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ABSTRACT
Systems Biology Markup Language (SBML) has emerged as a standard for representing
biological models, facilitating model sharing and interoperability. It stores many
types of data and complex relationships, complicating data management and analysis.
Traditional database management systems struggle to effectively capture these complex
networks of interactions within biological systems. Graph-oriented databases perform
well in managing interactions between different entities. We present neo4jsbml, a new
solution that bridges the gap between the Systems Biology Markup Language data and
the Neo4j database, for storing, querying and analyzing data. The Systems Biology
Markup Language organizes biological entities in a hierarchical structure, reflecting
their interdependencies. The inherent graphical structure represents these hierarchical
relationships, offering a natural and efficient means of navigating and exploring the
model’s components. Neo4j is an excellent solution for handling this type of data.
By representing entities as nodes and their relationships as edges, Cypher, Neo4j’s
query language, efficiently traverses this type of graph representing complex biological
networks. We have developed neo4jsbml, a Python library for importing Systems
Biology Markup Language data into a Neo4j database using a user-defined schema.
By leveraging Neo4j’s graphical database technology, exploration of complex biological
networks becomes intuitive and information retrieval efficient. Neo4jsbml is a tool
designed to import Systems Biology Markup Language data into a Neo4j database.
Only the desired data is loaded into the Neo4j database. neo4jsbml is user-friendly and
can become a useful new companion for visualizing and analyzing metabolic models
through the Neo4j graphical database. neo4jsbml is open source software and available
at https://github.com/brsynth/neo4jsbml.

Subjects Bioinformatics, Computational Biology, Computational Science
Keywords SBML, Neo4j, Database, Neo4jsbml, Genome-scale metabolic model

INTRODUCTION
Genome-Scale Metabolic Models (GEMs) of biological systems are commonly represented
using the Systems Biology Markup Language (SBML) format. This format is actively
maintained and updated, especially, by adding new features to meet new needs. Using
a standard format facilitates interoperability repeatability, and reproducibility. Several
standards have emerged in systems biology (Shin et al., 2023). The CellML standard
stores computer-based mathematical models (Clerx et al., 2020) and the Simulation
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Experiment Description Markup Language (SED-ML) (Waltemath et al., 2011) enables
the reproduction of simulation experiments. The use of a standard format to represent
data enables the creation of a rich software environment such as COPASI (Hoops et al.,
2006), Tellurium (Choi et al., 2018) andMASSpy (Haiman et al., 2021) for the construction,
simulation, and visualization of dynamic metabolic models. A wide range of issues can be
addressed in this way, including the construction of metabolic pathways (Shen et al., 2020),
study of secondary metabolism in bacteria (Qiu, Yang & Zeng, 2023) and representation
of cell behavior and interactions in cancer (Kazerouni et al., 2020). To represent these
types of biological processes, the SBML format encodes several nested components and
their interactions in an XML-based document. The standard represents complex systems
by organizing the data as components. To illustrate, biological systems can contain
thousands of metabolites and reactions, leading to a high level of complexity in their
interactions (Hucka et al., 2019). The SBML Level 3 standard is well-suited for describing
reaction-based models. To represent different types of models, such as constraint-based,
logical network, and rule-based models, the SBML standard has been enhanced using
different packages. As described in their specifications, these packages add components or
properties to the model.

Neo4j is a powerful graphdatabase that enables the storage, querying, and analysis of large
amounts of data. Unlike relational databases, Neo4j leverages the power of graph theory,
representing data as nodes or relationships which embed properties to store additional
information. The graph-based structure is well-suited to tackle intricate relationships and
decipher complex problems, such as social networks and network analysis. The graph
query language, named Cypher, allows querying the graph to retrieve connected data and
perform create, read, update, or delete operations on the database. Neo4j ensures data
integrity and consistency by respecting the ACID principle (Meier & Kaufmann, 2019).
Specific capabilities can be added to the Neo4j database through a software extension, a
plugin, enabling users to customize and enhance its features for dedicated applications.
The Neo4j database comes with a broad ecosystem which includes tools like Arrows for
designing the database structure, numerous drivers for communicating with the database,
building queries intuitively with Cypher and Bloom for visualizing data.

With Neo4j, metabolic models can be represented as a network of nodes and
relationships, where each node represents a biological or supporting object within a
component, such as a metabolite, reaction, or unit definition. Each relationship serves
as a connection between two metabolic reactions, enabling easy exploration of different
pathways and interactions between human metabolic data (Balaur et al., 2016). Using
Neo4j with metabolic models can provide valuable insights into complex interactions, as
it allows for the integration of heterogeneous data, such as chemical species, reactions,
enzymes, and taxonomic data. This integration can aid in identifying key players across a
wide range of biological application domains (Swainston et al., 2017).

More recently, based on the graph database MaSyMoS, which stores SBML and CellML
models to represent biological systems in terms of functional, behavioral, and structural
aspects (Henkel, Wolkenhauer & Waltemath, 2015), a protocol was developed to compare
biochemical reaction networks (Lambusch et al., 2018). Nonetheless, analyzing its own
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SBML data using Neo4j remains a challenge. Biochem4j provides a web interface that does
not allow users to analyze their data in their database. Recon2Neo4j and MaSyMoS created
Java software using the JSBML library (Rodriguez et al., 2015) to import the data into their
database. However, data loading is performed according to a predefined schema that retain
several SBML components or properties that are targeted by their applications.

We are presenting neo4jsbml, a user-friendly Python package to import SBML files
into a Neo4j database. Neo4jsbml utilizes tools developed by Neo4j to define the database
schema, load data, query entities and relationships, and visualize the created graph. This
package offers flexibility, extensibility, and ease of use in combining graph databases with
SBML files. Flexibility is provided by leaving the choice of entities to be analyzed by the
researcher. Extensibility is based on the intrinsic operation of neo4jsbml via introspection.
Finally, neo4jsbml can be used through the command line and requires no programming
skill. The graph can be enriched with heterogeneous data, allowing researchers to build,
manipulate, annotate, and store their data with greater efficiency.

MATERIAL AND METHODS
Implementation
SBML data are structured according to the specifications defined by Hucka et al. (2019).
This file format has a skeleton of main components, but optional data can be added
through the use of packages. The SBML specification Level 3 Version 2 describes eleven
components: function definitions, unit definitions, compartments, species, parameters,
initial assignments, rules, constraints, reactions, events and themodel. Each component has
a specific role and stores specific and generic information. The model component is special,
it serves as a container for the other components but also supports some information, such
as the identifier of the model, which can be exploited.

Sometimes, not all components are suitable for analysis. To retain the desirable data
from SBML documents, neo4jsbml utilizes the concept of introspection. Introspection
allows a program to examine an object’s characteristics, such as its name, properties,
and methods, making the program more efficient and robust. It is a powerful feature of
object-oriented languages that exposes details about objects at runtime, and Python ships
with a few built-in functions for this purpose. When importing SBML data into Neo4j,
introspection is used to automate the extraction of properties and associated structured
values of items mentioned in a definition schema. In this way, the user filters the main
components and attributes to be loaded into the database.

Running method
The usage of the tool is described in Fig. 1.

It takes place in two stages. First of all, the user creates a schema defining which entities
will be selected from the SBML model (Fig. 2). Building a schema requires certain rules,
such as mapping the names of different items found in the schema to their corresponding
names as defined in the SBML specifications. To illustrate this principle, node labels and
node properties indicated in the schema need to match the name of the SBML component
and the properties belonging to the component, respectively. Given this information,
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Figure 1 Workflow for utilizing neo4jsbml. First, a schema is created with https://arrows.app. Next,
aided by the schema, the SBML data is loaded into the Neo4j database using neo4jsbml. Softwares are
green, files are gray, the database is blue.

Full-size DOI: 10.7717/peerj.16726/fig-1

neo4jsbml identifies the objects and attributes to extract from the SBML, thanks to the
library libsbml. Thus, only the entities required for analysis were loaded into Neo4j. SBML
specifications indicate which components are linked to each other by storing an identifier
corresponding to another component as an attribute. Therefore, neo4jsbml checks whether
the two components are linked by following the strategies shown in Fig. 3. However, the
Neo4j database operates on a directed graph; therefore, neo4jsbml infers directionality
as indicated by the schema. Once the data are imported into Neo4j, the entities and
relationships from the SBML model can be queried by Cypher through Neo4j.

Use cases
To illustrate the power of neo4jsbml, three use cases were performed involving three
Escherichia coli GEMs. The first one, called iAF1260, was published in 2007 (Feist et al.,
2007). The second one, named iML1515, was established in 2017 (Monk et al., 2017). The
last one, a small-scale model baptized e_coli_core was derived from an E. coli model. All
models were downloaded from the BiGG Models knowledgebase (King et al., 2016) and
the MetaNetX database (Moretti et al., 2021).

A Neo4j plugin, named neo4jefmtool, based on efmtool (Terzer & Stelling, 2008) was
created to enumerate the metabolic pathways, available at https://github.com/brsynth/
neo4jsbml.

The schema described in Fig. 2A was used to import data into Neo4j for the first two use
cases, whereas the schema corresponding to Fig. 2B was used for the last case. Both schemas
were created using Arrows, available at https://arrows.app/. To provide a general overview
of the use of neo4jsbml, some examples of models embedded in the SBML specifications
are shown in Figs. S1, S2, and S3.

Neo4j version 5.12 and neo4jsbml version 0.12.0 (10.5281/zenodo.8419209) were used
for this study.

RESULTS
We developed neo4jsbml as a modular Python package that can be used as a standalone
program or incorporated as a library in other programs. It is available through the Conda
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Figure 2 Schemas created from https://arrows.app. The entities and their relationships are represented
by a circle and an arrow, respectively. Node label matches the name of a SBML component. Each node
embeds the targeted properties. Types associated to each property are optional. (A) This schema repre-
sents various entities found in genome-scale models. (B) This schema is focused on the extraction of a
metabolic network.

Full-size DOI: 10.7717/peerj.16726/fig-2

package management system (conda-forge community, 2015) and runs on all platforms
without requiring extra privileges. SBML files are loaded by neo4jsbml, using the libsbml
library (Bornstein et al., 2008), and the selected data will be loaded into the Neo4j database
using the Python Neo4j driver, based on a database schema. Twelve packages are part or
will be part of the SBML standard, but only eight have been fully implemented by the
library libsbml. Neo4jsbml can consider four plugins: Flux Balance Constraints (Olivier
& Bergmann, 2018), Groups (Hucka & Smith, 2016), Layout (Gauges et al., 2015) and
Qualitative Models (Chaouiya et al., 2015) (Table S1). Importing data into Neo4j is done
through pure Cypher queries, with no additional Neo4j plugins necessary.

To demonstrate the usefulness of neo4jsbml, we conducted a proof of concept study
with three use cases.

Comparing two models
We compared two versions of the E. coli genome-scale metabolic model to highlight
improvements between an older and a newer version from two repositories: BiGG and
MetaNetX. Firstly, we compared the number of nodes and relationships in both models
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Figure 3 Examples of schemas illustrating how neo4jsbml uses introspection to associate one entity
with another. (A) The object libsbml.Species has a method named getCompartment() that retrieves the
identifier of the libsbml.Compartment object. The mapping between these entities is established by calling
a method based on the name of one entity. (B) The object libsbml.LocalParameter has a method named
getUnits() that retrieves the identifier of the libsbml.UnitDefinition object. The linkage between these enti-
ties is possible thanks to the name of the relationship. (C) The objects in the libsbml library have a method
named getListOfAllElements() that leads to list some nested components. The libsbml.Reaction object can
host several objects, including a libsbml.LocalParameter object. The relationship is created according to the
name of the entities.

Full-size DOI: 10.7717/peerj.16726/fig-3

(Table 1). More than four thousand entities and twenty thousand relationships were loaded
into Neo4j from the E. coli genome-scale models, iML1515 and iAF1260. Given one version
of E. coli, the number of chemical species and reactions differed between the BiGG and
MetaNetX databases. In addition, the iML1515 genome-scale metabolic model contained
more nodes and relationships compared to the iAF1260 genome-scale metabolic model.

Next, we analyzed the reactions associated with the fumarate metabolite (Fig. 4). The
Cypher query is described in Eq. (1).

(1)

One additional reaction was linked to the fumarate metabolite in the iML1515 model
compared to the iAF1260 model.

Viewing a metabolic pathway
A common application with a metabolic network is to visualize biological pathways derived
from genome-scale models. In this case, the phosphoenolpyruvate metabolite was targeted
to identify the chemical species in the extracellular compartment that produce it through
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Table 1 Number of entities and relationships loaded in Neo4j for the iAF1260 and iML1515 GEMs
provided by the BiGG andMetaNetX databases.Nodes are in lowercase, relationships are in uppercase.

BiGG MetaNetX

Node/Relationship iAF1260 iML1515 iAF1260 iML1515

Compartment 3 3 4 4
Species 1668 1877 1976 2217
Parameter 8 5 7 5
Reaction 2382 2712 2374 2704
Model 1 1 1 1
UnitDefinition 1 1 1 1
GeneProduct 1261 1516 1262 1517
IN_COMPARTMENT 1668 1877 1976 2217
HAS_PRODUCT 4714 5328 4920 5529
HAS_LOWERFLUXBOUND 2382 2712 2374 2704
HAS_UPPERFLUXBOUND 2382 2712 2374 2704
HAS_PARAMETER 8 5 7 5
HAS_UNIT 8 5 7 5
IS_IMPLIED 3747 4624 3750 4627
IS_REACTANT 4517 5247 4553 5242
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Figure 4 Visualization of the fumarate metabolite (blue) and its nearest neighbors: reactions (orange)
and compartment (purple) in twomodels (iAF1260 on the left and iML1515 on the right) sequentially
imported into Neo4j by neo4jsbml. The reaction, Fumarate dependent DHORD, was only shown in the
iML1515 model.

Full-size DOI: 10.7717/peerj.16726/fig-4
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exactly two reactions in the core model of E. coli. Firstly, the entire genome-scale model
was imported into Neo4j.

(2)

(3)

Then, the reactions, metabolites, and compartments involved in the metabolic pathway
were extracted using two consecutive Cypher queries: dense nodes were flagged Eq. (2) and
the paths were selected Eq. (3). With the constraints defined above, the Pyruvate metabolite
was identified as a key player (Fig. 5).

Enumerate metabolic pathways
The enumeration of metabolic pathways identifies and lists all the possible routes of
biochemical reactions within a metabolic network. From the core model of E. coli,
pathways involving the Formate and the Acetaldehyde metabolites were searched. Species,
SpeciesReference and Reaction entities were loaded into Neo4j from the genome-scale
model.

(4)

(5)

(6)
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Figure 6 Two pathways were identified in the E. coli core model. (A) A first pathway linking the For-
mate to the Acetaldehyde metabolites was extracted. (B) A second pathway linking the Formate to the
Ethanol metabolites was identified.

Full-size DOI: 10.7717/peerj.16726/fig-6

Then, graph reconstruction was performed by merging the Species and SpeciesReference
nodes Eq. (4) and removing Species that were linked to fewer than four reactions Eq. (5).
Next, the neo4jefmtool plugin was used to enumerate the pathways involving the Fumarate
and the Acetaldehyde metabolites Eq. (6). The two pathways identified are shown in the
Fig. 6.

DISCUSSIONS
Comparing genome-scale models, viewing metabolic networks and enumerating pathways
are common applications in systems biology. On the one hand, biological processes are
stored in the SBML format. On the other hand, Neo4j is a powerful graph database suited
to link related entities, using the Cypher language. Neo4jsbml aims to conciliate both.
The first use case showed the capability to perform quantitative and qualitative analysis
on genome-scale models. Neo4j has a comprehensive set of features, as described by
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King et al. (2015) which include the ability to navigate and search through visualizations,
design and customize pathway maps, and represent diverse data types. The second example
highlights the ability of Neo4j to serve as an alternative viewer for visualizing metabolic
pathways. The last illustration emphasizes the capacity of neo4jsbml to retain the required
data and the strength of Neo4j to conduct specialized analyses.

Neo4jsbml employs a novel approach based on the creation of schema entities to
identify entities that are useful for a dedicated application. Introspection is a programmatic
principle that maps the schema of certain entities to a model to extract desired data.
Therefore, neo4jsbml can deal with Level 2 Version 5 of the SBML standard (Fig. S3) and
partially with SBML packages (Fig. S2). Our aim was to develop a tool that is as simple as
possible, requiring only command-line skills.

However, as we observed for the use cases, the more complex the application, the
more intricate the Cypher queries to perform graph refactoring or to extract the data.
Additionally, programming skills may be required to develop extensions to perform
dedicated analyses. In rare circumstances, data imported into Neo4j can produce
unexpected results. The first scenario is shown in Fig. S3J. Themodel has two Event entities,
each with one Event Assignment entity that supports the variable property. Without setting
an id property for each Event Assignment, in the model, it would be difficult to infer
the wishes of the user. The second scenario concerns the model presented in Fig. S2C.
The Layout entity is linked to its Dimensions entity as well as to all other Dimensions
entities found in the model. In these cases, a prior modification of the model or graph
refactoring in Neo4j is required to meet expectations. In addition, if several models are
loaded sequentially into the database, some entities can be the same, and the relationships
between the models are mixed. Neo4jsbml alleviates this difficulty by adding an additional
identifier to all imported entities.

The SBML standard represents mathematical expressions using MathML and
annotations using the Resource Description Framework by adding XML elements to
the model. Neo4jsbml extracts mathematical expressions as strings whereas annotations
are loaded with XML tags.

However, neo4jsbml is highly dependent on the web application Arrows to create the
schema of entities. To ensure a long-term future, neo4jsbml will need to support at least
one other tool to provide the schema of entities. In addition, neo4jsbml uses simple Cypher
queries to import data into Neo4j. It would be valuable to load data into another graph
database using Cypher.

More broadly, introspection-based programming patterns can be used to extract
information from other standards and import the required data into sql, no-sql or graph-
oriented databases.

CONCLUSIONS
Neo4jsbml is a user-friendly Python package and it takes advantage of existing software to
define the database schema, parse SBML files, and import the data into the Neo4j database.
The three use cases demonstrated the benefits of visualizing SBML data as a graph. The
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biological processes, specified thanks to SBML standard, contain intricate interactions
between biological entities, and Neo4j’s graph represents these relationships with nodes
and edges, making it easier to analyze and visualize complex biological networks. Using
Cypher, exploring data through statistics or creating subgraphs was intuitive. With the help
of the schema database and introspection concept, only relevant information is loaded into
the database. We foresee neo4jsbml as an essential tool for bridging the gap between SBML
data and Neo4j. It will enable researchers to visualize and analyze relationships between
different entities and fully leverage the capabilities of Neo4j.
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