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Abstract28

1. Climate extremes and biotic interactions at the neighbourhood scale affect tropical forest dy-29

namics with long-term consequences for biodiversity, global carbon cycling and climate change30

mitigation. However, forest disturbance may change crowding intensity, and thus the relative con-31

tribution of climate extremes and neighbourhood interactions on tree growth, thereby influencing32

tropical forest resistance and resilience to climate change. Here, we aim to evaluate the sepa-33

rate and interactive effects of climate and neighbours on tree growth in old-growth and disturbed34

tropical forests.35

2. We used 30 years of growth measurements for over 300 tropical tree species from 15 forest36

plots in French Guiana to investigate the separate and interactive effects of climate anomalies37

(in solar radiation, maximum temperature, vapor pressure deficit and climatic water deficit) and38

neighbourhood crowding on individual tree growth. Contrasting old-growth and selectively-logged39

forests, we also examined how disturbance history affects tree growth sensitivity to climate and40

neighbours. Finally, for the most abundant 100 species, we evaluated the role of 12 functional41

traits pertaining to water relations, light and carbon use in mediating tree growth sensitivity to42

climate anomalies, neighbourhood crowding, and their interactions.43

3. Climate anomalies tied to heat and drought stress and neighbourhood crowding independently44

reduced tree growth, and showed positive interactive effects which attenuated their separate effects45

on tree growth. Their separate and interactive effects were stronger in disturbed than undisturbed46

forests. Fast-growing species (i.e. higher intrinsic growth rates) were more abundant in disturbed47

forests and more sensitive to climate anomalies and neighbourhood crowding. Traits related to48

water relations, light and carbon use captured species sensitivities to different climate anomalies49

and neighbourhood crowding levels, but were weak predictors of their interactions.50

4. Synthesis: Our results demonstrate that climate anomalies and neighbourhood crowding can51

interact to shape tropical tree growth, suggesting that considering the biotic context may improve52

predictions of tropical forest dynamics facing altered climate regimes. Furthermore, species traits53

can capture tree growth sensitivity to the separate effects of climate and neighbours, suggesting54
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that better representing leading functional dimensions in tropical tree strategies offers a promising55

way towards a better understanding of the underlying ecological mechanisms that govern tropical56

forest dynamics.57

Keywords: climate change, drought stress, functional traits, tropical forest, tree growth, water58

relations59
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Résumé60

1. Les extrêmes climatiques ainsi que les interactions biotiques à l’échelle du voisinage, affectent61

la dynamique des forêts tropicales, avec des conséquences à long terme pour la biodiversité, le62

cycle global du carbone et l’atténuation du changement climatique. Cependant, les perturbations63

forestières peuvent faire varier localement les voisinages, et ainsi modifier la contribution relative64

des extrêmes climatiques et des interactions de voisinage sur la croissance des arbres, ce qui peut65

impacter la résistance et la résilience des forêts tropicales au changement climatique. Nos travaux66

visent à évaluer les effets individuels et interactifs du climat et des voisins sur la croissance des67

arbres dans les forêts tropicales non-pertubées et perturbées.68

2. Nous avons utilisé 30 ans de mesures de croissance pour plus de 300 espèces d’arbres tropicaux69

provenant de 15 parcelles forestières en Guyane française pour étudier les effets individuels et70

interactifs des anomalies climatiques (en termes de rayonnement solaire, de température maximale,71

de déficit de pression de vapeur, et de déficit hydrique climatique) et des interactions de voisinage72

sur la croissance individuelle des arbres. En comparant les forêts exploitées sélectivement aux73

forêtsnon-pertubées, nous avons également examiné comment l’historique des perturbations peut74

influencer la sensibilité de la croissance des arbres au climat et aux voisins. Enfin, pour les 10075

espèces les plus abondantes, nous avons évalué le rôle de 12 traits fonctionnels reflétant les relations76

hydriques, l’utilisation de la lumière et du carbone sur la réponse de la croissance des arbres aux77

anomalies climatiques, aux interactions de voisinage et à leurs interactions.78

3. Les anomalies climatiques liées aux stress thermique et hydrique, ainsi que les interactions79

de voisinage, réduisent la croissance des arbres. De plus, elles peuvent interagir positivement,80

ce qui atténue leurs effets individuels sur la croissance des arbres. Leurs effets individuels et81

interactifs sont plus forts dans les forêts perturbées que dans les forêts non-perturbées. Les espèces82

à croissance rapide (c’est-à-dire à taux de croissance intrinsèque plus élevé) sont plus abondantes83

dans les forêts perturbées, et aussi plus sensibles aux anomalies climatiques et aux interactions84

de voisinage. Les traits liées aux relations hydriques, à la lumière et à l’utilisation du carbone85

captent la sensibilité des espèces aux différentes anomalies climatiques et aux différents niveaux86
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d’interactions de voisinage, mais ne prédisent pas leurs interactions.87

4. Synthèse: Nos résultats montrent que les anomalies climatiques et les interactions de voisinage88

peuvent interagir pour façonner la croissance des arbres tropicaux, ce qui suggère que prendre en89

compte le contexte biotique peut améliorer les prévisions de la dynamique des forêts tropicales90

face aux changements climatiques. En outre, les traits des espèces peuvent capter la sensibilité de91

la croissance des arbres aux effets individuels du climat et des voisins, ce qui suggère que mieux92

représenter les principales dimensions des stratégies fonctionnelles des arbres tropicaux ouvre sur93

une meilleure compréhension des mécanismes écologiques qui régissent la dynamique des forêts94

tropicales.95

Mots-clés : changement climatique, stress hydriqyue, traits fonctionnels, forêt tropicale, crois-96

sance des arbres, relations hydriques97
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Introduction98

Tropical forests are biodiversity hotspots (Gatti et al. 2022, Pillay et al. 2022) and major contrib-99

utors to global carbon and water cycles (Needham et al. 2018, Pan et al. 2011), but the services100

they provide to human populations are threatened by climate change and anthropogenic distur-101

bance (Brodribb et al. 2020, Malhi et al. 2008, Nunes et al. 2022, Vancutsem et al. 2021). In102

particular, extreme droughts are linked to higher solar radiation, maximum temperatures, atmo-103

spheric evaporative demands and lower soil water availability, which have been shown to negatively104

impact tropical forest dynamics by reducing tree growth and increasing tree mortality (Bauman105

et al. 2022b,a, Rifai et al. 2018). As climate change is predicted to result in higher frequencies,106

intensities, and duration of extreme droughts in the tropics (Shukla et al. 2022), this may have107

important long-term implications for tropical tree dynamics and diversity, and therefore global108

carbon sequestration and residence time (Sullivan et al. 2020).109

Tropical forest response to climate extremes is the compounded outcome of individual tree re-110

sponses, which may depend on local biotic interactions, such as interactions between neighbour-111

ing trees. While crowding by neighbours generally reduces tropical tree growth (Dawkins 1959,112

Gourlet-Fleury and Houllier 2000, Fortunel et al. 2018, Uriarte et al. 2004, 2010), the net effects113

of neighbourhood interactions may change from negative to positive under specific environmental114

conditions (Grossiord 2020, Fichtner et al. 2020) such as with water levels (Aakala et al. 2018) and115

disturbance history. For instance, competition for water may accentuate the negative effects of116

water limitations on tree growth, as shown in temperate and Mediterranean forests (Bottero et al.117

2017, Gómez-Aparicio et al. 2011, Astigarraga et al. 2020). Conversely, species interactions can118

alter the depth of soil water uptake (Grossiord et al. 2014a) or transpiration response to increasing119

drought stress (Grossiord et al. 2014b, Haberstroh and Werner 2022). Yet, the effects of climate120

on tree growth have rarely been evaluated together with the effects of neighbourhood crowding in121

tropical forests (but see: Uriarte et al. 2016a), and we still know little about the extent to which122

the interaction between climate extremes and neighbourhood interactions can attenuate or exac-123

erbate their separate effects on tree growth, especially in tropical forests with different disturbance124
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histories.125

More than half of the world’s tropical forests are designated production forests (Blaser et al.126

2011), and forest management such as selective logging and thinning has long-lasting effects on127

forest composition, diversity and structure (Clark and Covey 2012, Cannon et al. 1994, Finegan128

and Camacho 1999, Mirabel et al. 2021, Osazuwa-Peters et al. 2015), which may alter forest129

resistance and resilience to extreme climate events (Hiltner et al. 2021). Specifically, disturbed130

forests host more light-demanding tree species than old-growth forests (Carreño-Rocabado et al.131

2012, Baraloto et al. 2012, Kuusipalo et al. 1996, Mirabel et al. 2020, 2021, Whitmore 1989),132

and these fast-growing species may be more sensitive to climate extremes (Bauman et al. 2022a,133

Uriarte et al. 2016b) and neighbourhood crowding (Fortunel et al. 2016). Moreover, selective134

logging and thinning creates gaps, thereby increasing the openness of forest canopies and changing135

micro-climatic conditions (Ghuman and Lal 1987, Peña-Claros et al. 2008). These logging gaps136

influence tree growth rates (Baraloto et al. 2005, Hérault et al. 2010, Peña-Claros et al. 2008, Silva137

et al. 1995, Finegan et al. 1999), but it remains unclear how disturbance history may influence138

tree growth responses to climate and neighbours.139

Species differences in growth sensitivity to climate and neighbours likely depend on their functional140

strategies. While commonly measured traits pertaining to light capture, nutrient and carbon use141

such as specific leaf area and wood density can capture species differences in tree growth response142

to neighbourhood crowding (Fortunel et al. 2016, Kunstler et al. 2016), they are not always good143

proxies of species sensitivity to drought (Anderegg et al. 2018, Powell et al. 2017, Powers et al.144

2020, Wagner et al. 2014b, but see: Uriarte et al. 2016a, Greenwood et al. 2017, Serra-Maluquer145

et al. 2022). A promising way forward is to integrate leaf traits that directly link to plant carbon-146

water relations or physiological responses to heat and water stress (Anderegg et al. 2018, Barros147

et al. 2019, McGregor et al. 2021, Powell et al. 2017, Powers et al. 2020, Rowland et al. 2021,148

Serra-Maluquer et al. 2022) (see: Table 1). For instance, stomatal density (Drake et al. 2013,149

Machado et al. 2021) and oxygen and carbon isotope composition (Farquhar et al. 1989, 2007,150

Moreno-Gutiérrez et al. 2012) can determine trade-offs between carbon assimilation and water loss151

at the leaf level under water-limited conditions (Guerrieri et al. 2019, Prieto et al. 2018, Scheidegger152
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et al. 2000, Wang and Wen 2022b). Leaf water potential at turgor loss point is linked to species153

abilities to maintain key plant functions and growth during drought (Bartlett et al. 2012b, 2016,154

Maréchaux et al. 2018). Leaf minimum conductance (Blackman et al. 2019, Duursma et al. 2019,155

Machado et al. 2021) and leaf saturated water content (Blackman et al. 2019, Luo et al. 2021) may156

indicate species ability to resist or avoid heat- and drought-induced desiccation of plant tissue, and157

hence the potential for rapid post-drought growth. These leaf traits likely influence competition158

for water, but no study so far has evaluated their role in mediating tree growth response in the159

context of neighbourhood effects.160

Here, we tested the separate and interactive effects of climate and neighbours by leveraging 30 years161

of individual tree diameter growth data for more than 300 tropical tree species from 15 tropical162

forest plots, including six old-growth forest plots and nine post-logging forest plots, located at the163

CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement)164

experimental site of Paracou in French Guiana (Gourlet-Fleury et al. 2004). For the most abundant165

species (ca. 100), we collected 12 traits pertaining to water relations, light capture and carbon166

use (Table 1) to examine their role in mediating tree growth response to climate anomalies and167

neighbourhood crowding. Specifically we asked:168

1) How do climate anomalies and neighbourhood crowding influence tree growth? We expect169

tree growth to decline with positive anomalies in maximum temperature (Tmax), atmospheric170

evaporative demand (i.e. vapor pressure deficit, VPD) and climatic water deficit (CWD). As higher171

levels of solar radiation (SRad) lead to increased light availability, but also higher temperature and172

vapour pressure deficit, positive anomalies in SRad could either enhance or reduce tree growth.173

We further expect tree growth to decrease with higher neighbourhood crowding. Finally, we174

expect that climate anomalies and neighbourhood crowding can interact, thereby accentuating or175

attenuating their separate effects on tree growth.176

2) Does tree growth response to climate and neighbours vary with forest disturbance history? We177

expect stronger climate-induced growth declines in disturbed forests as a more open canopy offers178

less buffer against climate anomalies. We also expect stronger sensitivity to climate anomalies and179
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neighbourhood crowding in disturbed forests as they host more fast-growing species that may be180

more vulnerable to both abiotic and biotic stressors.181

3) Do leaf water-related traits and commonly-measured leaf and stem traits pertaining to light182

and carbon use capture species differences in tree growth response to climate anomalies and neigh-183

bourhood crowding? We expect greater tree growth sensitivity to heat and drought stress and184

neighbourhood crowding in fast-growing, light-demanding, water-spender or drought intolerant185

species.186

Materials and Methods187

Study site188

Our analyses used the permanent forest plot system of the CIRAD experimental site at the Paracou189

Tropical Forest Research Station (5°18’N, 52°53’W) in French Guiana. Mean annual precipitation190

at Paracou is 3041mmyr−1, with a pronounced dry season (< 100mmmonth−1) from August191

through November. Paracou is characterised as a tropical lowland forest site consisting of old-192

growth terra firme forest. Fifteen permanent forest plots of 6.25 ha each were established from193

1984 to 1990, of which nine plots were subjected to different types (selective logging and thinning)194

and intensities of sylvicultural treatments (Fig. 1), resulting in above-ground biomass (AGB) loss195

(12–33% AGB loss in the three plots subjected to selective logging and 33-56% AGB loss in the six196

plots that were subjected to selective logging and thinning) (Gourlet-Fleury et al. 2004, Hérault197

and Piponiot 2018) and differences in species composition (Mirabel et al. 2020, 2021). In the 2021198

inventory, there were 70,238 trees belonging to 591 species (including subspecies), 227 genera and199

63 families.200

Tree growth and neighbourhood data201

In each of the 15 forest plots, all trees ≥ 10 cm DBH (diameter at breast height, i.e. 1.3m) were202

mapped to a precision of 0.5m and were botanically identified. Tree inventories took place at203
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Figure 1. Spatial dimension of the 15 permanent forest plots and stand density in 10m×10m quadrats,
given as basal area (m2 ha−1), in a) 1991 and b) 2019. Disturbed plots are denoted by black contours.
Box plots show differences in basal area between the 6 undisturbed (U) and the 9 disturbed (D) forest
plots in c) 1991 and d) 2019. t value of Welch’s two sample t-test, performed on log transformed basal
area, and significance level (*** = p<0.001) are given in the left hand corner of the box plots.

one or two year intervals during which the status (alive/dead) and circumference to a precision of204

0.5 cm of every tree were recorded, from which we calculated DBH. New recruits (trees reaching205

the threshold DBH of 10 cm) were mapped and identified at each census (Gourlet-Fleury et al.206

2004, Derroire et al. 2022a,b,c,d,e). To reduce noise in annual growth data (potentially caused207

by measurement/rounding errors), for each individual i of species s, we calculated the annualised208

absolute diameter growth rate (AGR, cmyr−1) from DBH values between censuses t and t− 2 as:209

AGRi,s,t =
DBHi,s,t −DBHi,s,t−2

t− (t− 2)
(eqn 1)
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For each individual tree i, we thus calculated AGR for 15 two-year census intervals between 1991210

and 2021. We excluded the following stems from the focal tree data: (a) Palm species due to their211

lack of secondary growth, (b) individuals with human-induced damage (e.g. through logging or212

thinning treatments), (c) missing or uncertain botanical determination, (d) with estimated cir-213

cumference (e.g. due to buttresses), and (e) abnormal tree growth values (≤ −2 cmyr−1, resulting214

from a shift in the point of measurement, and ≥ 5 cmyr−1). The upper and lower thresholds for215

abnormal growth values were based on expert knowledge for Paracou site.216

The growth of an individual tree i can be influenced by its N(i) neighbours within a given radius217

via their size (DBH2) and the inverse of their distance to the focal tree (d) (Canham et al. 2004,218

Fortunel et al. 2016, Uriarte et al. 2010). For each focal tree individual i at the start of the growth219

census interval t − 2, we calculated its neighbourhood crowding index (NCIi,t−2) as the weighted220

sum of all neighbours N(i) within a 10m radius of individual i (Fortunel et al. 2018, Lasky et al.221

2014, Uriarte et al. 2016a), as:222

NCIi,t−2 =
∑

j∈N(i)

DBH2
j,t−2

di,j
(eqn 2)

We chose a 10m radius to be able to compare with previous studies conducted in tropical forests223

(Fortunel et al. 2018, Lasky et al. 2014, Uriarte et al. 2016a), and well capture neighbourhood effects224

while keeping edge effects low (Zambrano et al. 2020). To avoid incomplete neighbourhoods, all225

focal tree individuals closer than 10m to the plot edge were excluded. We kept as neighbours226

individuals with human-induced damage, missing or uncertain botanical determination, estimated227

circumferences, and corrected abnormal diameter increments (see: Supplementary Methods S1 for228

details).229

Climate data230

We considered four climate variables that have been previously shown to influence tropical tree231

growth: solar radiation (SRad) representing light availability, maximum temperature (Tmax) cap-232
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turing heat stress, vapour pressure deficit (VPD) relating to atmospheric evaporative demands and233

climatic water deficit (CWD) capturing soil water availability by relating precipitation to evapo-234

transpiration (Bauman et al. 2022a, Choat et al. 2018, Cunningham 2005, Doughty and Goulden235

2008, Grossiord et al. 2020, Wagner et al. 2012). We extracted climate variables from TerraCli-236

mate, a high-resolution global data set of monthly climate variables and climatic water balance237

(Abatzoglou et al. 2018).238

We identified anomalous years over the study period by calculating mean climate anomalies, ex-239

pressed as the deviation of climate variables from their 30-year historical average, over each of240

the two-year census intervals. To this aim, we calculated the 30-year baseline (historical mean,241

µm,baseline) and standard deviation (σm,baseline) for each month of the year (1-12) for the 1991-2021242

period. We then calculated standardised anomalies for each month (1-12) m at time t as the de-243

viation of the mean monthly climate variable µm,t from the long-term monthly baseline µm,baseline244

(Bauman et al. 2022a, Rifai et al. 2018). To investigate the effect of mean yearly anomalies on245

tree growth at two-year census interval (CAt), we averaged the standardised monthly anomalies246

over the M = 24 months prior to census t (Julyt-Julyt−2) as (Aubry-Kientz et al. 2015, Bauman247

et al. 2022a, Rifai et al. 2018):248

CAt =
1

M

M∑
m=1

µm,t − µm,baseline

σm,baseline

(eqn 3)

Using this approach, two-year periods with positive anomalies can directly be interpreted as periods249

in which trees experienced higher solar radiation (SRad), heat (Tmax), atmospheric (VPD) or soil250

water (CWD) drought stress than usual.251

Functional trait data252

We determined six leaf traits pertaining to water relations (Table 1): stomatal density (SD),253

oxygen (δ18O) and carbon (δ13C) stable isotope composition, water potential at turgor loss point254

(πtlp), minimum conductance (gmin) and saturated water content (LSWC). We sampled 645 trees255

belonging to 102 of the most abundant species (from 76 genera and 34 families) that together256
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Figure 2. Mean standardised climate anomalies at Paracou for the two-year census intervals over the
study period for a) solar radiation, b) maximum temperature, c) vapour pressure deficit and d) climatic
water deficit. Red and blue lines and circles represent positive and negative anomalies respectively.

represent 70% of all unique individual stems and 72% of all growth measurements at Paracou. We257

randomly-selected 645 individuals located within the permanent 15 forest plots at Paracou, using258

the following criteria: (i) botanical identification at the species level, (ii) DBH within species-259

specific 10th and 90th percentile (to avoid sampling unusually small and large tree individuals),260

(iii) topographic position corresponding with the species topographic preference (i.e. individuals261

located at a certain topographic position (bottomland, slope, ridge) were only sampled if more than262

10% of distinct stems of that species occur on the given topographic position). As the 102 target263

species include understory, mid-story and canopy species, we sampled only leaves from branches264

that were exposed to medium light conditions (Dawkins index: 3-4, Alder and Sunnott 1992), thus265

excluding branches in full sun or shade. For each of the 645 individuals, we collected one fully266

expanded and healthy leaf from a healthy branch in the dry season in 2020-2021 for each leaf trait267

measurement. After harvest with a sling shot in the field, leaves were immediately put into ziplock268

bags with a moist paper towel and kept in the dark in a cooler to minimize transpiration during269

transport to the lab. No fieldwork permit was required.270

To measure leaf SD, we used nail polish or silicon-based dental paste (Speedex Universal Silicon271
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Activator and Speedex Light Body, Coltène/Whaledent AG, Switzerland) to take imprints from272

the abaxial leaf surface at three positions of the widest part of the leaf blade, while avoiding major273

veins (Voleníková and Tichá 2001). Imprints were mounted on microscope slides, and pictures were274

taken at a magnification of 300x using a light microscope (Keyence VHX 7000, Osaka, Japan). We275

took a minimum of 3 pictures, 1 per imprint when possible, for each sampled leaf. We used Fiji276

ImageJ (Schindelin et al. 2012) to count all complete stomata per image area. Imprint quality and277

resulting picture quality varied strongly between species and individuals, so we obtained stomata278

counts for 470 individuals and 87 species.279

Leaf osmotic potential was measured using a vapor pressure osmometer (VAPRO 5520, Wescor,280

Logan, UT, USA). Leaf water potential at turgor loss point (πtlp) was linearly estimated from281

osmotic potential at full hydration, following the standard protocol of Bartlett et al. (2012b,a),282

which has been validated for species in French Guiana (Maréchaux et al. 2016).283

Leaf gmin was estimated from leaf drying curves. We monitored leaf weight loss over time, following284

the protocol of Sack et al. (2003). Time intervals for weight measurements were set to 30min.285

Leaves of tropical species loose water very rapidly, so that consecutive measurements over 3 to 4 h286

were sufficient to assess minimum conductance.287

We measured leaf saturated and dry weights with a digital scale at a 0.0001 g precision (Mettler288

Toledo, Switzerland). We obtained saturated weights following the ‘partial’ rehydration protocol of289

Vendramini et al. (2002), which provides comparable measurements to the ‘complete’ rehydration290

protocol by Garnier et al. (2001) (Vaieretti et al. 2007). We wrapped fresh leaves into paper towels291

that were previously soaked with de-ionised water, and kept them for 24 hours in the dark and at292

low temperature (4 ◦C) for rehydration. Dry weights were measured after drying leaves for at least293

72 hours at 60 ◦C (Sapes and Sala 2021). We calculated LSWC from saturated and dry weights294

(Barrs and Weatherley 1962).295

Bulk leaf δ18O and δ13C were calculated from a composite sample of dried and coarsely chopped296

leaves, including those used for πtlp, LSWC and gmin measurements. Samples were ground to297

fine powder using a ball mill (Retsch MM200, Hanau, Germany) for five minutes at maximum298
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speed (100 rotations per minute) and further dried in a drying oven for 24 h at 85 ◦C. Aliquots of299

0.2− 0.4mg per sample were weighed into silver capsules and δ18O signatures were measured with300

a high temperature pyrolysis unit (TCEA) coupled to a Delta V isotope ratio mass spectrometer301

instrument (Thermo Scientific, Vienna, Austria). Aliquots of 1 − 2mg per sample were weighed302

into tin capsules and δ13C signatures were subsequently determined using an elemental analyser303

(Flash EA), linked by a Conflo IV Universal Interface to a Delta V isotope ratio mass spectrometer.304

We combined our measurements for the six leaf traits with data from previous field campaigns305

conducted at Paracou (Levionnois et al. 2021, Maréchaux et al. 2015, 2019, Ziegler et al. 2019).306

We further compiled trait data for the 102 focal tree species for six leaf and wood traits that relate307

to light capture and carbon use from previous work conducted in French Guiana (Baraloto et al.308

2010, Fortunel et al. 2012, Vleminckx et al. 2021). We included leaf area (LA), specific leaf area309

(SLA), leaf thickness (Lthick), leaf toughness (Lthough), bark thickness (Barkthick) and wood specific310

gravity (WSG, hereafter referred to as wood density) (see: Table 1). For all subsequent analyses311

including trait values, we considered species means.312
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Models313

We used Bayesian hierarchical models to evaluate the separate and interactive effects of climate314

anomalies and neighbourhood crowding on individual absolute growth rates (AGR). We modeled315

the natural logarithm of absolute growth rates (log(AGR)) because of the high heteroscedasticity316

within the growth data set and to reduce the influence of outliers (Bauman et al. 2022a, Fortunel317

et al. 2018, Hérault et al. 2011). To deal with negative and zero growth before taking the logarithm,318

we added to each observed growth value the constant 1.1|AGRmin|, where |AGRmin| is the absolute319

minimum value of observed growth of the dataset (Bauman et al. 2022a).320

The hierarchies of the models consist of modelling individual-level growth rates to simultaneously321

fit a community-level regression and a species-level regression. The community level modelled AGR322

responses to covariates via hyperparameters (i.e. statistical distributions from which species-level323

intercepts and slope coefficients arose), while the species level captured species-specific AGR sensi-324

tivities to covariates (i.e. slope parameters) and species-level intercepts (hereafter intrinsic AGR)325

- i.e. species-level deviations from the community average parameters. While the community-level326

regression (eqn 4a) was kept the same across all models, the species-level regressions (capturing327

species-specific differences in intrinsic growth rates and growth responses to model covariates)328

only depend on species identity in M1-models (eqn 4c), while species parameters are a function of329

species traits in M2-models (eqn 5). The models further include a covariance matrix (eqn 4e) to330

estimate correlations ρ among species-level parameters. To capture part of the unexplained growth331

variation related to individuals and plots we allowed intercepts to vary by plots γp and individuals332

ϵi (eqn 4f) (Bauman et al. 2022a, Fortunel et al. 2018).333

We modeled individual log(AGRt) as a linear function of (i) tree size at the beginning of the census334

interval (DBHt−2), (ii) monthly climate anomalies averaged over the census interval (CAt), (iii)335

neighbourhood crowding at the beginning of the census interval (NCIt−2) and (iv) the interaction336

between climate anomalies and neighbourhood crowding (CAt × NCIt−2) (Bauman et al. 2022a,337

Fortunel et al. 2018). To allow direct comparison between covariates and ease assignment of338

plausible weakly-informative prior to the parameters, log(AGRt) and all covariates, except for339
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climate anomalies (Bauman et al. 2022a), were standardised to mean zero and unit standard340

deviation (Bauman et al. 2022a, Fortunel et al. 2018, McElreath 2020, Uriarte et al. 2016a). As we341

assumed tree growth to have a non-linear, multiplicative relationship with DBH and NCI (Canham342

et al. 2004, Fortunel et al. 2016, Uriarte et al. 2010), we log transformed DBH and NCI prior to343

standardisation to achieve an additive and linear relationship (Kunstler et al. 2016, Uriarte et al.344

2016a, Fortunel et al. 2018). As species strongly varied in their mean tree size, we standardised345

DBH to mean zero and unit standard deviation within species, to prevent confounding species346

differences in growth response to tree size with interspecific variation in mean DBH (Fortunel347

et al. 2018, Uriarte et al. 2016a).348

M1: ”no trait models”349

To manage model complexity in assessing tree growth response to the separate and interactive350

effects of climate anomalies and neighbourhood crowding and examine the influence of forest351

disturbance history, we fitted models separately for each of the four climate variables (SRad,352

Tmax, VPD and CWD) and for (i) all 15 plots combined, (ii) the six undisturbed plots and (iii)353

the nine disturbed plots, resulting in a total of 12 M1-models. To ensure sufficient statistical power,354

M1-models were run on observed growth for all species with at least 100 growth measurements.355

M1-models were therefore based on 48,203, 20,688 and 27,515 individuals, belonging to 310, 306356

and 307 species, respectively. To allow for direct comparison of parameter estimates between357

control and disturbed forest, we standardised and centered growth and all model covariates before358

splitting the data set (Ren et al. 2021). For each individual i of species s between censuses t − 2359

and t, we modeled tree growth as:360

log(AGRi,s,t,p) ∼ N (µi,s,t,p, σ) (eqn 4a)

361

µi,s,t,p = αs + β1s × log(DBHi,t−2) + β2s × CAt + β3s × log(NCIi,t−2)

+ β4s × CAt × log(NCIi,t−2) + γp + ϵi

(eqn 4b)
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362 

αs

β1s

β2s

β3s

β4s


∼ MVNormal





α0

β1,0

β2,0

β3,0

β4,0


, S


(eqn 4c)

363

S =



σαs 0 0 0 0

0 σβ1s 0 0 0

0 0 σβ2s 0 0

0 0 0 σβ3s 0

0 0 0 0 σβ4s


×R×



σαs 0 0 0 0

0 σβ1s 0 0 0

0 0 σβ2s 0 0

0 0 0 σβ3s 0

0 0 0 0 σβ4s


(eqn 4d)

364

R =



1 ραs,β1s ραs,β2s ραs,β3s ραs,β4s

ραs,β1s 1 ρβ1s,β2s ρβ1s,β3s ρβ1s,β4s

ραs,β2s ρβ1s,β2s 1 ρβ2s,β3s ρβ2s,β4s

ραs,β3s ρβ1s,β3s ρβ2s,β3s 1 ρβ3s,β4s

ραs,β4s ρβ1s,β4s ρβ2s,β4s ρβ3s,β4s 1


(eqn 4e)

using the following weakly informative priors:365

γp ∼ N (0, σγ)

ϵi ∼ N (0, σϵ)

α0, β1−4,0 ∼ N (0, 0.5)

σαs , σβ1−4s , σγ, σϵ, σ ∼ exp(1)

R ∼ LKJcorr(2)

(eqn 4f)

where αs represents the species-level intrinsic growth and β1s, β2s, β3s and β4s represent species-level366

growth responses to tree size (DBH), climate anomalies (CA), neighbourhood crowding (NCI) and367

the interactive effect of climate anomalies and neighbourhood crowding (eqn 4a). Negative values368

of αs indicate species whose growth is lower and positive values indicate species whose growth369
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is higher than the average AGR across all species. Negative values of β1−3s indicate decreases370

in growth with increasing model covariate. The interpretation of β4s depends on the respective371

directions of β2s and β3s. If the sign of β4s is the same as the signs of β2s and β3s, the interaction372

between neighbourhood crowding and climate can accentuate their separate effects. Conversely, if373

the sign of β4s is opposite from both signs of β2s and β3s, the interaction between climate anomalies374

and neighbourhood crowding can attenuate their separate effects. The strength and implications375

of the interactions usually require a visual exploration to provide a full interpretation.376

Species intrinsic growth αs and growth response to covariates β1−4s for the s species were modeled377

as in eqn 4c, where α0 represents the community-level intrinsic growth rate and β1−4,0 the overall378

effect of covariates on growth across all species. To assess correlations (ρ) among species-level in-379

trinsic growth αs and growth response to model covariates β1−4s, we fitted a matrix of correlation380

coefficients among all pairs of species-level parameters. In addition, modeling all species-level pa-381

rameters as a multivariate normal distribution (eqn 4c) allows to share information across species,382

thus improving the fit for poorly represented species, while preventing overfitting (Bauman et al.383

2022a, McElreath 2020). The variance-covariance matrix S was constructed as shown in eqn 4d,384

where R is the correlation matrix of species-level parameters (eqn 4e). Varying intercepts for the385

p plots γp and the i individuals ϵi were modeled as given in eqn 4f with a mean centered on 0386

(i.e. mean intercept across all plots and individuals respectively). We specified weakly informative387

priors which are given in eqn 4f.388

M2: ”trait models”389

To assess the effect of traits on species intrinsic growth αs, and growth response to climate anoma-390

lies β2s, neighbourhood crowding β3s and their joint effects β4s, we fitted M2-models for a subset391

of 81-102 tree species (representing over 40,000 trees), for which we had available trait data (Table392

1). To manage model complexity, M2-models were fitted separately for each of the four climate393

variables (SRad, Tmax, VPD and CWD) and for each of the 12 functional traits, resulting in a394

total of 48 M2-models. While the hierarchical structure, variance-covariance matrix and equation395

of the community level hierarchy of the M2-models is identical to M1-models (eqn 4a-eqn 4b; eqn396
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4d-eqn 4f), all species-level parameters, except species-level growth response to tree size β1s, were397

modeled in species-level regressions to capture species-specific differences, while simultaneously398

evaluating the effect of species-mean functional traits within these responses (eqn 5) (Fortunel399

et al. 2018, Uriarte et al. 2016a, Bauman et al. 2022a). More specifically, species-level parameters400

were modelled as:401 

αs

β1s

β2s

β3s

β4s


∼ MVN





α0 + α1 × Traits

β1,0

β2,0 + β2,1 × Traits

β3,0 + β3,1 × Traits

β4,0 + β4,1 × Traits


, S


(eqn 5)

where α0 represents the community-level intrinsic growth (i.e. grand intercept) and β2−4,0 the402

community-level response to model covariates (i.e grand slopes) whose posterior distributions rep-403

resent the effect of covariates on AGR across all species. α1 and β2−4,1 represent the departure from404

the community level AGR and community level response to model covariates with one standard405

deviation change in the value of Traits of species s. Traits were standardised to mean zero and406

unit standard deviation across species, thus implying that parameter β2−4s equals β2−4,0 for the407

mean trait value of the data set. Given their skewed distributions, we log transformed values of408

stomatal density (SD), leaf saturated water content (LSWC), minimum conductance (gmin), leaf409

area (LA), leaf thickness (Lthick), leaf toughness (Lthough) and bark thickness (Barkthick), prior to410

standardisation, to prevent the tail of the distribution from dominating the model fit (Fortunel411

et al. 2018). Species AGR responses to model covariates can thus be accentuated (i.e. the sign of412

the trait effect β2−4,1 is the same as that of the corresponding community level response β2−4,0)413

or attenuated (i.e. the sign of the trait effect β2−4,1 is the opposite of that of the corresponding414

community level response β2−4,0) with increasing values of Traits (Bauman et al. 2022a, Fortunel415

et al. 2018, Uriarte et al. 2016a).416
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Model fitting417

All models were fitted in R environment (R Core Team 2021, RStudio Team 2020), on the418

Meso@LR HPC cluster using the package brms (Bürkner 2017). Bayesian updating of param-419

eters was performed via the No-U-Turn Sampler (NUTS) in Stan (Carpenter et al. 2017) using420

CmdStanR (Stan Development Team 2022), which allows intra-chain parallelisation in the back-421

end. We used four chains and 4000 iterations (2000 warm up) per chain. Chains of all models mixed422

well and generally converged within 2000 iterations (Rhat between 1 and 1.05). Model parame-423

ter posteriors were summarised through their median and 90%-highest posterior density interval424

(HPDI) using the packages tidyverse (Wickham et al. 2019) and tidybayes (Kay 2022). Model425

covariates were considered to have a clear effect when their slope coefficients 90%-HPDIs did not426

encompass zero. To assess the model goodness of fit, we calculated conditional and marginal R2427

using the bayes_R2() function of the brms package (Bürkner 2017), which calculates a Bayesian428

version of R2 for regression models (Gelman et al. 2019). M1- and M2-models had high explanatory429

power, with a mean conditional R2 of 0.62 and 0.64, respectively. For more detailed information430

on conditional and marginal R2 for each model fit see Table S1.431

Results432

Tree growth sensitivity to climate anomalies and neighbourhood crowd-433

ing434

Across the 15 plots, anomalies in all four climate variables influenced tree growth at Paracou435

(Fig. 3). Positive anomalies in solar radiation (SRad) enhanced tree growth, whereas positive436

anomalies in maximum temperature (Tmax), vapour pressure deficit (VPD) and climatic water437

deficit (CWD) reduced tree growth. Neighbourhood crowding reduced tree growth, and this effect438

was stronger than that of any of the climate anomalies. Moreover, neighbourhood crowding showed439

positive interactive effects with climate anomalies linked to heat and drought stress (Tmax, VPD440

and CWD) on tree growth, but negative interactive effects with anomalies in SRad on tree growth.441

More crowded trees suffered less from negative effects of Tmax, VPD and CWD anomalies, while442
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also benefiting less from the positive effects of SRad anomalies.443

a) SRad b) Tmax c) VPD d) CWD

Climate anomaly (β2,0)

NCI (β3,0)

Climate anomaly × NCI (β4,0)

−0.4 −0.2 0.0 0.2 −0.4 −0.2 0.0 0.2 −0.4 −0.2 0.0 0.2 −0.4 −0.2 0.0 0.2

Disturbed

Undisturbed

All plots

Disturbed

Undisturbed

All plots

Disturbed

Undisturbed

All plots

Standardised coefficients

Figure 3. Community-level effects of climate anomaly (β2,0 ), neighbourhood crowding (NCI, β3,0), and
their interaction (Climate anomaly×NCI, β4,0) on tree growth (M1-models). Standardised coefficients
from a) SRad, b) Tmax, c) VPD and d) CWD models are shown for all 15 plots combined, the 6
undisturbed plots and the 9 disturbed plots respectively. Circles show posterior medians of standardised
coefficients (community level responses, see: β2−4,0 in eqn 4c), and lines indicate 90% highest posterior
density intervals [HPDI]. Colored circles indicate clear negative (red) and positive (blue) effects (i.e.
slope coefficient 90%-HPDIs not encompassing zero), while white circles indicate no effects. Positive
β2−3,0 values indicate faster growth, while negative β2−3,0 values indicate slower growth with increasing
model covariate (details in Table S2). The interpretation of β4,0 depends on the direction of the climate
effect β2,0. If the sign of β4,0 is the same as the sign of β2,0, neighbourhood crowding accentuates the
effect of climate, inversely if the sign of β4s is in the opposite of the sign of β2,0, neighbourhood crowding
attenuates the effect of climate. Community-level intercepts (α0) and tree size effects (DBH, β1,0) are
shown in Fig. S1 A.

Tree growth sensitivity to climate anomalies (β2s) and neighbourhood crowding (β3s) varied among444

the focal 310 species: 39% showed clear responses to SRad anomalies (of which 98% showed positive445

and only 2% negative responses). Moreover, 45% responded to Tmax anomalies (of which 99%446

responded negatively and only 1% positively) and 21% responded to VPD anomalies (of which447

86% responded negatively and 14% positively). Finally, 21% responded to anomalies in CWD (of448

which 94% responded negatively and 6% positively). On average across the four climate models,449

88% of all species showed marked responses to NCI, all of them suppressed by higher crowding450

intensities.451

24



Overall, individual-level tree growth response to the interaction between climate anomalies and452

neighbourhood crowding was weakly related to species identity. Yet, species showed a consistent453

directional response (i.e. no species showed an opposite effect) to the interactive effects of neigh-454

bourhood crowding and anomalies (β4s) in SRad, Tmax and CWD, but less in VPD. Specifically,455

neighbourhood crowding clearly attenuated positive effects (negative β4s) of SRad anomalies in456

18%, and negative effects (positive β4s) of Tmax and CWD anomalies in 27% and 8% of all species.457

Neighbourhood crowding modulated negative effects of VPD anomalies in 7% of all species, either458

attenuating (81% of positive β4s) or reinforcing (19% of negative β4s) these effects. For details see459

Table S3.460

Species-level intrinsic AGR (M1, αs) were negatively associated with AGR response to anomalies461

(M1, β2s), as shown by the median ρ̃, lower 5% quantile q5(ρ) and upper 5% quantile q95(ρ) of the462

highest posterior density, in SRad (ρ̃ = −0.20, q5(ρ) = −0.32, q95(ρ) = −0.09), Tmax (ρ̃ = −0.69,463

q5(ρ) = −0.76, q95(ρ) = −0.62), VPD (ρ̃ = −0.59, q5(ρ) = −0.66, q95(ρ) = −0.52) and CWD464

(ρ̃ = −0.55, q5(ρ) = −0.65, q95 = −0.46) as well as neighbourhood crowding (ρ̃ = −0.43, q5(ρ) =465

−0.51, q95(ρ) = −0.33, mean across climate models). Tree growth sensitivity to neighbourhood466

crowding (M1, β3s) was negatively associated with the response to SRad anomalies (ρ̃ = −0.17,467

q5(ρ) = −0.30, q95(ρ) = −0.04) and positively with the response to anomalies in Tmax (ρ̃ = 0.26,468

q5(ρ) = 0.13, q95(ρ) = 0.37) and CWD (ρ̃ = 0.28, q5(ρ) = 0.15, q95(ρ) = 0.41) For details see Table469

S4: All plots).470

Variation in tree growth response to climate and neighbours with forest471

disturbance history472

The effects of climate anomalies (M1, β2,0) and neighbourhood crowding (M1, β3,0) were consistent473

between the six undisturbed and nine disturbed plots, but were usually stronger in disturbed plots474

(except for VPD anomalies). In particular, tree growth sensitivity to neighbourhood crowding475

was twice as strong in disturbed plots than undisturbed plots. In addition, the interactive effects476

between climate anomalies and neighbourhood crowding were usually greater in disturbed plots,477

further attenuating their separate effects in these forests. More crowded trees in disturbed plots478
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were more buffered against climate anomalies (except for the VPD anomalies:NCI interaction).479

However, while negative effects of CWD anomalies on growth were mitigated by neighbourhood480

crowding in disturbed plots, they were reinforced in undisturbed plots (Fig. 3).481

Although species intrinsic growth rates varied slightly between undisturbed and disturbed plots482

(Fig. S2), correlations between species intrinsic growth rates (M1, intercept αs) and their growth483

response to climate anomalies (M1, β2s) and neighbourhood crowding (M1, β3s) were overall con-484

sistent between undisturbed and disturbed plots (Fig. 4 a-b). However, while species that suffered485

stronger growth declines due to neighbourhood crowding (M1, β3s) were also more sensitive to pos-486

itive CWD anomalies (M1, β2s) in disturbed plots, we found no clear relationship in undisturbed487

plots (Fig. 4 c). For details on correlations of species-level parameters see: Table S4.488
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Figure 4. Correlations between a) species intrinsic growth rates αs and species-level growth response to
CWD anomalies (β2s), b) species intrinsic growth rates αs and species-level growth response to neighbour-
hood crowding (NCI, β3s) and c) species-level growth response to NCI (β3s) and CWD anomalies (β2s),
estimated by the CWD M1-models for undisturbed (left) and disturbed (right) plots, respectively (eqn
4c). Circles represent species coefficients (i.e. species median posteriors). Vertical and horizontal lines
represent coefficients 90%-highest posterior density intervals (HPDI). Blue and red regression lines indi-
cate positive and negative correlations, respectively. ρ values were obtained from the variance-covariance
matrix (see: eqn 4e). Median, lower and upper 90%-HPDI are given in the upper right-hand or left-hand
corner of the figures.
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Trait effects on tree growth response to climate anomalies and neigh-489

bourhood crowding490

Parameter estimates of community-level tree growth regressions were consistent between the M1-491

models (310 focal species) and M2-models (subset of species with available trait information, Table492

S2 and Table S5). Fast-growing tree species (i.e. with high intrinsic growth rates, αs) had higher493

SD, but lower δ18O, LA, Lthick, Lthough and WSG (Fig. S1 B and Table S5). Species traits influenced494

tree growth response to climate anomalies, neighbourhood crowding and their interaction, either495

reinforcing (values of β2−4,1 moved β2−4s further away from zero with increasing trait value) or496

attenuating them (values of β2−4,1 moved β2−4s closer to zero with increasing trait value) (Fig. 5).497

Species with lower LSWC and SLA, but higher δ13C , Lthick and Barkthick grew faster with increasing498

SRad anomalies (Fig. 5 a). Species with lower SD, but higher δ18O, Lthough and WSG were less499

sensitive to anomalies in Tmax and VPD (Fig. 5 b-c). Additionally, species with higher δ13C,500

gmin, LA and Lthick showed lower sensitivities to VPD anomalies (Fig. 5 c). Species with lower501

πtlp but higher WSG were less sensitive to CWD anomalies. (Fig. 5 d). Species with lower SD,502

but higher δ18O, Lthough and WSG were less sensitive to neighbourhood crowding (Fig. 5 a-d).503

Finally, species with lower δ13C but higher SLA benefited more from SRad anomalies when found504

in crowded environments (Fig. 5 a). Species with higher WSG profited less from the mitigating505

effects of neighbours against Tmax anomalies (Fig. 5 b), while species with higher SD and SLA,506

but lower LA, Lthick, Lthough were less buffered against VPD anomalies by their neighbours (Fig.507

5 c). Species traits did not mediate the interactive effects of CWD anomalies and neighbourhood508

crowding (Fig. 5 d).509

28
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Figure 5. M2-models: trait effects on tree growth response to climate anomalies β2,1, neighbourhood
crowding β3,1 and the climate anomaly-crowding interaction β4,1 (see: eqn 5). Standardised coefficients
from a) SRad, b) Tmax, c) VPD and d) CWD models are shown for each of the 12 trait models: stomatal
density (SD), leaf oxygen (δ18O) and carbon (δ13C) isotope composition, water potential at turgor loss
point (πtlp), leaf saturated water content (LSWC), minimum conductance (gmin), leaf area (LA), specific
leaf area (SLA), leaf thickness (Lthick), leaf toughness (Lthough), bark thickness (Barkthick) and wood
specific gravity (WSG). Circles show posterior medians of standardised coefficients, and lines indicate
90% HPDIs. Filled circles indicate negative and positive effects (i.e. slope coefficient 90%-HPDI not
encompassing zero) and empty circles indicate no clear effects. Positive β2−4,1 values indicate faster
growth with increasing trait values, while negative β2−4,1 values indicate slower growth with increasing
trait values (details in Table S5).

Discussion510

In this study, we examined the separate and interactive effects of climate anomalies and neighbours511

on tree growth, combining 30 years of climate and tree growth data for over 300 species from 15512
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permanent forest plots, with contrasting disturbance histories. For the most abundant species (ca.513

100), we further evaluated the effect of 12 traits pertaining to water relations, light capture and514

carbon use (Table 1), in mediating tree growth response to climate and neighbours.515

Climate anomalies and neighbourhood crowding reduce tropical tree516

growth517

High temperatures (Tmax) were associated with tree growth decline in half of the 300 species at518

Paracou (β2s; Table S3), indicating that in years without strong positive anomalies, some species519

at the site may already operate near their temperature optimum. Indeed, higher Tmax (and520

minimum night time temperatures) can increase respiration but decrease stomatal conductance and521

photosynthesis, thus reducing carbon assimilation (Anderegg et al. 2015, Doughty and Goulden522

2008) and gross primary production (Aguilos et al. 2018, Crous et al. 2022), which can lead to523

inter-annual declines in tropical woody productivity (Sullivan et al. 2020, Way and Oren 2010)524

and carbon sinks (i.e. net ecosystem exchange) (Anderegg et al. 2015). As global temperatures525

are predicted to increase in the tropics with ongoing climate change (Shukla et al. 2022), this526

thermal sensitivity of tropical species may lead to important reductions in tree growth in the527

future, which may alter long-term forest dynamics (Aubry-Kientz et al. 2019, Sullivan et al. 2020).528

Although Tmax directly influences VPD (Table S6 and Fig. S2), VPD was a less important529

driver of tree growth at Paracou. While positive VPD anomalies likely reduce tree growth by530

reducing stomatal conductance and thereby carbon assimilation (Grossiord et al. 2020, Sanginés de531

Cárcer et al. 2018), it does not affect respiration. Conversely, positive anomalies in CWD strongly532

reduced tree growth at Paracou (Wagner et al. 2012, Aubry-Kientz et al. 2015), in contrast to533

previous work in the Australian wet tropics indicating that VPD may limit tree growth before534

soil water becomes scarce (Bauman et al. 2022a, Choat et al. 2012, Rifai et al. 2018). Our results535

suggest that trees at Paracou may be more sensitive to soil water stress than to atmospheric water536

stress. Alternatively, atmospheric water stress may not be severe enough at Paracou to lead to537

important growth reductions. In addition, trees allocated more to diameter growth with higher538

anomalies in solar radiation (SRad), which contrasts with recent work showing negative effects of539
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light anomalies on tropical tree growth in Australia’s wet tropics (Bauman et al. 2022a). Light540

availability is an important driver of tree growth and primary production at Paracou (Aguilos541

et al. 2018, Wagner et al. 2012, 2014a), a typical light-limited tropical forest (Guan et al. 2015,542

Wagner et al. 2016). Furthermore, years with positive anomalies in SRad, did not necessarily543

translate into years with increased heat stress and atmospheric drought stress (Table S6 and544

Fig. S2), therefore reducing confounding and opposing effects of light availability and heat or545

atmospheric drought stress on tree growth. We explored the effects of different climate drivers546

separately, but there could be interactive effects between climate factors because they are causally547

linked. Future studies could further improve our understanding of tropical forest sensitivity to548

climate by embedding the causal associations among climate variables into the model structure,549

and by explicitly modelling their interactive effects (Allen et al. 2010, 2015, Hammond et al. 2022,550

Zuidema et al. 2022). Neighbourhood crowding was the strongest driver of tree growth at Paracou,551

confirming the importance of neighbourhood interactions for tropical forest dynamics (Dawkins552

1959, Canham et al. 2004, Fortunel et al. 2018, Uriarte et al. 2016a, Zambrano et al. 2017).553

Neighbourhood crowding overall reduced tree growth across the 300 focal species, in line with554

previous work across forest systems (Kunstler et al. 2016). Importantly, we provide first evidence555

that climate anomalies can interact with neighbourhood crowding to shape tropical tree growth,556

thereby attenuating their respective separate effects. In particular, the negative (Tmax, VPD,557

CWD) and positive (SRad) effects of climate anomalies on tree growth were attenuated in more558

crowded neighbourhoods. Denser neighbourhoods may result into higher levels of canopy closure,559

decreasing light availability (Gaudio et al. 2017, Ghuman and Lal 1987), but simultaneously pro-560

viding thermal insulation (Fetcher et al. 1985, Gaudio et al. 2017, Ghuman and Lal 1987), thereby561

sustaining a more favourable micro-climate during extreme macro-climatic events (De Frenne et al.562

2013, 2019). Contrary to our expectation, more crowded trees were also less sensitive to CWD563

anomalies, indicating that buffering effects might out-weigh increased competition for soil water564

during drought. During periods of lower soil water content, more crowded trees may have benefited565

from complementary neighbourhood water uptake, hydraulic redistribution or improved water re-566

tention through higher root densities (Grossiord et al. 2014c,b, Grossiord 2020, Hafner et al. 2021).567
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Previous studies have also shown mitigating effects of neighbourhood diversity or species richness568

on tree growth response to drought across forest biomes (Fichtner et al. 2020, Gillerot et al. 2021,569

Grossiord et al. 2014a, O’Brien et al. 2017, Pardos et al. 2021), in contrast with findings showing570

exacerbating effects of stand or neighbourhood densities on tree demographic response to climatic571

stresses in temperate (Bottero et al. 2017) and Mediterranean (Astigarraga et al. 2020, Gómez-572

Aparicio et al. 2011) forests. Our results suggest that accounting for the interactive effects of573

climate and neighbours offers a promising way towards an improved understanding of tropical574

forest resistance and resilience to climate change.575

Disturbance increases tropical forest sensitivity to climate anomalies576

and neighbourhood crowding577

As expected, disturbed plots were more sensitive (i.e. showed greater tree growth reductions)578

to separate and joint effects of climate anomalies and neighbourhood crowding than undisturbed579

plots at Paracou (Fig. 3 a-d), highlighting the lasting impact of human activities such as log-580

ging and thinning on tropical forest dynamics (Hérault et al. 2010, Hérault and Piponiot 2018,581

Hiltner et al. 2021, Fargeon et al. 2016, Piponiot et al. 2016). Differences between disturbed and582

undisturbed plots in effect sizes of climate anomalies and neighbourhood crowding may originate583

from differences in tree community composition. Indeed, disturbed plots at Paracou harbor more584

fast-growing species (Mirabel et al. 2020, 2021), which tend to be more sensitive to climate anoma-585

lies, as shown in other tropical forests (Bauman et al. 2022a, Esquivel-Muelbert et al. 2020). The586

higher abundance of fast growing species and individuals on disturbed plots was also reflected587

in the higher community-level intrinsic growth rate (α0) of disturbed plots (Fig. S1 and Table588

S2). While higher sensitivity of disturbed communities to environmental drivers is consistent with589

expectations from the ’fast-slow’ spectrum (Reich 2014), we show that this trend extends to in-590

creased susceptibility to biotic stressors such as neighbourhood crowding (Fig. 4 a-b, Table S4).591

In addition, greater canopy openness in disturbed plots may lead to more severe climate effects592

through tighter coupling of micro- and macro-climatic conditions (De Frenne et al. 2013, 2019,593

Ghuman and Lal 1987, Von Arx et al. 2012).594
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We further demonstrate that interactive effects of climate and neighbours (i.e. β4,0) can shift from595

negative to positive depending on forest disturbance history at Paracou. In particular, denser596

neighbourhoods reinforced soil water stress in undisturbed plots, while they acted as a buffer597

against soil water stress in disturbed plots. This suggests that in disturbed plots, positive biotic598

interactions (e.g. complementary resource use between neighbours and direct or indirect facilita-599

tive effects of neighbouring trees) can mitigate competitive effects for soil water during drought.600

Disturbed plots typically have more and larger canopy gaps than undisturbed plots, and soil drying601

(and thus water availability) is controlled by evaporation from the soil surface in large forest gaps,602

but by root water extraction in the dense understory and small forest gaps (Marthews et al. 2008).603

In line with the stress gradient hypothesis, our results suggest that positive biotic interactions may604

become more important under more stressful environmental conditions at Paracou (Bertness and605

Callaway 1994, Brooker et al. 2007, Callaway 1995, Callaway and Walker 1997, Isbell et al. 2015).606

Neutral crowding indices have recently been suggested to quantify silvicultural treatments (Yue607

et al. 2022), but in this study they were insufficient to capture all dimensions in disturbance history.608

Logging effects on forest communities involve not only alterations in forest structure, but also in609

forest composition. In addition, previous work in temperate and Mediterranean forests suggested610

that forest management via thinning may help to alleviate the negative impact of climate change611

on forest dynamics (Astigarraga et al. 2020, Gómez-Aparicio et al. 2011), but our study provides612

a more nuanced perspective in tropical forests where the interactive effects of neighbourhoods613

and climate may change from negative to positive depending on the specific climatic variable.614

Given that more than half of the world’s tropical forests are designated production forests (Blaser615

et al. 2011), our results warrant closer examination of how logging and land use practices affect616

neighbourhood interactions and the resistance and resilience of tropical forests to future climate617

change (Hiltner et al. 2021)618
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Traits mediate tree growth response to climate anomalies and neigh-619

bourhood crowding620

In line with expectations from the ’fast-slow’ economic spectrum (Reich 2014), high species in-621

trinsic growth rates were related to acquisitive strategies for carbon and water (Fig. S1 B). Fast622

growing species had high SD and low δ18O, highlighting the key role of stomatal conductance and623

transpiration rates for efficient carbon assimilation (Drake et al. 2013, Hepworth et al. 2015, Jarvis624

1981, Poorter and Bongers 2006, Wong et al. 1979). Fast-growing species also exhibited leaf and625

wood traits pertaining to acquisitive strategies such as lower Lthick, Lthough, and WSG, supporting626

previous findings that a species investment into tissue longevity comes at higher construction costs627

(Hérault et al. 2011, Philipson et al. 2014, Poorter et al. 2008, 2010, Reich 2014, Wright et al.628

2010).629

Focusing on ca. 100 species that make up >70% of total stems and basal area at Paracou, our630

study showed that the effects of climate on tree growth were mediated by different traits depending631

on the climate variable (Fig. 5 b-c). Leaf water-related traits overall mediated the negative effects632

of climate anomalies related to heat and drought stress. More specifically, species that prioritise633

water-conservation over carbon gain (e.g. low SD and high δ18O) were less sensitive to heat and634

atmospheric drought stress. These functional strategies reduced species’ potential for fast growth,635

but may allow species to maintain photosynthesis and CO2 assimilation during periods of elevated636

temperature and atmospheric evaporative demands (Caine et al. 2019, Hepworth et al. 2015, Reich637

2014, Wang and Wen 2022a).638

The mitigating effects of traits linked to carbon-water relations were less clear for tree growth639

response to soil water stress (CWD), potentially because individual topographic position may lead640

to a decoupling between growth sensitivity to soil water stress and water conservation capacity641

(Esteban et al. 2021, Hammond et al. 2022). Still, the growth of species with more negative πtlp642

was less impacted by soil drought stress. Lower πtlp (Table 1) captures species’ drought-related643

mortality risks (Powell et al. 2017) and distribution along aridity gradients (Bartlett et al. 2012b),644

but previous work from different biomes found mixed evidence for species drought-related growth645
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reductions (McGregor et al. 2021, Smith‐Martin et al. 2023, Song et al. 2022).646

While we predicted species with higher gmin would suffer stronger drought-related growth declines647

(Blackman et al. 2016, Duursma et al. 2019), we found they were less vulnerable to atmospheric648

drought stress. As elevated VPD leads to stomatal closure (Grossiord et al. 2020), residual water649

loss could maintain evaporative cooling (given non limiting soil water conditions), which potentially650

prevents irreversible leaf tissue damage through overheating (Drake et al. 2018). The maintainance651

of evaporative cooling could thus allow species to quickly resume carbon assimilation after atmo-652

spheric drought stress, while simultaneously reducing post-drought respiration rates linked to tissue653

repair (Drake et al. 2018, Powell et al. 2017).654

Leaf and wood morphological traits also captured tree growth response to climate anomalies at655

Paracou. Species with conservative tissues (i.e. lower SLA, higher Lthick and Barkthick) grew faster656

at higher solar radiation (Fig. 5 a). During atmospheric drought and heat stress, species with657

thicker and tougher leaves may experience less tissue damage through desiccation, thus reducing658

post-drought costs for tissue repair (Poorter et al. 2010, Nardini 2022), while species with larger659

leaves have higher evaporative cooling through transpiration (Gates 2003, Schuepp 1993, Wright660

et al. 2017), leading to less growth reductions. Moreover, species with high WSG were less vulner-661

able to heat stress, atmospheric and soil drought stress at Paracou, confirming previous findings662

(Greenwood et al. 2017, Wagner et al. 2014b).663

Slow-growing, resource-conservative species tend to be more tolerant to competition at Paracou.664

In particular, species conservative for carbon (with higher Lthough and WSG) were less sensitive to665

neighbourhood crowding, as found in previous studies across forest biomes (Fortunel et al. 2016,666

Kunstler et al. 2016). In addition, species conservative for water (with lower SD, stomatal conduc-667

tance and transpiration rates) were also less sensitive to neighbourhood crowding, highlighting the668

role of water limitation in these tropical wet forests. This is a similar suite of traits that mediated669

growth response to heat stress, suggesting that species suffering most from Tmax anomalies are670

also experiencing stronger neighbourhood effects (Table S4).671

However, species traits poorly captured the interactive effects of climate anomalies and neighbour-672
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hood crowding on tree growth at Paracou (Fig. 5 a-d). Trait differences between neighbouring673

trees rather than the traits of the focal tree alone may be playing a key role in driving the inter-674

active effects of climate anomalies and neighbourhood crowding on tree growth, in particular as675

trait differences can reflect niche partitioning and competitive hierarchies between neighbouring676

individuals (Fortunel et al. 2016, Kunstler et al. 2016). To clarify this, future work could explore677

the relative contribution of focal tree traits and trait differences in mediating tree growth response678

to the interaction between climate extremes and neighbourhood crowding.679

Conclusion680

Tropical trees are particularly sensitive to climate stress and interactions with neighbours, sug-681

gesting that ongoing climate change and associated changes in forest composition and structure682

may result in a long-term slowdown of carbon sequestration in tropical forests. Our study shows683

that climate anomalies and neighbourhood crowding can interact positively in shaping tropical684

tree growth, suggesting that trees growing in more crowded neighbourhood may be less sensitive685

to climate extremes. Logged forests suffered considerably stronger growth reductions in response686

to water stress, suggesting lower resistance of managed tropical forests to climate change. Our687

findings reveal that functional traits, in particular related to water relations, can capture differ-688

ences in species sensitivities to atmospheric and soil water stress and neighbourhood crowding689

(though not their interactive effects), that can be implemented in models to improve predictions690

of the future of these highly diverse ecosystems.691
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