 
θ*), as well as human knowledge and expertise on θ* (allowing to set up 
prior knowledge on the latter). 

Lastly, applications of multiple-responses empirical models are 
actually very rare in agriculture (Xu et al., 2019). In most of cases, one 
statistical model is mainly trained for predicting one model parameter. 
On the contrary, a large number of examples have shown that multiple 
parameters can be estimated by simulation-based inverse modeling 
methods (Gurung et al., (2020), Antonucci et al. (2023)). These methods 
can generate an overall “fitness score” that summarizes the adequacy of 
all estimated parameters using a cost function or a likelihood function 
(Charoenhirunyingyos et al., 2011). The parameter estimation problem 
is then transformed into a multi-dimensional optimization or sampling 
problem (Hendricks Franssen et al., 2009). This format of estimating 
parameters is particularly adequate in agriculture, where complex in-
teractions between environment (soil, climate), plant, and management 
(on soil, plant) are expected. 

3.2. Inverse modeling allows to use spatial/temporal footprint of 
observational data in conjunction with a mechanistic model 

Inverse modeling provides a natural way to derive θ* at the same 
location/time where observations were made (Iizumi et al., 2009). 
Historically, observational data in agriculture were rather sparse in 
space and time, but this situation is changing as the accessibility of high 
spatial/temporal resolution data is increasing, thanks to the develop-
ment of airborne and/or spaceborne sensors and communication tech-
nologies. As a result, searching θs

* and/or θt
* is becoming a popular 

practice in agriculture. 
Firstly, the spatial variability is essential for applications in precision 

agriculture. A high data coverage rate of certain model parameters (e.g. 
SAWC) over an area of interest (e.g. a field) is essential for planning 
tactical operations (Pasquel et al., 2022). However, there has been few 
applications of inverse modeling focusing on the field-scale, implying 
that such operation is still developing. Instead, Liang et al. (2021) 
retrieved the soil moisture content at a watershed-scale, using the Water 
Cloud Model (WCM) and data from Sentinel-1 and Sentinel-2. Similarly, 
González-Sanpedro et al. (2008) retrieved the LAI also in a large area 
(51 km × 38 km), using the PROSPECT-SAIL model and two types of 
Landsat optical data. In both examples, inverse modeling provided a 
way to obtain θs

* at the pixel level, while linking multiple sources of 
information (i.e. several types of observational data, and human 
knowledge) to the estimated parameter through a mechanistic model. 
This is unique for inverse modeling, in comparison with other spatial 
mapping methods like Digital Soil Mapping (Arrouays et al., 2021). On 
the top of that, as mentioned in section 1.2.4, the Geostatistical Inver-
sion (GI) approach also allows to consider a known spatial structure 
during model inversion. 

Secondly, some quantities of interest naturally evolve within a 
growing season, like the LAI or the leaf chlorophyll content (Darvish-
zadeh et al., 2008), whose temporal variability must be accounted for in 
a model. Yet, historically, θt

* can only be estimated at several dates 
where observations were available (Si et al., (2012), Duan et al. (2014)). 
Thanks to the high frequency of observational data provided by various 
sensing techniques, temporal evolution of these quantities can be 
derived by inverting a mechanistic model. For instance, Yang et al. 
(2021) estimated LAI and chlorophyll content of various land surface 
(including cropland and forest) using Sentinel-3 time series at a daily 
time-step. Darvishzadeh et al. (2019) retrieved LAI using Sentinel-2 and 
RapidEye data, whose satellite revisiting intervals are both inferior than 
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a week. For other θ* which are supposed to be invariant in time, 
Sequential Filter methods permit estimating them using time series 
repeatedly, while accounting for the associated uncertainties. This 
practice is enabled by certain specific inverse modeling methods (i.e. the 
SF approach), which were originally developed for handling continuous 
but noisy time series of observations (Liu et al., 2020). For instance, 
Montzka et al. (2011) estimated soil hydraulic properties for a 1D 
mechanistic soil water model, by applying a Particle Filter algorithm. 
The estimation was realized at over one hundred time steps, always 
coupled with a confidence interval. Similarly, Zhang et al. (2021) 
inverted the AquaCrop-OS model with an improved Particle Filter to 
estimate winter wheat canopy parameters at 23 dates using UAV images, 
while representing the estimated parameters as distributions. 

To summarize, the popularization of high spatial and temporal res-
olution observational data greatly raises the potential opportunity for 
stakeholder to get informed about θs

* and θt
*. While IM offers a robust 

toolset for making use of those data and other types of information. 
However, both types of data can magnify significantly the computa-
tional cost (Ghorbanidehno et al., 2020), and particular inverse 
modeling techniques need to be adopted (i.e. the GI approach, the SF 
approach, the model-based inversion methods). 

3.3. A graphical summary of different motivations 

Fig. 7 summarizes the motivations mentioned previously to make IM 
in agriculture. Above all, inverse modeling is the only way to obtain 
model parameters which are no longer accessible, or too difficult to be 
directly measured. When both relevant observational data and a forward 
model are available, inverse modeling can reduce the cost in making 
measurements, or in collecting data for model training. The estimation 
provided by inverse modeling receives automatically the spatial/tem-
poral footprint of observational data, while showing a high potential of 
employing high resolution data. Lastly, unlike statistical modeling 
methods which highly depend on training data, the process of inverse 
modeling always incorporates information from a mechanistic model, 
some observational data, as well as the knowledge of practitioners. This 
characteristic makes inverse modeling a generalizable solution towards 
parameter estimation, for diverse and contrasting situations in agricul-
ture which are related to pedo-climate conditions, type of cultures, 

human interventions etc. 

4. How to choose a family of inverse modeling methods? 

In spite of various advantages that inverse modeling can provide for 
agricultural applications (section 2), no standard procedure for choosing 
a specific method exists (Seidel et al., 2018). Moreover, regarding the 
diversity of methods (section 1), practitioners cannot make decisions by 
purely depending on mathematical/algorithmic characteristics of those 
methods, because operational constraints exist. These later are seldom 
formally discussed by authors, but they represent actual reasons for 
which certain IM methods are chosen over others in practice. Conse-
quently, merely distinguishing methods from a technical perspective is 
insufficient. The objective of this section is to identify operational 
criteria that guide practitioners to choose a family of inversion method, 
while clarifying the reasoning of choice. 

From the literature, the choice of inverse modeling technique is 
mainly based on two types of criteria. They are: i) the resources-oriented 
criteria, which are related to the specific resources available in a project 
(e.g. type of forward model, computational budget, level of personal 
skill…), and ii) the goal-oriented criteria, which are associated to the 
properties of the inversion result that practitioners expect to receive (e. 
g. single-value result, distributions of estimated parameters…). Section 
3.1 will firstly focus on two main resources-oriented criteria. Section 3.2 
will present four goal-oriented criteria, helping practitioners to refine 
their choice. Lastly, based on this knowledge, section 3.3 will propose an 
illustrated decision procedure for method selection. 

4.1. Resources-oriented selection criteria 

Making inverse modeling is a process where a forward model, 
observational data, and human knowledge all intervene. These three 
factors form a unique set of resources of a given project. Certain families 
of method can only be carried out when adequate resources are avail-
able. From the literature, two resources-oriented criteria that directly 
influence the choice of method can be drawn. 

4.1.1. Possibility to obtain and use an analytical inverse model 
The first resources-oriented criterion is whether it is possible to 

Fig. 7. A graphical summary of different motivations to apply inverse modeling.  
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produce and use an analytical inverse model. It is important to examine 
whether it is possible to obtain and use an analytical inverse model, 
because when satisfied, practitioners can benefit from fast inversion 
thanks to model-based inversion methods (AI and EI). They allow to 
obtain θ* without making model simulation (Neuman (1973), Brouwer 
et al. (2008)). Using these methods, errors of inversion result will only 
depend on the inverse model and observational data, while avoiding 
other sources of uncertainties like the model simulation, the optimiza-
tion etc. (Irsa and Zhang, 2012). 

Nevertheless, the quality of inversion based versus model-based 
methods will depend largely on how the original forward model can 
be reformulated, and under which hypotheses. The lack of relevant 
expertise on agronomic/environmental processes of interest can also 
impede the implementation of model-based inversion methods. 

In agriculture, the key resource is often expert skills: practitioners 
need to have a deep understanding on the forward model of interest, as 
well as the mathematical skills to reformulate it (i.e. Approximate 
Inversion (section 1.2.5)). Such operation allows linking equations that 
describe different environmental processes together, by using several 
agronomic relationships and/or bringing in some assumptions specific 
to the project (Gaudin et al., 2017). 

When the forward model has a simple structure, the Explicit Inver-
sion approach can be used to build an analytical inverse model (section 
1.2.5). This type of forward model is common in hydrology, where the 
forward model is often a partial differential equation (Sagar, 1975), but 
is much less common in agriculture because forward models are often 
composed by a bunch of equations involving complex soil–plant-atmo-
sphere interactions (Kwon and Hudson, 2010). 

According to the final form of an analytical inverse model, one must 
also verify if relevant observational data are available in order to employ 
that model (William, 1986). However, as an inverse model is usually 
conceived for using a certain type of observation that is operationally 
accessible (Wang et al., 2021), practitioners can focus mainly on the first 
two points mentioned previously (i.e. expert skills and a suitable model). 

4.1.2. Sufficient computational budget 
The second important resource is computational budget of a project. 

Direct factors influencing the budget of a project can be related to 
hardware (e.g. power of computer), and/or practitioners’ skills (e.g. in 
launching parallel/cloud computing, choosing efficient algorithms) 
(Combal et al., (2003), Renard (2007), Ghorbanidehno et al. (2020)). It 
is difficult though to quantify the exact amount of computational 
budget, which is generalizable to all projects. Therefore, this section 
describes the factors that influence the computational cost instead. 

On the one hand, high computational cost can be caused by the 
forward model of interest, when its simulation is computationally heavy 
(Ghorbanidehno et al., 2020). For instance, certain radiative transfer 
models (RTP) (e.g. DART (Gastellu-Etchegorry et al., 2004), SCOPE (Tol 
et al., 2009)) are highly computational demanding. Similar mechanistic 
models exist also in other domains in agriculture, but the review cannot 
list all of them, because authors seldom precise the amount of time 
needed for model simulation. Anyhow, a rule of thumb is that the time 
for model simulation is positively correlated to the realism, hence the 
complexity of the model (Verrelst et al., 2019). In any case, almost all 
simulation-based inversion methods are inefficient to invert computa-
tionally demanding models, because these methods require to run the 
expensive simulation many times (Verrelst et al., 2019). 

On the other hand, when a forward model contains a large number of 
estimated parameters (Miller et al., 2020), computational cost is 
significantly elevated due to the “curse of dimensionality” (Bengtsson 
et al., 2008). Mahévas et al. (2019) underlined certain complex models 
were hardly computationally invertible (e.g. > 103 θ*). 

However, common agricultural projects seldom aim at estimating 
that many parameters simultaneously. In the survey conducted by Seidel 
et al. (2018), 99 % of respondents (among 211 users of crop models) 
searched less than 50 model parameters in their projects. Even when 

inverting complex models like STICS (Brisson et al., 2003) or APSIM 
(Holzworth et al., 2014) which contain hundreds of parameters, prac-
titioners are usually capable of fixing most of model parameters thanks 
to existing work and expertise (Alkassem et al., 2022). This allows them 
focusing only on estimating a limited number of parameters (Wallach 
et al., 2011). Moreover, practitioners tend to estimate parameters 
through several stages, which reduces the computational cost per stage 
(Seidel et al., 2018). 

Additionally, a high number of estimated parameters is often 
observed when the parameter is spatially distributed (θs

*). While agri-
cultural applications are often specific to a local environment, thus the 
utility of estimating large θs

* over an extensive area is relatively low 
(Bandaru et al., 2022). Nonetheless, with the increasing use of high 
spatial resolution data in the digital agriculture era (Kayad et al., 2022) 
(section 2.2), the same vector of θ*, even just consisting in a few model 
parameters, can be searched at a large number of locations (i.e. per-pixel 
inversion (González-Sanpedro et al., (2008), Machwitz et al. (2014)). 
This may greatly raise potential computational cost. However, this po-
tential obstacle has seldom been mentioned by authors. 

To summary, the computational cost of a project is related to the 
forward model simulation, as well as to the number of estimated pa-
rameters. When the cost is too high, the interest of all simulation-based 
inversion methods becomes limited. In this case, the Hybrid Method (HI) 
can be a better solution, because both methods isolate the truly 
computation demanding task from the process of inversion per se (sec-
tion 1.2.5) (Verrelst et al., (2019), Schiefer et al. (2021)). The two other 
model-based inversion methods may also be adequate, but they require 
validated previous resources-oriented criterion (section 3.1.1). 

4.2. Goal-oriented selection criteria 

Goal-oriented selection criteria enable method selection, because 
they are the main reasons for which various methods were originally 
developed: to solve specific inverse modeling tasks given specific com-
binations of model, observations, and human knowledge. Nonetheless, 
these goals were seldom highlighted by authors, who tended to focus on 
algorithm implementation. In this section, certain common goals, rep-
resenting interests in agriculture, are presented for selecting simulation- 
based methods discussed in section 1.2. 

4.2.1. Obtaining a single best solution 
The single best solution is the most probable vector of estimated 

parameters given all available information acquired by practitioners. In 
agriculture, as in many other sectors, this goal is frequently searched 
(Ritter et al., (2003), Angaleeswari and Ravikumar (2019), Fernández- 
Gálvez et al. (2021)), because a single inversion outcome is an ideal 
format for making model prediction and decision making (Dubrule, 
2018). Nonetheless, although it is appealing as an operational goal, it is 
possible that the single best solution does not exist, or cannot be found 
with available data (He et al., 2017). It is also possible that various 
parameter vectors are equally probable (i.e. equifinality (Hendricks 
Franssen et al. (2008), Gan et al. (2014)). 

As some model inversion methods seek a single best solution and 
others do not (section 1.2), the existence of this single best solution is 
therefore an important criterion to consider when choosing a model 
inversion method. In the literature, authors generally carry out sensi-
tivity analysis before making inverse modeling in order to filter out θ* 

which are not sensitive enough to observational data, because this 
operation allows reducing the chance of equifinality (Zhang et al. 
(2021), Alkassem et al. (2022)). A more robust way is to conduct 
parameter identifiability analysis (Rothenberg (1971), Coudron et al. 
(2021), Zhang et al. (2022)) and stability analysis (Hupet et al., 2005). 
These practices aim at evaluating whether practitioners have enough 
information, or information that are suitable enough, to obtain a unique 
vector of estimated parameters. That requires reviewing observational 
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data, forward model, as well as estimated parameters (Guillaume et al., 
2019). 

When the single best solution is likely to be found, the Frequentist 
Parameter Estimation (FPE, section 1.2.1) approach can naturally ach-
ieve this goal, because the objective of the approach is to retain one set 
of θ* which minimizes an objective function (Ghorbanian et al., (2019), 
Wan et al., (2021), Dari et al., (2022)). However, other families of 
methods also allow practitioners to extract a single best solution, by, for 
example, calculating the statistical mode from a probabilistic distribu-
tion (Song et al., 2016). These laters usually require more external 
knowledge (e.g. Bayesian statistics, Data Assimilation skills), hence 
more complicated to undertake than the FPE approach (section 1.2.2, 
section 1.2.3). 

4.2.2. Exploring the probabilistic distributions of estimated parameters 
When no single best solution is possible, authors often use probabi-

listic density functions (PDF) to account for uncertainty in model 
parameter estimation (Hansen et al., (2016), Dubrule (2018)). It is 
common to this approach when inverting crop models like STICS 
because of the complex interactions between parameters (Alkassem 
et al., (2022), Sreelash et al. (2017)). It is also worth noting that, in the 
agricultural context, many parameters are inherently uncertain because 
they are influenced by several environmental factors that cannot be 
exactly quantified (e.g. plant available water capacity (Morgan et al., 
2003)). In this context, some authors also use PDF to describe these 
parameters (Cousin et al., 2022). 

In this case, the family of Bayesian Parameter Estimation (BPE) 
methods are interesting approaches because they permit to reveal the 
probabilistic form of PDF of estimated parameters using samples (Dzotsi 
et al., (2015), Gao et al. (2021)) (section 1.2.2). These methods require a 
basic understanding on Bayesian statistics (Wallach et al., 2014c) and 
prior information on estimated parameters. Some authors also use 
Sequential Filters (SF) methods to estimate θ*‘s PDF (Rajabi et al., 2018). 
In particular, the duo-model formalism in SF approach is used to better 
quantify uncertainties (Lu et al., 2022) by integrating, in a separated 
way, knowledge about errors both related to model simulation and to 
observations (see section 1.2.3). However, SF method are especially 
suitable for treating continuous observational data (Montzka et al., 
2012). 

Finally, when using the BPE approach, practitioners should pay 
attention to the uncertainty quantification (Uusitalo et al., 2015) for 
priors and for observation errors, whose importance is often under-
valued (Linde et al., 2017). Graphically speaking, they should define 
how narrow a PDF is. This information translates the level of confidence 
that practitioners attribute to a probabilistic distribution, which should 
be as realistic as possible (O’Hagan, 2006). Inadequate uncertainty 
quantification can lead to unwanted results. For instance, a prior with a 
high level of confidence, which is mathematically very certain, is more 
difficult to be updated by observations, especially the noisy ones 
(Hansen et al., (2016), Liu et al. (2020)). 

4.2.3. Timely updating model parameters 
In agriculture, it is a common situation where observational data are 

collected gradually over time (e.g. soil moisture (Montzka et al., 2011), 
Leaf Area Index (LAI) (Dewaele et al., 2017)). This may force practi-
tioners to wait for a long time before having enough data for obtaining 
robust inversion results. As a consequence, it has been an interesting 
practice to timely update model parameters using the most recent in-
formation (Huang et al., 2019). 

The Sequential Filter (SF) approach provides an adequate framework 
where practitioners can obtain timely updated estimations of θ* (Jin 
et al., 2018). This approach adjusts model parameters, eventually biased 
at the beginning, to produce simulations matching better with newly 
received observations (Zhang et al., 2021). Thanks to the recurrent na-
ture of the duo-model formalism, updated parameters can be used 
during upcoming model simulation, which will be again compared with 

new observations in order to generate potential corrections on param-
eters. The SF approach also provides a relevant way to account for 
different sources of uncertainties in inversion (Vrugt et al., 2008). 

Remote sensing data are often used for this type of update thanks to 
their high temporal resolution (Reichle, 2008). The duo-model 
formalism of SF approach is especially useful when using these data, 
because the observational model (section 1.2.3) can unify the spatial 
scale of model simulations and sensed information (Montzka et al., 
2012). Moreover, it is possible that the observational model can be used 
to link estimated parameters, which are usually related to plants or soil, 
to spectral information contained in remote sensing data, by using a 
mechanistic RTM (e.g. PROSAIL) as observation operator (Machwitz 
et al., 2014). 

Nevertheless, a continuous observational data stream is indispens-
able to achieve this goal, and SF approach works mostly for dynamic 
models (or a workflow which contains a dynamic model) (Nakamura 
and Potthast, 2015). Due to the duo-model formalism, practitioners 
must be able to quantify uncertainties related to model simulations and 
observations (section 1.2.3). For practitioners in agriculture, employing 
SF approach can demand external knowledge on estimation theory, 
hence is more complex to realize (Montzka et al., (2012), Dewaele et al. 
(2017)). Moreover, certain SF algorithms are based on certain important 
assumptions, like the linear structure of the process model and obser-
vational model, as well as the Gaussian distribution of estimated pa-
rameters (Jin et al., 2018). Consequently, these hypotheses must be 
prudently verified before choosing a SF method. 

4.2.4. Integrating geostatistical knowledge on estimated parameters 
In agriculture, geostatistical techniques (e.g. semi-variogram anal-

ysis, interpolation) have been widely used for estimating agronomic 
variables in unsampled locations (Oliver and Webster, 2014). Ancillary 
data have also been used to represent the spatial variability of certain 
model parameters (e.g. crop heterogeneity highlighted by a remote 
sensed vegetative index appears to illustrate soil available water ca-
pacity heterogeneity (Cousin et al., 2022)). This geostatistic-based 
knowledge may provide precious prior information on θs

* for inverse 
modeling. Geostatistical Inversion (GI) approach is based on that type of 
knowledge, which can be used to generate a prior spatial map of an 
estimated parameter. The approach focuses on bringing in local ad-
justments on that prior spatial map, by considering observational data. 
Therefore, inversion outcome ends up as a “compromise” between 
geostatistical knowledge and coherence between observed and simu-
lated model outputs (section 1.2.4). 

However, GI applications have been mostly developed in hydrology 
(Franssen and Gómez-Hernández (2002), Gómez-Hernández et al. 
(2003)), but few in domains where crop models’ parameters are 
searched (e.g. precision agriculture). Nevertheless, the potential of 
combining geostatistics and inverse modeling for better estimating θs

* in 
production is raising, thanks to increasing availability of high spatial 
resolution data (e.g. remote sensing). Agriculture stakeholders are also 
getting more interested in practicing tactical field management (Pasquel 
et al., 2022) in order to save budget and/or resources, which requires 
characterizing their fields with a higher spatial resolution. 

Nowadays, still remaining an active research topic, the transfer of GI 
methods from hydrology to precision agriculture has not achieved a 
mature stage. There have not been specific papers that mentioned pre-
liminaries and/or risks of applying the GI approach, for example, with 
crop models. The research is on-going, for instance, Pasquel et al. (2022) 
showed it is important to use adequate performance metrics to compare 
downscaled model simulations and observations, which is an essential 
step during inverse modeling. 

4.3. The proposed procedure of method selection 

This section summarizes the six selection criteria discussed previ-
ously by proposing a procedure of selection (Fig. 8). When available 
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resources permit, model-based approaches (AI and EI) are recom-
mended. Otherwise, practitioners should evaluate whether they have a 
computational budget large enough to cover the expected computa-
tional cost. This information can help them to choose between model- 
based (hybrid) approach and simulation-based methods. Using these 
two resources-oriented criteria, practitioners should be able to either 
make a choice, or restrict candidate methods within those which are 
simulation-based. 

In the latter case, practitioners may consider the four goal-oriented 
criteria to complete the method selection. When a single best solution 
is searched, the FPE approach was put forward for its simplicity. On the 
contrary, if practitioners judge it is essential to account for uncertainties 
of model parameters, the BPE approach can be considered as the best 
choice, unless they would like to update their estimations in time. 
Indeed, SF methods are more suitable for using sequential observational 
data and dynamic models, which makes them the most suitable solution 
when practitioners want to improve dynamic model predictions, for 
example, using satellite data. Lastly, when practitioners have already 
acquired certain geostatistical knowledge on θs

* and wish to integrate it 
during inverse modeling, applying a GI approach is recommended. 

5. Discussion 

5.1. Summary of the review 

The recent emergence of new data sources in agriculture offers new 
opportunities and raises new questions for the use of inverse modeling 
for decision support in agriculture. Based on this fact, this paper pro-
posed a global overview of existing IM approaches. It firstly focused on 
defining the common characteristic of inverse modeling (section 1.1.2). 
IM aims to estimate the parameters (often difficult to measure) that have 
brought a system to its current state, based on observations made of the 

system and knowledge on how it works. Therefore, the review proposed 
a comprehensive classification comprising seven classes of methods 
(section 1.2). 

However, the review might be the first to formally present IM as an 
ensemble of approaches that consists of both simulation-based and 
model-based approaches. Such overview may highlight certain dis-
crepancies in how methods are labeled traditionally as ‘inverse 
modeling’ in the literature. For instance, model-based methods (Gaudin 
et al., (2017), Liang et al., (2021), He et al. (2022)), despite fulfilling the 
definition given in section 1.1.2, are often not considered as IM. While 
certain simulation-based methods (e.g. Frequentist Parameter Estima-
tion (Verbist et al., (2009), Kwon and Hudson (2010), Charoenhir-
unyingyos et al. (2011), Rajabi et al. (2018), Chelil et al. (2022)) are 
excessively used to represent the entire practice of model inversion. This 
may prevent some practitioners from choosing the most appropriate 
approach. The definition of IM presented in section 1.1.2 could be linked 
to more general application cases, and be more specific to problematics 
in agriculture, like data scarcity or limited computational constraints. 
Readers should be informed that model-based methods are viable al-
ternatives for achieving inversion, when simulation cannot be done or 
can only be done with a high computational cost. Likewise, the review 
did not exclude the possibility of using sequential filters for readers who 
are interested in accounting for temporal variability in the parameters 
they seek, as these filters are, in essence, data assimilation methods. The 
review suggested that by employing filters, practitioners can make IM, 
even though data assimilation is not equal to inverse modeling. 

In the literature, when model inversion is used, the reasons why the 
authors chose this approach rather than direct measurement or statis-
tical modeling are rarely explained nor justified. The review aimed at 
tackling this issue by formalizing the rationale behind choosing inverse 
modeling over alternative methodologies (section 2). It also stressed the 
importance of sharing this information and suggested that authors 

Fig. 8. The proposed procedure to select a family of inverse modeling methods in practice.  
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should systematically explain their decision-making process in their 
papers. 

Finally, the review proposed a procedure for authors to help them 
choose the family of IM method that best suits their objectives. The re-
view emphasized the need for careful selection of inversion methods, 
taking into account available resources and practitioners’ goals (section 
3). However, it was noted that such considerations have not been 
adequately addressed in publications in agriculture. The review rec-
ommended estimating the computational cost of a project (section 
3.1.2), although precise quantitative criteria were challenging to iden-
tify in existing publications. Therefore, authors were strongly encour-
aged to provide detailed information about computational materials 
used and time spent on inverse modeling in their future work (Jégo 
et al., (2012), Ferrant et al. (2016)). 

The review did not delve into technical implementation details of the 
presented methods. While certain operational risks were mentioned in 
section 3, specific resolutions were not provided. Consequently, after 
method selection, the task of implementing inverse modeling remains 
challenging, susceptible to equifinality and uncertainties. 

The review did not specify the research according to various crop 
types, because different culture systems have specific operational con-
strains for inverse modeling. For instance, when estimating plant 
available water capacity, annual crops (e.g. wheat, maize) must be 
treated differently compared with perennial plants, like trees or grape-
vines, because the rooting depth of the latters is usually difficult to 
evaluate (Archer and Saayman, (2018), Algayer et al. (2020)). Besides, 
the diversity and complexity of process-based models can vary greatly 
according to crops, which also impacts the choice of inversion method. 
Hence, specifying IM applications even just only for the main types of 
crops can increase considerably the level of complexity of the paper. 

Moreover, the review did not use any quantitative metrics to describe 
the performance of inversion. The choice was meant to keep the review 
general and comprehensive, because the performance of inversion de-
pends on not only the specific combination of process-based model and 
observational data, but also the data availability and computational 
details of each project. For instance, Sreelash et al. (2017) showed 
inversion errors of soil hydraulic properties can vary from 5 to 20 % 
depending on agro-environmental situations; location can also be an 
important factor when inverting a large-scale rice model (Iizumi et al., 
2009); many studies showed that the accuracy of soil hydraulic prop-
erties derived from inverse modeling depends largely on specific soil 
depth (Ritter et al., 2003) and soil type (Montzka et al., 2011). There-
fore, identifying a general method of comparison goes beyond the scope 
of this review. However, readers can find reviews which focus on the 
more specific problems while commenting on the quality of inversion, 
by viewing the work of Cousin et al. (2022) on estimating Available 
Water Capacity, Wan et al. (2021) on inverse modeling with different 
RTM models, Hendricks Franssen et al. (2009) on various methods for 
inverting a spatial model. 

5.2. Perspectives to improve inverse modeling in agriculture 

The analysis of existing IM methods, their classification and the 
identification of practitioners’ motivations have led to the identification 
of several scientific avenues to be explored. 

5.2.1. Bridging observations and simulations while accounting for 
uncertainties 

The availability of observational data plays a pivotal role in driving 
the adoption of inverse modeling applications (section 1.1.2). Kayad 
et al. (2022) demonstrated that the amount of stored data of a 22-ha 
farm in Italy (i.e. digitization footprint) may double by 2025. Recent 
advancements in remote sensing, such as Sentinel (Chintala et al., 2022) 
and Planet (Cheng et al., 2020), sensor technologies like connected 
sensors (Paul et al., 2022), and novel data acquisition strategies like 
crowd sourcing (Minet et al., 2017), offer promising opportunities for 

the expansion of inverse modeling in the agricultural domain. Never-
theless, it is important to note that not all accessible data directly 
correspond to the observations of mechanistic models. It is rare that a 
sensor exists to measure exactly the same variable as the one estimated 
by a model. Given the rapid evolution of sensor technologies, it is hard to 
update timely mechanistic models to obtain outputs that can be directly 
compared with observed data. Consequently, more and more authors are 
developing statistical models to define specific relationship between 
available data and outputs of mechanistic models (González-Sanpedro 
et al., (2008), Campos et al. (2016), Gao et al. (2022)). In other words, 
observed data are used as inputs of statistical models that predict model 
outputs for IM. 

However, introducing statistical models as an intermediate step in 
this process is adding uncertainties on top of the intrinsic measurement 
uncertainties associated with observational data. It is especially the case 
when the observational data themselves are prone to imprecision, like 
crowdsourced data (Pichon et al., 2023) or low cost wireless sensor 
network data (Vandôme et al., 2023). To address this issue, specific al-
gorithms like Quantile Regression Forest (Meinshausen, 2017) or 
Bayesian Network models (Xu et al., 2019) seem to be interesting ap-
proaches to train statistical models in a way that realistically provides 
uncertainty information. This prediction of uncertainty has also to be 
accounted for in model inversion. The Sequential Filter (SF) approach 
may provide a relevant framework for integrating a statistical model and 
its associated uncertainty in IM. The duo-model formalism appears to be 
interesting to use a statistical model as the observational model, which is 
coupled with a mechanistic model that plays the role of the process 
model (section 1.2.3). It is worth noting that despite its interest, SF 
approach is still rarely used in agriculture, possibly due to its technical 
complexity. Additionally, many SF algorithms were originally devel-
oped assuming Gaussian errors. This hypothesis may not be appropriate 
for various agricultural scenarios involving bounded agronomic quan-
tities (e.g. strictly positive or negative values, like Predawn Leaf Water 
Potential (Deloire et al., 2020)). Moreover, the performance of statistical 
models connecting observed data and model outputs may exhibit tem-
poral or spatial variations, resulting in prediction uncertainty depending 
on time or location (Qu et al., 2021). These difficulties have not yet been 
formally addressed for agricultural applications. From a more general 
point of view, future research should explore approaches for considering 
different levels of confidence on the information used in IM, while 
considering their certitude and reliability. 

5.2.2. Combining inverse and statistical modeling 
The potential of statistical models in directly predicting model pa-

rameters (section 2.1) is widely recognized (Khan et al., (2022), Akhter 
and Sofi (2022), Song et al. (2023)), driven by the increasing availability 
of data and the development of powerful learning algorithms (Wang 
et al., 2021). In comparison, inverse modeling does show some limita-
tions. For instance, mechanistic models often require numerous pa-
rameterizations, which are in practice difficult to realize, and can hinder 
accurate inverse modeling. Moreover, for obtaining parameters at a high 
spatial resolution, simulation-based methods may be computationally 
demanding. Although being more efficient, statistical models are weak 
in generalization, especially when applied to complex agricultural sys-
tems (section 2.1.2). Hence, there is a growing interest in combining 
statistical modeling and inverse modeling, aiming at leveraging the 
advantages of both approaches and achieving a cost-effective synergy. 

One potential approach would be to use statistical models to 
generate prior estimations of the parameters of interest (i.e. similar to 
Geostatistical Inversion (GI)), enabling the inverse modeling algorithm 
to identify better solutions more efficiently. As an example, Cousin et al. 
(2022) proposed to integrate inverse modeling with Digital Soil Map-
ping for estimating available water capacity for spatial inverse 
modeling, but this proposal has not yet been formally tested by any 
authors. Moreover, it is important to optimize the amount and the type 
of training data for each specific problem. However, these topics go 
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beyond the scope of this review. 
Hybrid Inversion (HI) also represents a potential approach for 

combining the strength of inverse and statistical modeling, enabling 
cost-effective inverse modeling (section 1.2.5). This approach has 
mainly been used for inverting Radiative Transfer Models (Verrelst 
et al., 2019). Some authors have explored the approach in crop modeling 
(Florin et al. (2011), He et al. (2022)), but its potential benefits have not 
been strongly demonstrated yet. However, training a robust numerical 
inverse model can contribute greatly in model inversion at a large spatial 
scale, while reducing the effort on parameterization. Learning algo-
rithms that aim to predict multiple variables of interest should receive 
considerable attention, as their application in agriculture remains rela-
tively uncommon. 

5.2.3. Improving spatial inversion for agricultural applications 
Mechanistic models are generally designed at a given spatial scale (e. 

g. plant, field, etc.) but observation data may be available at a different 
spatial footprint. In this case, upscaling or downscaling of the model is 
needed to perform inverse modeling. Pasquel et al. (2022) have clearly 
described this phenomenon and the associated challenges of changing 
the spatial scale for forward modelling but the question is still not 
formally addressed for model inversion. 

In the context of precision agriculture (Khan et al., 2023), it is 
essential to account for as properly as possible the within field vari-
ability, so practitioners require model parameters for the entire area 
(Mancipe-Castro and Gutiérrez-Carvajal, 2022). Nonetheless, existing 
studies have revealed that spatial inversion often leads to high estima-
tion errors (Jégo et al., (2015), Dai et al. (2022)), highlighting the lack of 
reliability in current inversion methods (e.g. through Frequentist 
Parameter Estimation). 

One of the main challenges is the parameterization of mechanistic 
models that requires gathering an extensive amount of data. One 
possible solution to overcome this limitation would be replacing the 
original mechanistic model by a more parsimonious numerical emulator 
through model emulation (Blanc (2017), Johnston et al. (2023)). The 
approach builds an emulator that aims at reproducing the same outputs 
comparing to a mechanistic model given certain inputs (O’Hagan 
(2006), Cui et al. (2018)). However, it is unclear whether complex re-
lationships between model inputs and outputs can be accurately simu-
lated using an emulator. Further research in this direction is needed. 
Another approach might be to reduce the charge of parameterization by 
simplifying the spatial pattern of the searched parameter. The objective 
is to discretize the field of interest into zones that regroup similar 
parameter values, while maximizing the variability between them by 
considering ancillary data and human knowledge. Performing inverse 
modeling at a zonal level, instead of at a pixel level, can prevent 
excessive parameterization and save computational resources. The 
resulting outcome may also be easier to utilize under limitations 
imposed by current machinery. However, determining relevant zoning 
criteria and the appropriate number of zones remains a challenge. This 
challenge was explored in the context of precision agriculture (Jiang 
et al., 2018), but impacts of zoning on spatial inversion remain an active 
research topic (Pasquel et al., 2022). Montzka et al. (2012) have dis-
cussed methodologies for treating multi-scale data. Future research 
should focus on introducing ancillary spatial data with various spatial 
resolutions in IM projects, and selecting adequate spatial scale and 
remote sensing techniques that answer the best modelers’ practical 
concerns. 

Finally, and more generally, it is important to acknowledge that most 
of the papers on spatial model inversion are using what Pasquel et al. 
(2022) called spatialized models. The considered models are point- 
based models and they are simply run at different locations. Very few 
authors have used what Pasquel et al. (2022) called spatial models (Yang 
et al., 2021), which intrinsically simulate the interaction between 
modeled components in space. Given the importance of the spatial 
structure of information in agricultural phenomena and for decision- 

making, the exploration of approaches allowing this type of models to 
be inverted appears to be an important focus for future research. 
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