Biology, ecology and control of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), with special reference to biological control using entomopathogenic nematode (EPN): a review
Abstract
Background:
Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) is a polyphagous, holometabolous and multivoltine insect that has spread from its supposed origin in sub-Saharan Africa to regions between 45° north and 45° south geographic latitude. It is considered an important economic pest worldwide, due to the direct damage caused to fruit, the high cost of its management and the restriction of the export of fruit from infested countries to markets in countries exempt from infestation. If no control measures are applied against this pest, C. capitata can destroy 50% of total production or 100% in “preferred” hosts. Currently, chemical insecticides are commonly applied to control medflies due to their rapid and satisfactory action; however, this method has many problems, including the destruction of non-target organisms, residues on agricultural products, environmental pollution and the development of insect resistance to insecticides. These negative effects have led scientists to search for more sustainable and ecological new control methods. Recently, great attention has been given to biological control, which has become a practical option for the ecological control of pests. Among biological control, entomopathogenic nematodes (EPNs) have great potential as control agents for soil-borne pests, like C. capitata.
Main body:
This review focuses particularly on the control of C. capitata, specifically emphasizing the use of EPNs as biological control agents and their integration into integrated pest management. It is apparent from this study that species of Steinernema sp. and Heterorhabditis sp. are highly virulent against the late instars larvae and adults of C. capitata under controlled laboratory conditions, as well as these EPNs significantly reduce the population of this pest in semi-field and field trials. The pathogenicity of entomopathogenic nematodes against C. capitata was influenced by natural physicochemical and anthropogenic factors. The most effective EPNs were found to be compatible with certain mineral, chemical and biological products with insecticidal activity, indicating that these products can be combined with EPNs in the context of integrated control.
Conclusion:
Based on this, EPNs have a promising future as an alternative to conventional chemicals against Mediterranean fruit fly.