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Empirical Process Results for Exchangeable Arrays∗

Laurent Davezies† Xavier D’Haultfœuille ‡ Yannick Guyonvarch §

Abstract

Exchangeable arrays are natural tools to model common forms of dependence between
units of a sample. Jointly exchangeable arrays are well suited to dyadic data, where ob-
served random variables are indexed by two units from the same population. Examples
include trade flows between countries or relationships in a network. Separately exchange-
able arrays are well suited to multiway clustering, where units sharing the same cluster
(e.g. geographical areas or sectors of activity when considering individual wages) may be
dependent in an unrestricted way. We prove uniform laws of large numbers and central
limit theorems for such exchangeable arrays. We obtain these results under the same
moment restrictions and conditions on the class of functions as those typically assumed
with i.i.d. data. We also show the convergence of bootstrap processes adapted to such
arrays.

Keywords: exchangeable arrays, empirical processes, bootstrap.

1 Introduction

Taking into account dependence between observations is crucial for making correct inference.
For instance, different observations may face common shocks, tending to correlate them pos-
itively and thus leading to overly optimistic inference when ignored (Bertrand et al., 2004).
Such common shocks may arise if the data are polyadic (e.g., dyadic), namely they involve
interactions between several units of a given population. An example is international trade,
where each observation corresponds to a pair of countries, one exporting and the other im-
porting. We can then expect that two such pairs may be dependent whenever they share
at least one country, because of that country’s specificities in terms of international trade.
Common shocks may also correspond to aggregate fluctuations that affect all units sharing
some characteristics. For instance, wages of two individuals may be correlated either because
they live in the same geographical area, or because they work in the same sector. We refer to
multiway clustering when there are several dimensions along which units may be correlated.
∗We are grateful to anonymous referees and an associate editor for their thoughtful comments that improved
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Holland and Leinhardt (1976), Fafchamps and Gubert (2007) derived variance formulas for
linear regressions with dyadic data, while Cameron et al. (2011) propose similar formulas for
multiway clustering. The Stata command ivreg2 and the R package multiwaycov are now
used routinely to report standard errors accounting for multiway clustering. However, theory
has lagged behind this practice. Tabord-Meehan (2019) shows the asymptotic validity of
inference based on Holland and Leinhardt’s suggestion for dyadic data, but for OLS estimators
only. Graham (2019) and Graham et al. (2019) study respectively parametric regressions and
density estimation with dyadic data. Regarding multiway clustering, the only papers we are
aware of are the recent works of Menzel (2019) and MacKinnon et al. (2019). Again, they
focus on linear parameters.1

In this paper, we establish uniform laws of large numbers (LLN) and central limit theorems
(CLT) for such type of data. Uniform LLNs and CLTs are key in showing consistency and
asymptotic normality of nonlinear estimators under weak regularity conditions. As such, they
have been studied extensively with i.i.d. but also dependent data. We refer to, e.g., van der
Vaart and Wellner (1996) and Giné and Nickl (2015) for overviews with i.i.d. data, and
Dehling and Philipp (2002) for the case of time series (see also, e.g., Bertail et al., 2017;
Han and Wellner, 2019, for recent results on sampling designs). Noteworthy, we obtain these
uniform LLNs and CLTs under the same moment restrictions and conditions on the class
of functions as those usually considered with i.i.d. data. Thus, statistical results deducted
from the uniform LLNs and CLTs with i.i.d. data directly extend to the exchangeable arrays
we consider. As a proof of concept, we consider Z-estimators and smooth functionals of the
empirical cumulative distribution function (cdf).

We also study consistency of a direct generalization of the standard bootstrap for i.i.d. data
to polyadic data. A related bootstrap scheme for multiway clustering is the so-called pigeon-
hole bootstrap, suggested by McCullagh (2000) and studied by Owen (2007), but for which no
uniform result has been established so far. For both, we establish weak convergence of the cor-
responding process. These results imply the validity of the corresponding bootstrap schemes
in a wide range of setting, including Z-estimators and smooth functionals of the empirical cdf.

To prove these results, we first argue that polyadic data correspond to dissociated, jointly
exchangeable arrays. Similarly, multiway clustering corresponds to dissociated separately ex-
changeable arrays. We then rely extensively on the so-called Aldous-Hoover-Kallenberg repre-
sentation (Hoover, 1979; Aldous, 1981; Kallenberg, 1989) for such arrays. This representation
allows us in particular to prove a symmetrization lemma, which is very useful to derive the
uniform LLNs and CLTs. This lemma generalizes a similar result for i.i.d. data, but also for
U-processes (see, e.g. de la Peña and Giné, 1999, Theorem 3.5.3). Note that simple LLNs and
CLTs have been already proved, or are direct consequences of known results on dissociated,
jointly exchangeable arrays. For LLNs, we refer to Eagleson and Weber (1978) and Lemma
7.35 in Kallenberg (2005). For CLTs, see Silverman (1976). But to our knowledge, no abstract

1On the other hand and interestingly, Menzel (2019) studies inference both with and without asymptotically
normality. He also shows that refinements in asymptotic approximations are possible using the wild bootstrap.
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uniform LLNs and CLTs have been proved so far for such arrays.

Finally, we illustrate our results with two applications to international trade. In the first, we
test whether international trade remains stable from one year to another, using a Kolmogorov-
Smirnov test. Given the dependence structure over pairs of countries and through time, the
asymptotic distribution of the test under the null is complicated, making the bootstrap attrac-
tive. We show that neglecting the dependence between dyads leads to important overrejection
of the null hypothesis. Next, we estimate the so-called gravity equation, a very popular model
for explaining trade between countries. Since Santos Silva and Tenreyro (2006), this equation
has often been estimated with Poisson pseudo maximum likelihood, an estimator for which
our results apply. Again, much fewer explanatory variables are significant at usual levels when
accounting for dependence between pairs of countries than when considering such pairs to be
i.i.d. observations (as in Santos Silva and Tenreyro, 2006).

The paper is organized as follows. Section 2 describes the set-up and gives our main results
for jointly exchangeable arrays. In addition to uniform LLNs and CLTs, we prove weak
convergence of our bootstrap scheme. We also show results for Z-estimators and smooth
functionals of the empirical cdf. Section 3 considers a few extensions. In particular, we study
separately exchangeable arrays. An important difference for such arrays is that the multiple
dimensions, corresponding to different sources of clustering, may not grow at the same rate.
We show that our results still hold in this case. We also study “degenerate” cases (in the same
sense as with U-processes) and consider another bootstrap scheme. The two applications to
international trade are developed in Section 4. The appendix presents three key lemmas. In
the supplementary material, we present additional extensions. In particular, we generalize our
main results to cases where the number of observations for each k-tuple (e.g., the number of
matches between two sport players) varies. We also display Monte Carlo simulations and all
the proofs of our results.

2 The set up and main results

2.1 Set up

Before formally defining our data generating process, we introduce some notation. For any
A ⊂ R and B ⊂ Rk for some k ≥ 2, we let A+ = A ∩ (0,∞) and

B =
{
b = (b1, ...bk) ∈ B : ∀(i, j) ∈ {1, ..., k}2, i 6= j, bi 6= bj

}
.

We then let Ik = N+k denote the set of k-tuples of N+ without repetition. Similarly, for any
n ∈ N+, we let In,k = {1, ..., n}k. For any i = (i1, ..., ik) and j = (j1, ..., jk) in Nk, we let
i�j = (i1j1, ..., ikjk). With a slight abuse of notation, we also let, for any i = (i1, ..., ik) ∈ Nk,
{i} denote the set of distinct elements of (i1, ...ik). For any r ∈ {1, ..., k}, we let

Er =

(e1, ..., ek) ∈ {0, 1}k :

k∑
j=1

ej = r

 .
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Finally, for any A ⊂ N+, we let S(A) denote the set of permutations on A. For any i =

(i1, ..., ik) ∈ N+k and π ∈ S(N+), we let π(i) = (π(i1), ..., π(ik)).

We are interested in polyadic data, that is to say random variables Yi (whose support is
denoted by Y) indexed by i ∈ Ik. Dyadic data, which are the most common case, correspond
to k = 2. For instance, when considering trade data, Yi1,i2 corresponds to export flows from
country i1 to country i2. In network data, Yi1,i2 could be a dummy for whether there is a link
from i1 to i2. In directed networks, Yi1,i2 6= Yi2,i1 , while Yi1,i2 = Yi2,i1 in undirected networks.
Similarly, Yi1,i2,i3 could capture whether (i1, i2, i3) forms a triad or not (see, e.g. Wasserman
and Faust, 1994, for a motivation on triad counts). Yi could also correspond to data subject to
multiway clustering. Then i1,..., ik are the indexes corresponding to the different dimensions
of clustering, for instance geographical areas and sectors of activity. In such cases, however,
adaptations of our set-up are needed, and we postpone this discussion to Section 3.3 below.

We assume that the random variables are generated according to a jointly exchangeable and
dissociated array, defined formally as follows:

Assumption 1. For any π ∈ S(N+), (Yi)i∈Ik
d
= (Yπ(i))i∈Ik . Moreover, for any A,B disjoint

subsets of N+ with min(|A|, |B|) ≥ k, (Yi)i∈Ak is independent of (Yi)i∈Bk .

The first part imposes that the labelling conveys no information: the joint distribution of the
data remains identical under any possible permutation of the labels. The second part states
that the array is dissociated: the variables are independent if they share no unit in common.
For instance, Y(i1,i2) must be independent of Y(j1,j2) if {i1, i2} ∩ {j1, j2} = ∅. On the other
hand, Assumption 1 does not impose independence otherwise. This is important in many
applications. In the international trade example, Yi1,i2 and Yi1,i3 are likely to be dependent
because if i1 is open to international trade, it tends to export more than the average to any
other country. It may also import more from other countries, meaning that Yi1,i2 and Yi3,i1
could also be dependent.

Lemma 2.1 below is very helpful to better understand the dependence structure imposed by
joint exchangeability and dissociation. It may be seen as an extension of de Finetti’s theorem
to arrays satisfying such restrictions. It is also key in establishing our asymptotic results
below.

Lemma 2.1. Assumption 1 holds if and only if there exist i.i.d. variables (UJ)J⊂N+,1≤|J |≤k

and a measurable function τ such that almost surely,2

Yi = τ
(

(U{i�e}+)e∈∪kr=1Er

)
∀i ∈ Ik. (2.1)

This result is due to Kallenberg (1989) but a weaker version, where the equality only holds in
distribution, is known as Aldous-Hoover representation (Aldous, 1981; Hoover, 1979). Accord-
ingly, we refer to (2.1) as the AHK representation hereafter. To illustrate it, let us consider

2In this formula, the (U{i�e}+)e∈∪k
r=1Er

appear according to a precise ordering, which we let nonetheless
implicit as it bears no importance hereafter.
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dyadic data (k = 2). Then, according to Lemma 2.1, we have, for every i1 < i2,

Yi1,i2 = τ(Ui1 , Ui2 , U{i1,i2}). (2.2)

Thus, in the example of trade flows, the volume of exports from i1 to i2 depends on factors
specific to i1 and i2, such as their own GDP, but also on factors relating both, such as the
distance between the two countries. (2.2) has been also used by Bickel and Chen (2009) and
Bickel et al. (2011) to model network formation (in which case Yi1,i2 = 1 if there is a link
between i1 and i2, 0 otherwise). Note also the link between (2.2) and U-statistics: Yi1,i2 would
correspond to such a statistic if τ did not depend on its third argument.

Under Assumption 1, the (Yi)i∈Ik have a common marginal probability distribution, which
we denote by P . We are interested in estimating and making inference on features of this
distribution, such as its expectation or a quantile, based on observing the first n units only,
namely the sample (Yi)i∈In,k , with n ≥ k.

2.2 Uniform laws of large numbers and central limit theorems

Let F denote a class of real-valued functions admitting a first moment with respect to the
distribution P and let Pf denote the corresponding moment E [f(Y1)] (with 1 the k−tuple
(1, ..., k)). To avoid measurability issues and the use of outer expectations subsequently, we
maintain the following assumption:

Assumption 2. There exists a countable subclass G ⊂ F such that elements of F are pointwise
limits of sequences of elements of G.

Assumption 2 is not necessary but often imposed (see, e.g. Chernozhukov et al., 2014; Kato,
2019). We refer to Kosorok (2006, pp.137-140) for further discussion.

In this section, we study the empirical measure Pn and the empirical process Gn defined on
F by

Pnf =
(n− k)!

n!

∑
i∈In,k

f(Yi),

Gnf =
√
n (Pnf − Pf) .

Let `∞(F) denote the set of bounded functions on F . We prove below that under restrictions
on F , Pnf converges almost surely to Pf uniformly over f ∈ F , while Gn converges weakly in
`∞(F) to a Gaussian process. We refer to, e.g., van der Vaart and Wellner (1996) for a formal
definition of weak convergence of empirical processes. These results, stronger than pointwise
convergence of Pnf and Gnf , are key in establishing the consistency and asymptotic normality
of, e.g., smooth functionals of the empirical cdf or Z- and M-estimators. We consider briefly
applications in Section 2.4 below, and refer to Part 3 of van der Vaart and Wellner (1996) for
a more comprehensive review of statistical applications of empirical process results.

We use the rate
√
n to normalize Pnf − Pf , though we have n!/(n − k)! different random

variables. In general, we cannot expect a better rate of convergence. To see this, let (Xi)i∈N+
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be i.i.d. random variables and let Yi =
∑

j∈{i}Xj . Then (Yi)i∈Ik satisfies Assumption 1, and
Pnf boils down to an average over n i.i.d. terms only. In some cases, however, for instance
if the (Yi)i∈Ik are i.i.d., the convergence rate is faster than

√
n.3 Theorem 2.1 below remains

valid in such cases, but the limit Gaussian process is then degenerate. We come back in more
details to such cases in Section 3.1 below.

Let us now introduce the restrictions on F that we use to obtain uniform laws. We require
additional notation for that purpose. For any η > 0 and any seminorm || · || on a space
containing F , N(η,F , || · ||) denotes the minimal number of || · ||-closed balls of radius η with
centers in F needed to cover F . N[ ](η,F , || · ||) denotes the minimal number of η-brackets
needed to cover F , where an η-bracket for f ∈ F is a pair of functions (`, u) such that
` ≤ f ≤ u and ||u− `|| < η. The seminorms we consider hereafter are ‖f‖µ,r = (

∫
|f |rdµ)1/r

for any r ≥ 1 and probability measure or cdf µ. Hereafter, an envelope of F is a measurable
function F satisfying F (u) ≥ supf∈F |f(u)|. Finally, we let Q denote the set of probability
measures with finite support on Y.

Assumption 3. The class F either:

(i) admits an envelope F with PF <∞ and ∀η > 0,

sup
Q∈Q

N (η||F ||Q,1,F , || · ||Q,1) <∞;

(ii) or satisfies N[ ]

(
η,F , || · ||L1(P )

)
<∞ for all η > 0.

Assumption 4. The class F either:

(i) admits an envelope F with PF 2 <∞ and∫ ∞
0

sup
Q∈Q

√
logN (η||F ||Q,2,F , || · ||Q,2)dη <∞;

(ii) or satisfies
∫∞

0

√
logN[ ]

(
η,F , || · ||L2(P )

)
dη <∞.

Assumptions 3 and 4 are exactly the same as the conditions often imposed with i.i.d. data
to show uniform LLNs and CLTs (see, e.g., Theorems 19.4, 19.5, 19.13 and 19.14 in van der
Vaart, 2000).4 In particular, Assumption 4-(i) (resp. (ii)) imposes a condition on what is
usually referred to as the uniform (resp. bracketing) entropy integral, see, e.g., van der Vaart
and Wellner (1996). Finiteness of the uniform entropy integral is satisfied by any VC-type
class of functions (see Chernozhukov et al., 2014, for a definition), or by the convex hull of
such classes under some restrictions. The bracketing entropy integral is finite for instance

3 As with U-statistics, we expect different rates depending on the degree of “degeneracy”.
4In van der Vaart (2000), the supremum in Assumptions 3 and 4 is taken over the set of probability measures

Q with finite support on Y and such that ||F ||Q,2 > 0. This additional restriction is simply due to a different
convention in constructing covering numbers, as van der Vaart considers open balls while we use closed balls,
following, e.g., Kato (2019).
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for classes of monotone or Hölder continuous functions (see, e.g. van der Vaart and Wellner,
1996).
The following theorem establishes uniform LLNs and CLTs under these two conditions. We
denote by 1′ the k−tuple (1, k + 1, ..., 2k − 1).

Theorem 2.1. Suppose that Assumptions 1-2 hold. Then:

1. If Assumption 3 holds, supf∈F |Pnf − Pf | tends to 0 a.s. and in L1.

2. If Assumption 4 holds, the process Gn converges weakly in `∞(F) to a centered Gaussian
process G on F as n tends to infinity. Moreover, the covariance kernel K of G satisfies:

K(f1, f2) =
1

(k − 1)!2

∑
(π,π′)∈S({1})×S({1′})

Cov
(
f1(Yπ(1)), f2(Yπ′(1′))

)
.

The proof is in Section 3.5 of the supplement. When Assumption 3-(ii) holds, Part 1 can be
proved by essentially combining Theorem 3 in Eagleson and Weber (1978) and Lemma 7.35 in
Kallenberg (2005). Part 2 was also proved for a finite F by Silverman (1976). But the weak
convergence result under the bracketing entropy condition, and the uniform laws under the
uniform entropy conditions, do not follow from such results. To prove the former, we adapt a
maximal inequality in Giné and Nickl (2015, see their Lemma 3.5.12) to our context. To this
end, we show that Hoeffding’s bound on U-statistic (Hoeffding, 1963, Section 5.a) still applies
to our context.

To prove the results under the uniform entropy conditions, the key ingredient, as with i.i.d.
data, is a symmetrization lemma stated in Appendix A below and proved in the supplement.
Its proof relies extensively on Lemma 2.1 and a decoupling inequality that may be of in-
dependent interest (see Lemma A.2). The latter result generalizes a similar inequality for
U-processes (see de la Peña, 1992). In the proofs of both lemmas, we follow similar strategies
as with U-processes, with two complications. First, even with k = 2, Yi does not only depend
on Ui1 and Ui2 , but also on U{i1,i2}. Second, when k ≥ 3, dependence between observations
arises not only because of single-unit terms such as Ui1 or Ui2 , but also because of multiple-unit
terms such as U{i1,i2}.

As in the i.i.d. case, Assumption 3 is actually stronger than necessary to obtain the uniform
law of large numbers. The following proposition gives an exact characterization, where, for
simplicity, we restrict to k = 2. It is similar to the characterization for i.i.d. data (see, e.g.
Theorem 3.7.4 in Giné and Nickl, 2015) or for U-processes (see Theorem 5.2.2 in de la Peña
and Giné, 1999). Let us introduce the following norms:

‖f‖1,1 =
1

n

n∑
i1=1

∣∣∣∣∣∣ 1

n− 1

∑
i2 6=i1

f(Yi1,i2) + f(Yi2,i1)

∣∣∣∣∣∣ ,
‖f‖1,2 =

1

n(n− 1)

∑
1≤i1<i2≤n

∣∣E [f(Yi1,i2) + f(Yi2,i1) | U{i1,i2}
]∣∣ .
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Proposition 2.1. Suppose that Assumptions 1-2 hold and F admits an envelop F with PF <

∞. Then supf∈F |Pnf − Pf |
as−→ 0 if and only if both logN(ε,F , ||·||1,2)/n2 and logN(ε,F , ||·

||1,1)/n tend to 0 in outer probability.5

Proposition 2.1 emphasizes the two aspects of dissociated, exchangeable arrays. The first is
i.i.d. variations, through the random entropy term related to || · ||1,2, which only involves
(U{i1,i2})i∈In,2 . The second is U-statistic like variations, through the random entropy term
related to || · ||1,1: up to negligible terms, ||f ||1,1 only depends on (Ui1)1≤i1≤n. Key in estab-
lishing the necessity of these two conditions is a weak converse of the symmetrization lemma
for k = 2, see Equation (3.29) in the supplement.

2.3 Convergence of the bootstrap process

We now study the properties of the following bootstrap sampling scheme, which extends the
pigeonhole bootstrap (McCullagh, 2000; Owen, 2007) to jointly separable arrays:

1. n units are sampled independently in {1, ..., n} with replacement and equal probability.
Wi denotes the number of times unit i is sampled.

2. the k−tuple i = (i1, ..., ik) ∈ In,k is then selected Wi =
∏k
j=1Wij times in the bootstrap

sample.

Then we consider P∗n and G∗n, defined on F by

P∗nf =
(n− k)!

n!

∑
i∈In,k

Wif(Yi),

G∗nf =
√
n (P∗nf − Pnf) .

Asymptotic validity of the bootstrap amounts to showing that conditional on the data (Yi)i∈Ik ,
G∗n converges weakly to the process G defined in Theorem 2.1.6 As discussed in, e.g., van der
Vaart and Wellner (1996, Chapter 3.6), the outer almost-sure conditional weak convergence
boils down to proving

sup
h∈BL1

∣∣E (h(G∗n)
∣∣(Yi)i∈Ik)− E (h(G))

∣∣ as∗−→ 0, (2.3)

where BL1 is the set of bounded and Lipschitz functions from `∞(F) to [0, 1] and “ as∗−→” denotes
outer almost-sure convergence.

Theorem 2.2. If Assumptions 1-2 and 4-(i) hold, the process G∗n converges weakly in `∞(F)

to G, conditional on (Yi)i∈Ik and outer almost surely.
5For a definition of convergence in outer probability or outer almost-sure convergence considered below, see

e.g. Chapter 1.9 in van der Vaart and Wellner (1996).
6For the sake of brevity, we focus afterwards on convergence results under the sole uniform entropy condition

(Assumption 4-(i)).
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This theorem ensures the asymptotic validity of the bootstrap above not only for sample
means, but also for smooth functionals of the empirical cdf and nonlinear estimators, as we
shall see below. The proof of Theorem 2.2, in Section 3.7 of the supplement, follows the same
lines as that of Theorem 2.1, though some of the corresponding steps are more involved, as
often with the bootstrap. In particular, to prove pointwise convergence, we use arguments in
Lindeberg’s proof of the CLT for triangular arrays, Theorem 2.1.1 and Urysohn’s subsequence
principle, combined with Prohorov’s theorem.

Note that in contrast with the standard bootstrap for i.i.d. data,

E
(
P∗n(f)

∣∣(Yi)i∈Ik) =
1

nk

∑
i∈In,k

f(Yi) 6= Pnf.

However, the difference between Pn and P′n, the empirical measure with weights 1/nk, becomes
negligible as n→∞. Accordingly, we also show in the proof of Theorem 2.2 the almost-sure
conditional convergence of

√
n (P∗nf − P′nf), in addition to that of G∗n.

2.4 Application to nonlinear estimators

Theorem 2.1 ensures consistency and asymptotic normality of a large class of estimators.
In turn, Theorem 2.2 shows that using the bootstrap for such estimators is asymptotically
valid. To illustrate these points, we consider here two popular classes of estimators, namely
Z-estimators and smooth functionals of the empirical cdf. Similar results could be obtained
for, e.g., M-estimators (see, e.g. Cheng and Huang, 2010) or generalized method of moments
estimators (see, e.g. Hansen, 1982).

Let us first consider Z-estimators. Let Θ denote a normed space, endowed with the norm
‖ · ‖Θ and let (ψθ,h)(θ,h)∈Θ×H denote a class of real, measurable functions. Let Ψ(θ)(h) =

Pψθ,h, Ψn(θ)(h) = Pnψθ,h and Ψ∗n(θ)(h) = P∗nψθ,h. We let, for any real function g on H,
‖g‖H = suph∈H |g(h)|. The parameter of interest θ0, which satisfies Ψ(θ0) = 0, is estimated
by θ̂ = arg minθ∈Θ ‖Ψn(θ)‖H. We also define θ̂∗ = arg minθ∈Θ ‖Ψ∗n(θ)‖H as the bootstrap
counterpart of θ̂. The following theorem extends Theorem 13.4 in Kosorok (2006) to jointly
exchangeable and dissociated arrays. For related results on Z-estimators in the i.i.d. case, see
Section 3.2 in van der Vaart and Wellner (1996) and Wellner and Zhan (1996).

Theorem 2.3. Suppose that Assumption 1 holds and:

1. ‖Ψ(θm)‖H → 0 implies ‖θm − θ0‖Θ → 0 for every (θm)m∈N in Θ;

2. The class {ψθ,h : (θ, h) ∈ Θ ×H} satisfies Assumptions 2-3, with the envelope function
F satisfying PF <∞;

3. There exists δ > 0 such that the class {ψθ,h : ‖θ−θ0‖Θ < δ, h ∈ H} satisfies Assumptions
2 and 4, with an envelope function Fδ satisfying PF 2

δ <∞;

4. limθ→θ0 suph∈H P (ψθ,h − ψθ0,h)2 = 0;

9



5. ‖Ψn(θ̂)‖H = op(n
−1/2) and P

(
‖
√
nΨ∗n(θ̂∗)‖H > η|(Yi)i∈Ik

)
= op(1) for every η > 0;

6. θ 7→ Ψ(θ) is Fréchet-differentiable at θ0, with continuously invertible derivative Ψ̇θ0.

Then
√
n(θ̂ − θ0) converges in distribution to a centered Gaussian process G. Moreover, con-

ditional on (Yi)i∈Ik and almost surely,
√
n(θ̂∗ − θ̂) converges in distribution to G.

Next, we consider smooth functionals of FY , the cdf of Yi. Suppose that Y ⊂ Rp for some
p ∈ N+ and θ0 = g(FY ), where g is Hadamard differentiable (for a definition, see, e.g., van der
Vaart and Wellner, 1996, Section 3.9.1). We estimate θ0 with θ̂ = g(F̂Y ), where F̂Y denotes
the empirical cdf of (Yi)i∈In,k . Finally, we let θ̂∗ denote the bootstrap counterpart of θ̂.

Theorem 2.4. Suppose that g is Hadamard differentiable at FY tangentially to a set D0, with
derivative equal to g′FY . Suppose also that Assumption 1 holds. Then:

1.
√
n(F̂Y −FY ) converges weakly, as a process indexed by y, to a Gaussian process G with

kernel K satisfying

K(y1, y2) =
1

(k − 1)!2

∑
(π,π′)∈S({1})×S({1′})

Cov
(
1{Yπ(1)≤y1},1{Yπ′(1′)≤y2}

)
.

2. If G ∈ D0 with probability one,
√
n
(
θ̂ − θ0

)
d−→ N (0,V(g′FY (G))).

Moreover, conditional on (Yi)i∈Ik and almost surely,
√
n(θ̂∗−θ̂) converges in distribution

to the same limit.

In practice, D0 often corresponds to the set of functions that are continuous everywhere or at
a certain point y0. This is the case for instance with g : FY 7→ F−1

Y (τ) for τ ∈ (0, 1). In such
cases, one can show that G ∈ D0 under the same condition as for i.i.d. data, namely that FY
is continuous everywhere or at the point F−1

Y (τ).

3 Extensions

We now consider several extensions to our main results. First, we study the asymptotic
behavior of the properly normalized empirical process in degenerate cases where K(f, f) = 0.
Second, we establish additional results on the bootstrap. Third, we study separately, rather
than jointly, separable arrays. Other extensions to arrays with multiple observations per k-
tuple and arrays where Yi is defined even if there are identical indices in i are considered in
the supplement. We also develop therein a test that the data are in fact i.i.d.

3.1 Degenerate cases

We consider here situations where K(f, f) = 0 for all f ∈ F , focusing for simplicity on
k = 2.7 Such a degeneracy appears for instance if the variables in the array are actually

7If K(f, f) = 0 for only some f ∈ F , we focus on F ′ = {f ∈ F : K(f, f) = 0}.
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i.i.d., in which case
√
nGn converges to a Gaussian process with covariance kernel K(f1, f2) =

Cov(f1(Y1,2), f2(Y1,2)). As another example (see Menzel, 2019; Bretagnolle, 1983), suppose
that Yi1,i2 = Xi1Xi2 , with (Xi)i∈N+ i.i.d. variables with E(X1) = 0, V(X1) = 1. Let also
F = {fλ(x) = λx, λ ∈ I} for a compact I ⊂ R. Then one can easily see that

√
nGn converges

weakly in `∞(F) to G(fλ) = λ(Z2 − 1), with Z a standard normal variable.

More generally and as with U-processes (see, e.g. Arcones and Giné, 1993), when K(f, f) = 0,
the rate of convergence of Pnf −Pf is n−1 rather than n−1/2 and the asymptotic distribution
may not be normal. For any (i1, i2) ∈ I2, let Yi1,i2 = τ(Ui1 , Ui2 , U{i1,i2}) be the Aldous-
Hoover-Kallenberg representation where, without loss of generality, the variables in τ(·, ·, ·)
are assumed to be uniform on [0, 1]. Let ψm(u) =

(
1 + 1{m≥2}

)1/2
cos (mπu) for m even and

ψm(u) =
√

2 sin((m+1)πu) for m odd. Then (ψm)m∈N forms an orthonormal basis of L2[0, 1].
For all m ∈ N3 and any f ∈ F , we define µm(f) by

µm(f) = E
[
[f(Y1,2)− E (f(Y1,2))]ψm1(U1)ψm2(U2)ψm3(U{1,2})

]
.

Let (Zm)m∈N+ , (Zm1,m2)(m1,m2)∈N×N+ and (Z{m1,m2},m3
)(m1,m2,m3)∈N2×N+:m1<m2

denote inde-
pendent standard normal variables. We then define the process Gd on F by

Gd(f) =
∑

(m1,m2)∈N+2

µm1,m2,0(f)
(
Zm1Zm2 − 1{m1=m2}

)
+
∑
m1∈N,
m2∈N+

µm1,m1,m2(f)Zm1,m2 +
∑

(m1,m2,m3)∈N2×N+:
m1 6=m2

µm(f)Z{m1,m2},m3
.

To prove the convergence of
√
nGn, we consider a condition on F that slightly differs from

Assumption 4-(i).

Assumption 5. The class F admits an envelope F with PF 2 <∞ and∫ ∞
0

sup
Q∈Q

logN (η||F ||Q,2,F , || · ||Q,2) dη <∞.

Assumption 5 is more stringent than Assumption 4-(i). A similar condition was also imposed
by Arcones and Giné (1993) for degenerate U-processes of order 1, see their condition (5.1).

Theorem 3.1. Suppose that k = 2, Assumptions 1-2 and 5 hold and K(f, f) = 0 for all
f ∈ F . Then

√
nGn converges weakly in `∞(F) to Gd.

As with degenerate U-processes (see Section 5 of Arcones and Giné, 1993), the limit process
is a Gaussian chaos process. The result is based in particular on a symmetrization lemma
and a maximal inequality taylored to these degenerate cases. Specifically, the symmetrized
process only includes Rademacher variables at the pair {i1, i2} level, or products ε(1)

i1
ε

(2)
i1

of
Rademacher variables. We refer to Lemmas S3 and S10 in the supplement for more details.

Finally, we note that the bootstrap process considered above does not generally converge to
Gd.8 With i.i.d. data, for instance, one can show that the variance of the bootstrapped

8The same holds true for the multiplier bootstrap process considered below.
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mean converges to 3V(Yi1,i2). We expect similar phenomena as with U statistics, where the
bootstrap is known to fail in degenerate cases (Arcones and Gine, 1992; Arcones and Giné,
1994). In the close case of separately exchangeable arrays (see Section 3.3 below), Menzel
(2019) shows that a suitable wild bootstrap is consistent for the sample average, whether or
not we have degeneracy. Whether such a result generalizes to the empirical process is left for
future research.

3.2 Further results on the bootstrap

Theorem 2.2 shows convergence of the bootstrap process under conditions on F that ensure
the convergence of the initial process Gn. The following result shows that under moment
conditions, convergence of Gn is actually necessary for the convergence of G∗n to a Gaussian
process.

Theorem 3.2. Suppose that Assumptions 1-2 hold, Pf2 <∞ for all f ∈ F and F admits an
envelope F such that PF 1+δ <∞ for some δ > 0. Then, if conditional on (Yi)i∈Ik and outer
almost surely, the process G∗n converges weakly in `∞(F) to G, a centered Gaussian process,
the process Gn also converges weakly in `∞(F) to G.

Theorem 3.2 may be seen as a partial extension to jointly exchangeable arrays of Theorem
2.4 in Giné and Zinn (1990), which, with i.i.d. data, establishes the equivalence between the
convergence of the bootstrap process and PF 2 < ∞ together with convergence of the initial
process.

With i.i.d. data, several other bootstrap schemes than the multinomial bootstrap are possible:
see, e.g., Barbe and Bertail (1995) for an extensive review. The situation is probably no
different with jointly exchangeable arrays. To illustrate this, we consider a version of the
multiplier bootstrap adapted to such data (see, e.g., Kosorok, 2003, for the case of i.i.d. data).
Specifically, let (ξi)

n
i=1 be a sequence of i.i.d. random variables that are centered, have unit

variance and are independent from the original data (Yi)i∈In,2 . We then consider the following
process:

Gm∗
n : f 7→ 1√

n

n∑
i1=1

ξi1

 1

n− 1

∑
1≤i2 6=i1≤n

[f(Yi1,i2) + f(Yi2,i1)]− 2Pnf

 .

The next theorem shows the conditional weak convergence of Gm∗
n under the same conditions

on F as previously.

Theorem 3.3. Suppose that Assumptions 1-2 and 4-(i) hold and (ξi)
n
i=1 is i.i.d. with E(ξ1) =

0, V(ξ1) = 1. Then, conditional on (Yi)i∈Ik and outer almost surely, the process Gm∗
n converges

weakly in `∞(F) to G.

3.3 Separately exchangeable arrays

Up to now, we have considered cases where the n units that interact stem from the same
population. In some cases, however, they do not, because the k populations differ. For
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instance, we may be interested only in relationships between men and women. In that case,
the symmetry condition in Assumption 1 has to be strengthened: both the labelling of men
and the labelling of women should be irrelevant. This corresponds to so-called separately
exchangeable arrays, defined formally in Assumption 6 below. Another important motivation
for considering separately exchangeable arrays is multiway clustering, namely dependence
arising through different dimensions of clustering. For instance, wages of workers may be
affected by local shocks or sector-of-activity shocks. In such cases, we observe Yi1,i2 , the wage
of a worker in geographical area i1 and sector of activity i2.9

More generally, we consider in this section random variables Yi where i = (i1, ..., ik) ∈ N+k,
implying that repetitions (e.g. i = (1, ..., 1)) are allowed. We impose the following condition
on these random variables.

Assumption 6. For any (π1, ..., πk) ∈ S(N+)k,

(Yi)i∈N+k
d
= (Yπ1(i1),...,πk(ik))i∈N+k .

Moreover, for any A,B, disjoint subsets of N+, (Yi)i∈Ak is independent of (Yi)i∈Bk .

This condition is stronger than Assumption 1 since it implies in particular equality in distri-
bution for π1 = ... = πk.

Let us redefine 1 here as (1, ..., 1) and let n = (n1, ..., nk), where nj ≥ 1 denotes the number of
units observed in population j (or cluster j with multiway clustering). Note that in general,
nj 6= nj′ for j 6= j′. The sample at hand is then (Yi)1≤i≤n, where i ≥ i′ means that ij ≥ i′j
for all j = 1, ..., k. Let n = min(n1, ..., nk). The empirical measure and empirical process that
we consider for separately exchangeable arrays are:

Pnf =
1∏k

j=1 nj

∑
1≤i≤n

f(Yi),

Gnf =
√
n (Pnf − Pf) .

We also consider the “pigeonhole bootstrap”, suggested by McCullagh (2000) and studied,
in the case of the sample mean and for particular models, by Owen (2007). This bootstrap
scheme is very close to the one we considered in Section 2 for jointly exchangeable arrays,
except that the weights are now independent from one coordinate to another:

1. For each j ∈ {1, ..., k}, nj elements are sampled with replacement and equal probability
in the set {1, ..., nj}. For each ij in this set, let W j

ij
denote the number of times ij is

selected this way.

2. The k-tuple i = (i1, ..., ik) is then selectedWi =
∏k
j=1W

j
ij
times in the bootstrap sample.

9Oftentimes, we actually have several observations per cell, and the number varies from one cell to another.
This extension is discussed in Section 1.1 of the supplement.
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The bootstrap process G∗n is thus defined on F by

G∗nf =
√
n

 1∏k
j=1 nj

∑
1≤i≤n

(Wi − 1)

Ni∑
`=1

f(Yi,`)

 .

Henceforth, we consider the convergence of Pn, Gn and G∗n as n tends to infinity. More
precisely, as with multisample U-statistics (see, e.g. van der Vaart, 2000, Section 12.2), we
assume that there is an indexm ∈ N+, left implicit hereafter, and increasing functions g1, ..., gk

such that for all j, nj = gj(m) → ∞ as m → ∞ (we also assume without loss of generality
that for all m ∈ N+, gj(m+1) > gj(m) for some j). The following theorem extends Theorems
2.1 and 2.2 to this set-up.

Theorem 3.4. Suppose that Assumptions 2 and 6 hold and that for every j = 1, ..., k, there
exists λj ≥ 0 such that n/nj → λj ≥ 0. Then:

1. If Assumption 3 holds, supf∈F |Pnf − Pf | tends to 0 a.s. and in L1.

2. If Assumption 4-(i) holds, the process Gn converges weakly in `∞(F) to a centered Gaus-
sian process Gλ on F as n tends to infinity. Moreover, the covariance kernel Kλ of Gλ

satisfies:

Kλ(f1, f2) =

k∑
j=1

λjCov
(
f1(Y1), f2(Y2j )

)
, (3.1)

where 2j is the k-tuple with 2 in each entry but 1 in entry j.

3. If Assumption 4-(i) holds, the process G∗n converges weakly to Gλ, conditional on (Yi)i∈N+k

and outer almost surely.

Theorem 3.4 includes the case where λj = 0 for some j, corresponding to “strongly unbalanced”
designs with different rates of convergence to ∞ along the different dimensions of the array.
In that case, only the dimensions with the slowest rate of convergence contribute to the
asymptotic distribution, as can be seen in (3.1).

Because the (nj)j=1...k are not all equal in general, Theorem 3.4 does not follow directly from
Theorem 2.1, even if Assumption 6 is stronger than Assumption 1. We prove the result by
showing a simpler and convenient version of the symmetrization lemma in this setting. We
refer to Lemma S2 in the supplement for more details.

4 Applications to international trade

Finally, we illustrate the importance of accounting for dependence in real dyadic data, through
two applications to international trade data.
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4.1 Evolution of international trade

There is a large interest in economics on the evolution of international trade. But before
analyzing the causes and consequences of such an evolution, one must check that there is
indeed some significant changes. In this first application, we test whether the distribution of
exports remains the same between two consecutive years, using Comtrade data on all countries
from 2012 to 2018. We use for that purpose the Kolmogorov-Smirnov (KS) test statistic

KSt = sup
u∈R

∣∣∣∣∣∣ 1

n(n− 1)

∑
(i1,i2)∈In,2

1{Ti1,i2,t≤u} − 1{Ti1,i2,t+1≤u}

∣∣∣∣∣∣ .
where Ti1,i2,t denotes the trade volume from country i1 to country i2 in year t. Let us assume
that Assumption 1 holds, with Yi = (Ti,t, Ti,t+1). Then, under the null hypothesis that the
distributions of Ti,t and Ti,t+1 are equal, we have, by Theorem 2.1,

√
nKSt

d−→ ‖G‖F , with
F = {fu(x, y) = 1{x≤u} − 1{y≤u}}. Given the dependence structure both between pairs
of countries and across time, the distribution of ‖G‖F depends on the true data generating
process. To estimate it, we rely on the recentered bootstraped test statistic:

KS∗t = sup
u∈R

∣∣∣∣∣∣ 1

n(n− 1)

∑
(i1,i2)∈In,2

(Wi − 1)
(
1{Ti1,i2,t≤u} − 1{Ti1,i2,t+1≤u}

)∣∣∣∣∣∣ .
We compute the p-value of the test by P

(
KS∗t > KSt

∣∣(Yi)i∈In,k). For the sake of comparison,
we also compute p-values based on alternative forms of dependence that have been considered
in applied work on similar data. Specifically, we also assume that the variables (Yi)i are i.i.d.
We then assume pairwise clustering, where Yi1,i2 and Yi2,i1 may be dependent, but Yi and Yj
are independent if j is not a permutation of i. We also consider one-way clustering according
to i1 (and, similarly, according to i2). In this case, Yi1,i2 and Yi1,i3 may be dependent, but
Yi1,i2 and Yi′1,i3 are independent as soon as i1 6= i′1, whether or not i2 = i3. For each of
these cases, we use the bootstrap, but with different bootstrap schemes accounting for these
different dependence structures.

Pairs of KS test p-values under different assumptions
years statistic i.i.d. P.W. cl. E. cl. I. cl. dyadic
2012-2013 0.048 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

2013-2014 0.018 < 0.001 < 0.001 < 0.001 0.026 0.038
2014-2015 0.022 < 0.001 < 0.001 < 0.001 0.005 0.007
2015-2016 0.002 0.44 0.391 0.377 0.951 0.998
2016-2017 0.012 < 0.001 < 0.001 < 0.001 0.215 0.254
2017-2018 0.045 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Notes: data from the Comtrade database. “cl.”, “E”, “I” and “P.W.” stand for clus-

tering, exporter, importer and pairwise, respectively. The p-values were obtained

with 1,000 bootstrap samples.

Table 1: KS tests of FTi,t = FTi,t+1
under different dependence assumptions

15



The results are displayed in Table 1. They suggest significant changes in export volumes in
some years but not all. In particular, international trade seems very stable between 2015 and
2017. There is some evidence of changes between 2012 and 2015 but we still do not reject the
null hypothesis at the 1% level for the years 2013-2014. The other columns of the table shows
the importance of accounting for dependence along both dimensions. In particular, assuming
i.i.d. data or pairwise dependence always leads to a strong rejection of the null, except for
2015-2016.10 Clustering along exporters also leads to artificially small p-values, in particular
for the pairs 2013-2014, 2014-2015 and 2016-2017. In this context, clustering along importers
leads to results that are closer to those based on dyadic data.

4.2 Estimation of a gravity equation

Second, we revisit Santos Silva and Tenreyro (2006), who estimate the so-called gravity equa-
tion for international trade. Omitting the year index, this gravity equation states that Ti1,i2
satisfies

Ti1,i2 = exp(α0)Gα1
i1
Gα2
i2
Dα3
i1,i2

exp (Ai1,i2β) ηi1,i2 , (4.1)

where Gi denotes country i’s GDP, which would correspond to the mass of i in a traditional
gravity equation, Di1,i2 denotes the distance between i1 and i2, Ai1,i2 are additional control
variables and ηi1,i2 is an unobserved term.

To estimate θ0 = (α0, ..., α3, β
′)′, Santos Silva and Tenreyro (2006) suggest to use the Poisson

pseudo maximum likelihood (PPML for short) estimator θ̂. The idea, formalized in Gourieroux
et al. (1984), is that with i.i.d data, the PPML estimator is consistent and asymptotically
normal for θ0 even if Ti does not follow a Poisson model, provided that E [ηi|Xi] = 1, with
Xi = (1, ln(Gi1), ln(Gi2), ln(Di), Ai). This is because the PPML estimator is based on the
empirical counterpart of

E
[
X ′i (Ti − exp(Xiθ0))

]
= 0, (4.2)

and this equality holds true if E [ηi|Xi] = 1.

Now, assuming as in Santos Silva and Tenreyro (2006) that the variables (Yi)i∈I2 (with Yi =

(Ti, Xi)) are i.i.d. is restrictive. We suppose instead that Assumption 1 holds. Then Theorem
2.3 applies to this setting, implying that θ̂ is still consistent and asymptotically normal in this
case.11 Nonetheless, the rates of convergence and asymptotic variance are different in the two
cases, resulting in different inference on θ0.12

10 A concern is that if the data are actually i.i.d. (or, more generally, pairwise dependent), our bootstrap
is conservative, which would explain the discrepancy between the p-values under pariwise dependence and
non-degenerate joint exchangeability. Using the methodology in Section 1.3 of the supplement, we test for
pairwise dependence. For the eight years we consider, the null hypothesis is rejected at all standard levels,
with p-values always smaller than 10−4.

11In this case, H = {1, ..., dim(Xi)} and ψθ,h(Yi) = Xh,i(Ti − exp(Xiθ0)). Then the key conditions 2 and 3
in Theorem 2.3 are satisfied as soon as Θ is bounded, see e.g. Example 19.7 in van der Vaart (2000).

12The same application has been considered by Graham (2019), who shows, assuming convergence of a certain
sample average, the asymptotic normality of the PPML estimator under the same dependence structure as
ours. On the other hand, he neither considers bootstrap-based inference nor proves the consistency of his
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We use the same dataset as Santos Silva and Tenreyro (2006), which covers 136 countries
for year 1990, and consider the exact same specification as the one they use in their Table
3. In this specification, the additional control variables Ai include exporter- and importer-
level variables, namely their GDP per capita, a dummy variable equal to one if countries are
landlocked and a remoteness index, which is the log of GDP-weighted average distance to
all other countries. It also includes variables at the pair level, namely dummy variables for
contiguity, common language, colonial tie, free-trade agreement and openness. This openness
dummy is equal to one if at least one country is part of a preferential trade agreement. We
refer to Santos Silva and Tenreyro (2006) for additional details.

Table 2 below presents the results. The first column displays the point estimates, which,
as expected, are identical to those in Santos Silva and Tenreyro (2006). The other columns
display the p-values for the null hypothesis that θ0j , the j-th component of θ0, is equal to
0. We consider the same forms of dependence as with the KS test above. Under joint ex-
changeability, we compute the p-value pj for θ0j = 0 using pj = P

(
|θ̂∗j − θ̂j | > |θ̂j |

∣∣(Yi)i∈In,k).
For other forms of dependence, we follow the usual practice of computing the p-values using
the asymptotic normality of θ̂j and estimators of the asymptotic variance under these various
dependence structures.

p-values under different assumptions
Variable Estimator i.i.d P.W. cl. E. cl. I. cl. dyadic
Log(E’s GDP) 0.732 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Log(I’s GDP) 0.741 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Log(E’s PCGDP) 0.157 0.003 < 10−3 0.04 0.001 0.078
Log(I’s PCGDP) 0.135 0.003 < 10−3 0.004 0.055 0.076
Log of distance -0.784 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Contiguity 0.193 0.064 0.16 0.112 0.077 0.461
Common-language 0.746 < 10−3 < 10−3 < 10−3 < 10−3 0.056
Colonial-tie 0.025 0.867 0.902 0.891 0.882 0.952
Landlocked E -0.863 < 10−3 < 10−3 < 10−3 < 10−3 0.004
Landlocked I -0.696 < 10−3 < 10−3 < 10−3 < 10−3 0.011
E’s remoteness 0.66 < 10−3 < 10−3 < 10−3 < 10−3 0.036
I’s remoteness 0.562 < 10−3 < 10−3 0.003 0.004 0.105
P-T agreement 0.181 0.041 0.117 0.054 0.122 0.456
Openness -0.107 0.416 0.522 0.498 0.453 0.771
Notes: data from Santos Silva and Tenreyro (2006), same specification as in their Table 3.

“cl.”, “E”, “I”, “PCGDP”, “P-T”, “P.W.” stand for clustering, exporter, importer, per capita

GPD, preferential-trade and pairwise, respectively. The p-values for the last column were

obtained with 1,000 bootstrap samples.

Table 2: Point estimates of θ0 and p-values of θ0j = 0 under different dependence assumptions

(asymptotic) variance estimator.
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Using our bootstrap leads to much larger p-values than under the i.i.d. assumption. Only the
log of distance and the log of GDP of the exporter and the importer appear to be significant
at the 10−3 levels, whereas five additional control variables are significant at that level under
the i.i.d. assumption. In particular, common language and importer’s remoteness are not
even significant at the usual 5% level.13 Interestingly, there is also a gap between assuming
one-way clustering, either at the exporter or at the importer level, and assuming to have a
jointly exchangeable and dissociated array. In the former case, we still have seven variables
that are significant at the 10−3 levels. Confidence intervals, not displayed here, lead to similar
conclusions. In particular, compared to the average length of i.i.d.-based 95% confidence
intervals, those based on pairwise clustering are only 8% wider. Those based on one-way
clustering on exporters (resp. importers) are 20% (resp. 17%) larger. On the other hand,
those based on Assumption 1 are 136% wider.

5 Conclusion

While polyadic data are increasingly used in applied work, and empirical researchers routinely
account for multiway clustering when computing standard errors, the statistical theory behind
these forms of dependence has lagged behind. Following Bickel and Chen (2009) and Menzel
(2019), we link these dependence structures to jointly and separately exchangeable arrays.
Using representation results for such arrays, we then prove uniform laws of large numbers and
central limit theorems. These results imply consistency and asymptotic normality of various
nonlinear estimators under such dependence. We also establish the general validity of natural
extensions of the standard nonparametric bootstrap to such arrays. Our application shows
that using those bootstrap schemes may make a large difference compared to assuming i.i.d.
data or clustering along a single dimension, as has often been done.

One caveat is that for the bootstrap confidence intervals to be valid, the asymptotic variance
of the estimator should be positive. This may not be the case, for instance if the data (Yi)i∈Ik
are actually i.i.d. Inference based on the wild bootstrap without this positivity condition
has been studied for sample averages under multiway clustering by Menzel (2019). How to
conduct inference on nonlinear estimators under joint exchangeability or multiway clustering
without this positivity condition remains an avenue for future research.

A Key lemmas

We first state the symmetrisation lemma. Let (εA)A⊂N+ denote Rademacher independent
variables, independent of (Yi)i∈Ik . Then:

13 As in Footnote 10 above, we test for pairwise dependence, to see whether our results could be driven by
the fact that our bootstrap is conservative in such cases. We obtain a p-value smaller than 10−4 and thus
reject this hypothesis at all usual levels.
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Lemma A.1. Suppose that Assumptions 1-2 hold and P |f | < ∞ for all f ∈ F . Then
there exist real numbers C1,k, ..., Ck,k depending only on k and (Y 1

i )i∈Ik ,..., (Y k
i )i∈Ik , jointly

exchangeable and dissociated arrays with Y j
1

d
= Y1 for all j ∈ {1, ..., k}, satisfying

E

[
Φ

(
sup
f∈F
|Pnf − Pf |

)]

≤1

k

k∑
r=1

1

|Er|
∑
e′∈Er

E

Φ

(n− k)!

n!
Cr,k sup

f∈F

∣∣∣∣∣∣
∑
i∈In,k

ε{i�e′}+f (Y r
i )

∣∣∣∣∣∣
 ,

Though more complicated than its i.i.d. version (see e.g. Lemma 2.3.1 in van der Vaart and
Wellner, 1996), it serves the exact same purpose in the proofs of Theorems 2.1-2.2: conditional
on the (Y r

i )i∈Ik , the process f 7→
∑

i∈In,k ε{i�e′}+f (Y r
i ) is sub-Gaussian. In view of the AHK

representation, the terms ε{i�e′}+ could be expected. Given the aforementioned link with
U-statistics, Lemma A.1 can also be seen as a generalization of the symmetrization lemma for
U-processes for non-degenerate cases, see in particular Theorem 3.5.3 in de la Peña and Giné
(1999).

The proof of Lemma A.1 crucially hinges upon the following decoupling inequality, which may
be of independent interest. Hereafter, we let Ar = {A ⊆ {1, ...n} : |A| = r}.

Lemma A.2. Let r ≤ k, (WA)A∈Ar be a family of i.i.d. random variables with values in

a Polish space S and
(
W

(j)
A

)
A∈Ar

, j = 1, ..., |Er| be some independent copies of this family.

Let Φ be a non-decreasing convex function from R+ to R and ` be a bijection from Er to
{1, ..., |Er|}. Let H be a pointwise measurable class of functions from S |Er| × In,k to R such
that E

(
suph∈H

∣∣∣h((W{i�e}+)e∈Er , i)∣∣∣) <∞. Finally, let Lr =
(
3|Er||Er|

)|Er|−1. Then

EΦ

sup
h∈H

∣∣∣∣∣∣
∑
i∈In,k

h
((
W{i�e}+

)
e∈Er

, i
)∣∣∣∣∣∣


≤EΦ

Lr sup
h∈H

∣∣∣∣∣∣
∑
i∈In,k

h

((
W

(`(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣
 .

The proof is given in the supplement. This result generalizes the decoupling inequality for
U -statistics of de la Peña (1992) to our setting. As with U -statistics, it is possible to obtain
a reverse inequality if r ∈ {1, k − 1, k} and π 7→ h

((
W{iπ�e}+

)
e∈Er

, iπ

)
is constant on Sk,

for all h ∈ H. With such a reverse inequality, it is possible to replace Y r
i by Yi in Lemma

A.1. It is unclear to us, however, whether this reverse inequality still holds if r 6∈ {1, k− 1, k}
(implying k ≥ 4). The key argument for the reverse inequality in de la Peña (1992) is that by
the symmetry condition above, we can replace h

((
W{iπ�e}+

)
e∈Er

, iπ

)
by an average over k!

terms. However, for the proof to extend to our setting, one would need an average over |Er|!
terms. This is not possible in general when |Er| > k, which is the case when r 6∈ {1, k − 1, k}.

Next, in order to prove the convergence of the empirical process under the bracketing entropy
condition (Assumption 4-(ii)), we establish the following maximal inequality, which is very
close to that of Giné and Nickl (2015) for i.i.d. data (see their Lemma 3.5.12).
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Lemma A.3. Suppose that Assumption 1 holds. Let (fj)1≤j≤N be real-valued functions and
F = {x 7→ efj(x), e ∈ {−1, 1}, j = 1, ..., N}. Then:

E
[
max
f∈F
|Gn(f)|

]
≤ 2
√
k log 2N max

f∈F
V(f(X1)) +

4k log 2N maxf∈F ||f ||∞
3
√
n

.
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Supplement to “Empirical Process Results for Exchangeable Arrays”

Laurent Davezies∗ Xavier D’Haultfœuille † Yannick Guyonvarch ‡

Abstract
This supplement first presents additional extensions to our main results, and in particular

the case of multiple observations per k-tuple. Second, Monte Carlo simulations illustrate the
performance of our bootstrap scheme in finite samples. Third, it displays all the proofs of our
results. Section 3 gathers the proofs of the main results in Section 2 of the paper, while Section
4 focuses on the proofs of the extensions. Section 5 collects all the technical lemmas.

1 Additional extensions

1.1 Multiple observations per k-tuple

In some cases, we observe multiple observations for the same k−tuple i. For instance, in the case of
exchanges in a network, we may observe multiple or no such exchanges between i1 and i2. In sport
competitions, we may observe Ni1,i2 matches between players i1 and i2, with possibly Ni1,i2 = 0.
Similarly, in multiway clustering (see Section 3.3 of the main text), we very often have several
individuals per “cell” i. To deal with this issue, and focusing here for simplicity on the case of
jointly exchangeable arrays,1 we consider that for each i ∈ Ik, there exists a random variable Ni

taking values in N and a sequence Yi = (Yi,`)`≥1, with Yi,` having support Y, such that we only
observe (Ni, (Yi,`)1≤`≤Ni

). To allow for Ni = 0, we assume in the following that for any sequence
(a`)`≥1,

∑0
`=1 a` = 0.

In this set-up, it is often natural to redefine the parameters of interest: if the relevant units of
observation are the Ni units within each k−tuple, then parameters of interest are defined with
respect to P̃ rather than P , with

P̃ f = E



N1∑

`=1
f(Y1,`)


 .

In the example of sport matches, this expectation weights equally each match rather than each pair
of players and is therefore often more relevant.2 For instance, the sample average

θ̂ =
∑

i∈In,k
∑Ni
`=1 Yi,`∑

i∈In,k Ni

∗CREST-ENSAE, laurent.davezies@ensae.fr
†CREST-ENSAE. xavier.dhaultfoeuille@ensae.fr
‡CREST-ENSAE. yannick.guyonvarch@ensae.fr
1Jointly separable arrays can be treated similarly.
2If the unit of interest were the tuple itself, one could consider instead ˜̃Pf = E

[∑N1
`=1 f(Y1,`)/N1

]
. Our results

below on P̃ directly extend to ˜̃P . But note that ˜̃P is not defined in the very common situation where P(Ni = 0) > 0.
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is an estimator of θ0 = P̃ (Id)/P̃ (1), where Id denotes the identity function. This parameter also
satisfies θ0 =

∫
ydF̃Y (y), with F̃Y (y) = P̃ (1{.≤y})/P̃ (1). Similarly, quantiles would be defined as

θ0 = F̃−1
Y (τ) for some τ ∈ (0, 1). More generally, any parameter related to the units within each

k−tuple is defined with respect to P̃ rather than P .

Accordingly, we study the behavior of P̃n, G̃n and G̃∗n defined on F by:

P̃nf = (n− k)!
n!

∑

i∈In,k

Ni∑

`=1
f(Yi,`),

G̃nf =
√
n
(
P̃n(f)− P̃ f

)
,

G̃∗nf =
√
n

(n− k)!
n!

∑

i∈In,k
(Wi − 1)

Ni∑

`=1
f(Yi,`).

The following theorem shows that the previous results extend to this set-up with random Ni, only
up to adaptations of the moment conditions.

Theorem S1. Suppose that Assumption 1 holds with (Ni, Yi) in place of Yi, P̃1 > 0 and Assumption
2 holds. Then:

1. If Assumption 3-(i) holds with F also satisfying P̃F <∞, then supf∈F
∣∣∣P̃nf − P̃ f

∣∣∣ tends to 0
almost surely and in L1.

2. If E(N2
1) <∞ and Assumption 4-(i) holds with F also satisfying E

(
N1

∑N1
`=1 F

2(Y1,`)
)
<∞,

the process G̃n converges weakly in `∞(F) to a centered Gaussian process G̃ on F as n tends
to infinity. Moreover, the covariance kernel K̃ of G̃ satisfies:

K̃(f1, f2) = 1
(k − 1)!2

∑

(π,π′)∈S({1})×S({1′})
Cov

(Nπ(1)∑

`=1
f1(Yπ(1),`),

Nπ′(1′)∑

`=1
f2(Yπ′(1′),`)

)
.

3. Under the same condition as in 2., the process G̃∗n converges weakly to G̃, conditional on
(Yi)i∈Ik and outer almost surely.

We assume that (Ni, Yi)i∈Ik , rather than just (Yi)i∈Ik , satisfies Assumption 1. Importantly, however,
this does not restrict the dependence between Ni and Yi, or between the (Yi,`)`. Hence, conditional
on Ni, the correlation between Yi,` and Yi,`′ may vary with Ni, for instance. Note also that even
if we focus on P̃ rather than P here, the conditions on F remain nearly unchanged, with only
modifications of the moment conditions. For uniform LLNs, we simply replace PF <∞ by P̃F <∞.
For uniform CLTs, instead of replacing PF 2 < ∞ by P̃F 2 < ∞, we require the slightly stronger
conditions that E(N2

1) < ∞ and E
(
N1

∑N1
`=1 F

2(Y1,`)
)
< ∞. These conditions are nonetheless

equivalent to P̃F 2 <∞ when N1 is bounded. Note also that with a finite F , our proof would only
require P̃F 2 <∞.

The proof of Theorem S1 is very similar to those of Theorems 2.1 and 2.2, with one difference. In
those theorems, we use the symmetrization lemma to bound the fluctuations of Gn by a function of

2



the entropy of the class F . Here, similarly, we bound the fluctuations of G̃n by a function of the
entropy of the class

F̃ =
{
f̃(n, y1, ..., yn) =

n∑

`=1
f(y`) : n ∈ N, (y1, ..., yn) ∈ Yn; f ∈ F

}
.

The additional point to prove is that we can control the complexity of F̃ under Assumption 4 and
the moment conditions above, even if Assumption 4 imposes conditions on F rather than on F̃
directly.

1.2 Including “diagonal” elements

In some cases, Yi may also be defined for i ∈ {1, .., n}k\In,k, namely for k-tuples featuring identical
indices. For instance in international trade, one may also consider sales of national firms in their
own countries, corresponding to variables Yi,i for i ∈ N+. Let us first consider the case k = 2. We
still impose Assumption 1, but this time on the array (Yi,j)(i,j)∈N+2 instead of (Yi,j)(i,j)∈I2 . Then
the empirical measures is simply

Pnf = 1
n2

∑

1≤i1,i2≤n
f(Yi1,i2),

whereas the definition of Gn remains unchanged, with still Pf = E[f(Y1,2)]. The bootstrap scheme
would remain the same, except that Yi,i would appear with a weightWi, as in the standard bootstrap
with i.i.d. data.

To analyse Pn, Gn and their bootsrap counterpart, we can simply cut them into two parts, the part
excluding “diagonal” elements and that including only such elements. Since the (Yi,i)i∈N are i.i.d.
under Assumption 1, we can apply uniform LLN and CLT and their bootstrap counterpart to the
“diagonal” part. Because we further divide by 1/n in Pnf , this part tends to 0 in probability. Hence,
Theorems 2.1 and 2.2 directly apply without any modifications to this setting.

With k > 2, a similar reasoning holds, except that we have to introduce jointly exchangeable arrays
of smaller dimensions k − j, with j ∈ {1, ..., k − 1} corresponding to the number of repetitions in
the k-tuples. We can then apply our theorems to those lower dimensional arrays. Because the
corresponding averages are multiplied by terms tending to 0, as with k = 2, they are asymptotically
negligible, and again our theorems apply without any changes.

1.3 A statistical test of independence

Let (Yi1,i2)(i1,i2)∈I2 denote an array of random variables in Rd satisfying Assumption 1 with k = 2.
We show in this section how to test that the (Yi1,i2)(i1,i2)∈I2,i1<i2 are i.i.d. Such a test may be
appealing for two reasons. First, standard inference can be conducted on the data under this
hypothesis. Second, it may indicate that inference based on our bootstrap is conservative, in case
we do not reject the null hypothesis. Note that the restriction i1 < i2 allows one to have pairwise
dependence, i.e. Yi1,i2 and Yi2,i1 may still be dependent.
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To define the test statistic, let Y denote the sample average of the (Yi1,i2)(i1,i2)∈In,2 and

Σ̂ = 2
n(n− 1)

∑

i1<i2

(Yi1,i2 + Yi2,i1 − 2Y )(Yi1,i2 + Yi2,i1 − 2Y )′.

Then define Ẑi1,i2 = Σ̂−1/2
(
Yi1,i2 + Yi2,i1 − 2Y

)
, with Ẑi1,i2 = (Ẑ1

i1,i2 , ..., Ẑ
d
i1,i2)′. The test statistic

we consider is

Tn =
d∑

`=1
max


0,

( 6
n(n− 1)(n− 2)

)1/2 ∑

i1<i2<i3

Ẑ`i1,i2Ẑ
`
i1,i3




2

. (1.1)

Let F` denote the cumulative distribution function of a χ2(`) distribution, with the convention
that F0(x) = 1x≥0. Then define F (x) = 1

2d
∑d
`=0

(d
`

)
F`(x) and q(τ) = inf{x : F (x) ≥ τ}. For

testing the null hypothesis at the asymptotic level 1 − α, we consider the test of critical region
Wα = {Tn > q(1− α)}.
The idea behind the test is that if the (Yi1,i2)(i1,i2)∈I2,i1<i2 are i.i.d., E

(
Z`i1,i2Z

`
i1,i3

)
= 0 for all `,

with Zi1,i2 defined as Ẑi1,i2 but with Y and Σ̂ replaced by E(Y1,2) and V(Y1,2), respectively. Thus,
intuitively, Tn remains bounded in probability in this case.3 On the other hand, in non-degenerate
cases,

E
(
Z`i1,i2Z

`
i1,i3

)
= E

[
E(Z`i1,i2 |Ui1)2

]
> 0, (1.2)

where the (Ui1)i1∈N+ are the random variables appearing in the AHK representation of (Yi1,i2)(i1,i2)∈I2 .
As a result, we can expect Tn to tend to infinity. The following proposition formalizes these ideas.4

Proposition S 1. Suppose that Assumption 1 holds with k = 2, Y1,2 = (Y 1
1,2, ..., Y

d
1,2) ∈ Rd,

E(|Y `
1,2|4) <∞ for all ` ∈ {1, ..., d} and V(Y1,2) is positive. Then:

1. If the (Yi1,i2)(i1,i2)∈I2,i1<i2 are i.i.d., limn→∞ Pr(Wα) = α for all α ∈ (0, 1/2);

2. If (1.2) holds for some ` ∈ {1, ..., d}, limn→∞ Pr(Wα) = 1 for all α ∈ (0, 1).

We apply this test to the trade data we use in Section 4 of the paper. A common concern in our
two applications is that if the data are i.i.d., our bootstrap procedure is conservative. This could
then explain the discrepancy between the p-values based on our bootstrap and those based on
assuming pairwise clustering. In the first application, Yi1,i2 = Ti1,i2,t where we recall that Ti1,i2,t
are the exports from country i1 to country i2 during year t ∈ {2012, ..., 2017}. The results are
clear-cut: with Tn > 70 for all the years we consider, the p-values are always smaller than 10−4.
In the second application, one can show that that the variable that matters for inference on θ0

is Yi1,i2 = Xi1,i2

(
Ti1,i2 − exp(X ′i1,i2θ0)

)
. Estimating Yi1,i2 by Ŷi1,i2 = Xi1,i2

(
Ti1,i2 − exp(X ′i1,i2 θ̂)

)
,

with θ̂ the PPML estimator of θ0,5 we obtain a large test statistic of Tn ' 276.3, corresponding once
more to a p-value smaller than 10−4. So in both applications, we reject at all usual levels the null
hypothesis above.

3We may have E (Zi1,i2Zi1,i3 ) = 0 in other degenerate cases but we derive below the distribution of Tn only if the
(Yi1,i2 )(i1,i2)∈I2,i1<i2 are i.i.d.

4We impose here the existence of fourth moments. Approximation arguments as those used in the proof of Theorem
3.1 could be used to show the same result under finite second moments only, but at the price of lengthening the proof.

5Just as we show in the proof of Proposition S1 that using Y and Σ̂ instead of E(Y1,2) and V(Y1,2) does not have
any effect on the asymptotic distribution of Tn, replacing θ0 by θ̂ does not affect this asymptotic distribution.
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2 Monte Carlo simulations

We investigate in this section the finite sample properties of the bootstrap scheme considered above,
by studying the coverage probabilities of confidence intervals based on this bootstrap. We consider
dyadic data satisfying Assumption 1, with Ni = 1 for all i ∈ I2, and the following dependence
structure:

Yi1,i2 = 1 + µ(ε1i1 + ε2i2) +
√

0.5− µ2
(
νεSi1,i2 +

√
2− ν2εi1,i2

)
,

where the (ε1i1 , ε2i1)i1∈N+ , (εSi1,i2)(i1,i2)∈I2 and (εi1,i2)(i1,i2)∈I2 are mutually independent and marginally
all standard normal variables. We impose Corr(ε1i1 , ε2i1) = 0.8 and εSi1,i2 = εSi2,i1 . The parameter
µ ∈ [0, 1/

√
2] represents the importance of individual versus pair factors, whereas ν ∈ [0,

√
2]

represents the importance of symmetric versus asymmetric shocks. In the baseline scenario, we
let (µ, ν) = (

√
0.2, 1). We also consider three other scenarios. In the first, (µ, ν) = (

√
0.2, 0). In

the second, (µ, ν) = (0, 1), which implies that the limit process is degenerate. In the third, we
use exponential(1) distributions instead of standard normal variables, with a Gaussian copula on
(ε1i1 , ε2i1) and still a correlation parameter of 0.8. Our parameter of interest θ0 is the median of
Y1,2, which is thus equal to 1. Hereafter, we study inference on θ0 based on the empirical median θ̂,
for n ∈ {10, 20, 40, 80}.

We inspect the performance of two different confidence intervals. The first is the symmetric interval
[θ̂± q0.95(|θ̂∗ − θ̂|)], where θ̂∗ denotes the bootstrap counterpart of θ̂ and qα(U) denotes the quantile
of order α of U , conditional on the data (Yi)i∈In,k . The second is the percentile bootstrap interval
[q0.025(θ̂∗), q0.975(θ̂∗)]. Given Theorem 2.4, both intervals are asymptotically valid.

Our results are displayed in Table 1. Our two confidence intervals have very good properties in
the three non-degenerate scenarios, even for very small sample sizes. They appear to be slightly
conservative for small n and with normal variables, but the example of exponential distributions
shows that this need not be the rule. In the degenerate scenario where µ = 0, the confidence intervals
are very conservative. Finally, the two confidence intervals are very close to each other.
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Symmetric Percentile
Scenario n bootstrap CI bootstrap CI
Baseline: 10 0.984 0.986
µ =
√

0.2 20 0.977 0.979
ν = 1 40 0.969 0.971

80 0.961 0.961
Baseline 10 0.98 0.983
but ν = 0 20 0.971 0.972

40 0.965 0.968
80 0.962 0.961

Baseline 10 0.996 0.997
but µ = 0 20 0.998 0.997

40 0.999 0.998
80 0.999 0.998

Baseline 10 0.939 0.935
but exponential 20 0.940 0.942
variables 40 0.943 0.942

80 0.945 0.944
Notes: 5,000 simulations, 200 bootstrap samples for each.

Table 1: Coverage probabilities on the true median (nominal coverage: 95%)

We also consider Kolmogorov-Smirnov (KS) tests for the two-sample problem. Specifically, we
are interested in testing whether two variables Y 1

1 and Y 2
1 have the same distribution, under the

assumption that the array of variables Yi = (Y 1
i , Y

2
i ) satisfy Assumption 1. The DGP that we

consider for Y t
i is:

Y t
i1,i2 = θ(t− 1) + εt1i1 + εt2i2 + εti1,i2 ,

where (εt1i1)i1 , (εt2i2)i2 and (εti1,i2)i1,i2 are mutually independent. We also suppose that for j ∈ {1, 2},
(ε1
ji1 , ε

2
ji1) ∼ N (0,Σ) with Σ11 = Σ12 = 1, Σ12 = 0.5. Similarly, (ε1

i1,i2 , ε
2
i1,i2) ∼ N (0,Σ). The null

hypothesis therefore holds when θ = 0, and not otherwise. To test for the null hypothesis, we rely
on the Kolmogorov-Smirnov test. As explained in Section 4.1, the asymptotic distribution of the
test statistic depends in a complicated way on the data generating process. Instead of trying to
estimate it, we rely on the bootstrap.

Figure 1 shows the power of the bootstrap test as a function of θ and for different sample sizes,
namely n = 10, 20, 40 and 80, as above. The power curves are as expected. In particular, they
increase quickly with n when θ 6= 0. The test is slightly conservative for n ≤ 40 and rejects slightly
too much for n = 80, but the true level remains close to the nominal for θ = 0.
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Notes: for each n and θ ∈ {−1,−0.8, ..., 1}, we used 500 samples and 200 bootstrap samples for each.

Figure 1: Power curves of the KS test for different sample sizes

3 Proofs of the main results

3.1 Notation

To ease the reading, we first summarize the notation we use throughout the proofs. Objects
introduced in a single proof are defined therein directly and not reported here. We recall that k
denotes the dimension of the array of data. Also, bootstrap counterparts appear with a star.

Subsets or elements of Nk

A+ A ∩ (0,∞), for any A ⊂ R.
A {i ∈ A : ij 6= ij′ if j 6= j′}, for any A ⊂ N+k.
−→
A {i ∈ A : ij < ij′ if j < j′} for any A ⊂ N+k.
|A| the cardinal of A ⊂ N+k.
S(A) The set of permutations on A.
Sr S({1, ..., r})
Ik N+k.
In,k {1, ..., n}k.
Er {e ∈ {0; 1}k : ∑k

j=1 ej = r} for r = 1, ..., k.
i element of Ik or N+k, with component (i1, ..., ik).
{i} the set of distinct elements of i = (i1, ..., ik) ∈ Nk.
e element of {0, 1}k.
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ie for i ∈ In,r and e ∈ Er, the k-dimensional vector with component i1 at the first
non-null entry of e, i2 at the second non-null entry of e and so on.6

0 (0, ..., 0)
1 (1, ..., k) except in Section 4.4 and Lemmas S2, S6 and S8, where 1 = (1, ..., 1).
2r element of Nk with 2 at each component but 1 at its rth component.
iπ (iπ(1), ..., iπ(r)), for any i ∈ Nr and π ∈ Sr.
� the Hadamard product, i.e. i� e = (i1e1, ..., ikek).

Sample and random variables

n Number of units in the population.
n (n1, ...nk), with nj the number of clusters in the j-th dimension in Section 4.4.
Πn

∏k
j=1 nj .

Ỹi (Ni, (Yi,`)`=1...Ni
) (see Section 1 above).

(εA)A∈A Mutually independent Rademacher random variables (i.e., with values 1 or −1
with probability 1/2), for any set A.

(Y r
i )i∈Ik jointly exchangeable array defined in Lemma A.1 with marginal distribution

P .
(Ỹ r

i )i∈Ik same as (Y r
i )i∈Ik , but when applying Lemma A.1 to F̃ and (Ỹi)i∈Ik instead of

F and (Yi)i∈Ik .
(Ỹ r,r′

i )i∈Ik same as (Ỹ r
i )i∈Ik .

Y{i} (Yi1,i2 , Yi2,i1).

Functions and classes of functions

Id The identity function.
D ∪n∈N ({n} × Yn).
Fs {g : ∃f ∈ F : g(x, y) = [f(x) + f(y)]/2}.
F2 {f2 : f ∈ F}, for any class of functions F .
F × G {(f, g) : f ∈ F , g ∈ G}.
Fδ

{
h = f1 − f2 : (f1, f2) ∈ F × F ,E

[
(f1(Y1)− f2(Y1))2

]
≤ δ2

}
.

F∞ {h = f1 − f2 : (f1, f2) ∈ F × F}.
f̃ for any function f from Y to R, the function from D to R defined by

f̃ (n, y1, ..., yn) = ∑n
`=1 f(y`).

F̃
{
f̃ : f ∈ F

}
. F̃δ and F̃∞ are defined similarly.

N(η,F , || · ||) the minimal number of || · ||-closed balls of radius η with centers in F needed
to cover F . If ‖ · ‖ is random, N(η,F , || · ||) denotes the measurable cover of
this minimal number.

JF (u)
∫ u

0 supQ
√

logN(η||F ||Q,2,F , || · ||Q,2)dη, where the supremum is taken over the
set of probability measures with finite support.

6For instance if k = 5, r = 3, i = (6, 9, 2) and e = (0, 1, 1, 0, 1), we obtain ie = (0, 6, 9, 0, 2).
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Probability measures and norms
Note that we sometimes need to evaluate random variables at some specific value of the probability
space. We denote by ω elements of this probability space Ω.

Qf
∫
fdQ, for any probability measure Q.

P the probability distribution of Yi.
Pn, P′n

(n−k)!
n!

∑
i∈In,k δYi

and 1
nk
∑

i∈In,k δYi
, respectively.

P∗n
(n−k)!
n!

∑
i∈In,kWif(Yi), where Wi is the bootstrap weight of i.

Prn
(n−k)!
n!

∑
i∈In,k δY ri

||g||µ,r (
∫ |g|rdµ)1/r for µ a measure and r ≥ 1

||f ||e,M,1
(n−k)!
n!

∑
i∈−−→In,r

∣∣∑
π∈Sr

∑
i′∈({1,...,n}\{i})k−r f

(
Y r

(iπ)e+i′(1−e)

)
1{

F

(
Y r

(iπ)e+i′(1−e)

)
≤M
}∣∣,

with f ∈ F , F an envelope for F and M > 0.

3.2 Lemma A.1

We proceed in four steps. First, we obtain an upper bound with a sum of differences that are
identically distributed but not independent. Roughly speaking, they are nonetheless “less dependent”,
as we “decouple” the random variables appearing in the AHK representation (2.1) by introducing
independent copies of them (see inequality (3.4) below). In the second step, using a telescopic sum,
we further bound our expectation of interest by another one involving sums of differences that are
independent, conditional on a suitable σ-algebra. The third step is the symmetrisation step itself,
where Rademacher variables are introduced. The fourth step concludes by combining the previous
steps. Note that the key decoupling inequality (3.4) is given separately in Lemma A.2, as it may be
of independent interest.

First step: decoupling

For any (r, j) ∈ {1, ..., k} ×N, let
(
U

(j)
A

)
A⊂N+:1≤|A|≤r

and
(
V

(j)
A

)
A⊂N+:1≤|A|≤r

denote some indepen-

dent copies of the (UA)A⊂N+:1≤|A|≤r. Let Y
(k)

i = τ

((
U

(0)
{i�e}+

)
e∈∪kj=1Ej

)
and, for r < k,

Y
(r)

i = τ

((
U

(0)
{i�e}+

)
e∈∪rj=1Ej

,
(
V

(0)
{i�e}+

)
e∈∪kj=r+1Ej

)
.

Because E [f (Y1)] = E
[
f
(
Y

(k)
i

)
|Y (0)

i

]
and (Yi)i∈Ik

d=
(
Y

(0)
i

)
i∈Ik

, we obtain, by Jensen’s inequality
and Lemma S1,

E


Φ


sup
f∈F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
f (Yi)− E [f (Y1)]

∣∣∣∣∣∣






≤E

Φ


sup
f∈F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
f
(
Y

(0)
i

)
− f

(
Y

(k)
i

)
∣∣∣∣∣∣






≤1
k

k∑

r=1
E


Φ


k sup

f∈F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈∈In,k
f
(
Y

(r−1)
i

)
− f

(
Y

(r)
i

)
∣∣∣∣∣∣




 . (3.1)
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For i ∈ Rk and π ∈ Sk, let iπ = (iπ(1), ..., iπ(k)). For any f ∈ F , let also

f

((
U{i�e}+

)
e∈∪kr=1Er

)
= 1
k!

∑

π∈Sk
f(Yiπ).

Note that ∑i∈In,k f
((
U{i�e}+

)
e∈∪kr=1Er

)
= ∑

i∈In,k f(Yi) and if the components of i′ are a permu-
tation of those of i we have

f

((
U{i�e}+

)
e∈∪kr=1Er

)
= f

((
U{i′�e}+

)
e∈∪kr=1Er

)
. (3.2)

For r = 1, ..., k, let Er = ∪kj=r+1Ej and Er = ∪r−1
j=1Er. Let Ur be the σ-algebra generated by the

variables (U (0)
{i�e}+)(i,e)∈In,k×Er and (V (0)

{i�e}+)(i,e)∈In,k×Er . For any j ∈ N, i ∈ In,k and e ∈ ∪kj′=1Ej′ ,
let W (j)

{i�e}+ =
(
U

(j)
{i�e}+ , V

(j)
{i�e}+

)
.

As we will reason conditional on Ur, let us use f r,i (w) as a shortcut for

f

((
U

(0)
{i�e}+

)
e∈Er

,w,
(
V

(0)
{i�e}+

)
e∈Er

)
,

for any vector w ∈ R|Er|. Let us also define

∆f r,i
((
W

(0)
{i�e}+

)
e∈Er

)

=k (n− k)!
n!

[
f r,i

((
U

(0)
{i�e}+

)
e∈Er

)
− f r,i

((
V

(0)
{i�e}+

)
e∈Er

)]
.

Then, by definition of Y (r)
i and ∆f r,i,

E


Φ


k sup

f∈F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
f
(
Y

(r−1)
i

)
− f

(
Y

(r)
i

)
∣∣∣∣∣∣



∣∣∣∣Ur




=E


Φ


sup
f∈F

∣∣∣∣∣∣
∑

i∈In,k
∆f r,i

((
W

(0)
{i�e}+

)
e∈Er

)∣∣∣∣∣∣



∣∣∣∣Ur


 . (3.3)

Remark that the first result in Lemma A.2 applies conditional on Ur. Then, letting K1,r =(
3|Er||Er|

)|Er|−1
and ` be an arbitrary bijection from Er to {1, ..., |Er|}, we obtain

E


Φ


sup
f∈F

∣∣∣∣∣∣
∑

i∈In,k
∆f r,i

((
W

(0)
{i�e}+

)
e∈Er

)∣∣∣∣∣∣



∣∣∣∣Ur




≤E

Φ


K1,r sup

f∈F

∣∣∣∣∣∣
∑

i∈In,k
∆f r,i

((
W

(`(e))
{i�e}+

)
e∈Er

)∣∣∣∣∣∣



∣∣∣∣Ur


 . (3.4)

Second step: telescoping sum

Let ≺ be a total order on Er. We note e � e′ if e ≺ e′ or e = e′. For every (e, e′) ∈ E2
r let

W
(`,e)
{i�e′}+ =

∣∣∣∣∣∣∣∣∣∣

(
U

(`(e′))
{i�e′}+ , U

(`(e′))
{i�e′}+

)
if e′ ≺ e

(
V

(`(e′))
{i�e′}+ , V

(`(e′))
{i�e′}+

)
if e′ � e

(
U

(`(e′))
{i�e′}+ , V

(`(e′))
{i�e′}+

)
if e′ = e.
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Then, for any e ∈ Er,
(
W

(`,e)
{i�e′}+

)
e′∈Er

=
(
U

(`(e′))
{i�e′}+1{e′�e} + V

(`(e′))
{i�e′}+1{e′�e},

U
(`(e′))
{i�e′}+1{e′≺e} + V

(`(e′))
{i�e′}+1{e′�e}

)
e′∈Er

, (3.5)

and
(
W

(`,e′)
{i�e′}+

)
e′∈Er

=
(
W

(`(e′))
{i�e′}+

)
e′∈Er

. ∆f r,i
((
W

(`(e′))
{i�e′}+

)
e′∈Er

)
can be decomposed into the

following telescoping sum:

∆f r,i
((
W

(`(e′))
{i�e′}+

)
e′∈Er

)
=
∑

e∈Er
∆f r,i

((
W

(`,e)
{i�e′}+

)
e′∈Er

)
.

By Lemma S1, we obtain, with K2,r = |Er|K1,r,

E


Φ


K1,r sup

f∈F

∣∣∣∣∣∣
∑

i∈In,k
∆f r,i

((
W

`(e′)
{i�e′}+

)
e′∈Er

)∣∣∣∣∣∣



∣∣∣∣Ur




≤ 1
|Er|

∑

e∈Er
E


Φ


K2,r sup

f∈F

∣∣∣∣∣∣
∑

i∈In,k
∆f r,i

((
W

(`,e)
{i�e′}+

)
e′∈Er

)∣∣∣∣∣∣



∣∣∣∣Ur


 . (3.6)

Third step: symmetrization

For any e ∈ Er, let Ur`,e be the σ-algebra generated by the same variables as Ur, (U (`(e′))
{i�e′}+)(i×e′)∈In,k×Er:e′≺e

and (V (`(e′))
{i�e′}+)(i,e′)∈In,k×Er:e′�e. Let

−→
In,k = {(i1, i2, ..., ik) ∈ {1, ..., n}k : i1 < i2 < ... < ik} ⊂ In,k and

Sk be the set of permutations of {1, ..., k}. For any i = (i1, ..., ik) ∈ Nk and π ∈ Sk, let iπ denote
(iπ(1), ..., iπ(k)). For any i ∈ Ir and e ∈ Er, let ie be the k-dimensional vector with component i1
in the first non-null entry of e, i2 in the second non-null entry of e and so on. Similarly, for any
i ∈ Ik−r and e ∈ Er, let i(1−e) be the k-dimensional vector with component i1 at the first null entry
of e, i2 at the second null entry of e and so on. For instance, if k = 5, r = 3, i = (6, 9, 2), i′ = (7, 3)
and e = (0, 1, 1, 0, 1), we obtain ie = (0, 6, 9, 0, 2) and i′(1−e) = (7, 0, 0, 3, 0).

For every e ∈ Er, we have

In,k =
{

ie
π + i′(1−e) : i ∈ −→In,r, π ∈ Sr, i

′ ∈ ({1, ..., n}\{i})k−r
}
. (3.7)

Thus,
∑

i∈In,k
∆f r,i

((
W

(`,e)
{i�e′}+

)
e′∈Er

)

=
∑

i∈−−→In,r

∑

i′∈({1,...,n}\{i})k−r

∑

π∈Sr
∆f r,ie

π+i′(1−e)

((
W

(`,e)
{(ie

π+i′(1−e))�e′}+

)
e′∈Er

)
.

With this new indexation of the sum on i and reasoning conditional on Ur`,e, the triple sum above
can be rewritten as a sum of n!/[(n− r)!r!] symmetric and independent terms. Hence, it is equal in
distribution to

∑

i∈−−→In,r

ε{i}
∑

i′∈({1,...,n}\{i})k−r

∑

π∈Sr
∆f r,ie

π+i′(1−e)

((
W

(`,e)
{(ie

π+i′(1−e))�e′}+

)
e′∈Er

)
,
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where the (εA)A⊂{1,...,n} are i.i.d. Rademacher variables. For every i ∈ −→In,r and any π ∈ Sr, we have
{i} = {(ie

π + i′(1−e))� e}+. Hence, using (3.7) again,
∑

i∈−−→In,r

ε{i}
∑

i′∈({1,...,n}\{i})k−r

∑

π∈Sr
∆f r,ie

π+i′(1−e)

((
W

(`,e)
{(ie

π+i′(1−e))�e′}+

)
e′∈Er

)

=
∑

i∈In,k
ε{i�e}+∆f r,i

((
W

(`,e)
{i�e′}+

)
e′∈Er

)
.

Furthermore, for every e ∈ Er, by (3.5),

n!
k(n− k)!∆f r,i

((
W

(`,e)
{i�e′}+

)
e′∈Er

)

=f r,i
((
U

(`(e′))
{i�e′}+1{e′�e} + V

(`(e′))
{i�e′}+1{e′�e}

)
e∈Er

)

− f r,i
((
U

(`(e′))
{i�e′}+1{e′≺e} + V

(`(e′))
{i�e′}+1{e′�e}

)
e∈Er

)
.

Since for every (j, j′) ∈ N2, (U (j)
A )A⊆{1,...,n} and (V (j′)

A )A⊆{1,...,n} are equal in distribution and
independent and (U (j)

A )A⊆{1,...,n} ⊥⊥ (U (j′)
A )A⊆{1,...,n} whenever j 6= j′, we obtain, conditional on Ur,

((
U

(`(e′))
{i�e′}+1{e′�e} + V

(`(e′))
{i�e′}+1{e′�e}

)
e′∈Er

)

i∈In,k
d=
((
U

(`(e′))
{i�e′}+1{e′≺e} + V

(`(e′))
{i�e′}+1{e′�e}

)
e′∈Er

)

i∈In,k
d=
((
U

(`(e′))
{i�e′}+

)
e′∈Er

)

i∈In,k
.

Then, by independence between (εA)A⊂N+:1≤|A|≤k and (U (j)
A , V

(j)
A )j∈N,A⊂N+:1≤|A|≤k and the triangle

and Jensen inequalities

1
|Er|

∑

e∈Er
E


Φ


K2,r sup

f∈F

∣∣∣∣∣∣
∑

i∈In,k
ε{i�e}+∆f r,i

((
W

(`,e)
{i�e′}+

)
e′∈Er

)∣∣∣∣∣∣



∣∣∣∣Ur




≤ 1
|Er|

∑

e∈Er
E


Φ


K3,r sup

f∈F

∣∣∣∣∣∣
∑

i∈In,k
ε{i�e}+f r,i

((
U

(`(e′))
{i�e′}+

)
e′∈Er

)∣∣∣∣∣∣



∣∣∣∣Ur


 , (3.8)

where K3,r = 2k (n−k)!
n! K2,r.

Fourth step: conclusion

Combining Equations (3.1), (3.3), (3.4), (3.6), (3.8) and using the expressions of K1,r, K2,r and
K3,r, we finally obtain

E


Φ


sup
f∈F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
f (Yi)− E

[
f
(
Y(1)

)]
∣∣∣∣∣∣






≤1
k

k∑

r=1

1
|Er|

∑

e∈Er
E


Φ


Cr,k

(n− k)!
n! sup

f∈F

∣∣∣∣∣∣
∑

i∈In,k
ε{i�e′}+f (Y r

i )

∣∣∣∣∣∣




 ,
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with Cr,k = 2k|Er|
(
3|Er|Er

)|Er|−1
and

Y r
i = τ

((
U

(0)
{i�e}+

)
e∈Er

,
(
U

(`(e))
{i�e}+

)
e∈Er

,
(
V

(0)
{i�e}+

)
e∈Er

)
.

By construction of the
(
U

(j)
A

)
A⊂N+:1≤|A|≤k

and
(
V

(0)
A

)
A⊂N+:r+1≤|A|≤k

, (Y r
i )i∈Ik is jointly exchange-

able and dissociated, with marginal distribution P . This concludes the proof.

3.3 Lemma A.2

For any j ∈ {1, ..., |Er|}, let Lr,j =
(
3|Er||Er|

)|Er|−j . We will prove by reverse induction on j that for
every function b from Er to {1, ..., |Er|} with |R(b)| = j,

EΦ


sup
h∈H

∣∣∣∣∣∣
∑

i∈In,k
h

((
W

(b(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣




≤EΦ


Lr,j sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
h

((
W

(`(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣


 . (3.9)

The result follows by considering j = 1. (3.9) is in fact an equality when j = |Er|, so the result holds
for the base case. Next, when b is not a bijection, both sides of (3.9) are left unchanged when b
is replaced by σ ◦ b for σ a permutation of {1, ..., |Er|}. As a consequence, we can assume without
loss of generality that |b−1(1)| ≥ 2 and b−1(2) = ... = b−1(|b−1(1)|) = ∅ in the induction step. This
induction step is divided into two parts. In the first part, we build an array of random variables
(W̃ (e)

A )e∈Er,A∈Ar . This array is such that
((
W̃

(e)
{i�e}+

)
e∈b−1(1)

,
(
W̃

(e)
{i�e}+

)
e/∈b−1(1)

)

i∈In,k
d=
((
W

(`′(e))
{i�e}+

)
e∈b−1(1)

,
(
W

(b(e))
{i�e}+

)
e/∈b−1(1)

)

i∈In,k
, (3.10)

with `′ a bijection from b−1(1) to {1, ..., |b−1(1)|}. Moreover, it satisfies, for all i ∈ In,k,

E
(
h

((
W̃

(e)
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W
)

= 1
|B(b)|

∑

b′∈B(b)
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

)
, (3.11)

where W denotes the σ-algebra generated by the
(
W

(j)
A

)
A∈Ar,j=1,...,|Er|

and

B(b) = {b′ : b′(e) = b(e) if e /∈ b−1(1), b′(e) ∈ {1, ..., |b−1(1)|} if e ∈ b−1(1)}.

In the second part of the induction step, we combine (3.10) and (3.11) with Jensen, convexity and
triangle inequalities to get upper bounds on the left-hand side of (3.9).

First part: construction of the W̃ (e)
A .

Let `′ be a bijection from b−1(1) to {1, ..., |b−1(1)|} and let
(
rbA

)
A∈Ar

be some independent uniform
random variables on {1, ..., |b−1(1)|}. For (j, l) ∈ N × N+, rem(j, l) denotes the remainder of the

13



division of j by l. For any (e, A) ∈ Er ×Ar, let W̃ (e)
A = W

(1+rem(`′(e)+rbA,|b−1(1)|))
A if e ∈ b−1(1) and

W̃
(e)
A = W

(b(e))
A otherwise. Similarly, let Ŵ (e)

A = W
(`′(e))
A if e ∈ b−1(1) and Ŵ (e)

A = W
(b(e))
A otherwise.

Conditional on rbA, the function e 7→ 1 + rem
(
`′(e) + rbA, |b−1(1)|

)
is a bijection from b−1(1) to

{1, ..., |b−1(1)|}. It follows that conditional on rbA, we have
(
W̃

(e)
A

)
e∈Er

d=
(
Ŵ

(e)
A

)
e∈Er

.

Because the right-hand side does not depend on rbA, the previous equality also holds unconditionally.
Independence of the W (j)

A s across A ensures
(
W̃

(e)
A

)
e∈Er,A∈Ar

d=
(
Ŵ

(e)
A

)
e∈Er,A∈Ar

,

or equivalently
(
W̃

(e)
{i�e′}+

)
e∈Er,i∈In,k,e′∈Er

d=
(
Ŵ

(e)
{i�e′}+

)
e∈Er,i∈In,k,e′∈Er

.

Considering elements such that e′ = e in the previous equality yields (3.10).

Next, if (Ae)e∈Er is a family of distinct elements of Ar, then uniform distribution and independence
of the rbAe

s induces that for every i ∈ In,k

E
(
h

((
W̃

(e)
Ae

)
e∈Er

, i

) ∣∣∣∣W
)

= 1
|B(b)|

∑

b′∈B(b)
h

((
W

(b′(e))
Ae

)
e∈Er

, i

)
.

For every i ∈ In,k,
({i� e}+)e∈Er is a family of distinct subsets of {1, ..., n} of cardinal r, so (3.11)

follows.

Second part: upper bound on the LHS of (3.9)

As {2, ..., |b−1(1)|} ∩ R(b) = ∅, B(b)\{b} can be partitioned into two subsets B1(b) and B2(b), with

B1(b) = {b′ ∈ B(b) : |R(b′)| > j = |R(b)|},
B2(b) = {b′ ∈ B(b) : b′(e) = m ∈ {2, ..., |b−1(1)|} ∀e ∈ b−1(1)}.

Moreover, |B2(b)| = |b−1(1)|−1. LetW1 andW ′1 be the σ-algebra generated by
{
W

(j)
A , A ∈ Ar, j ∈ R(b)

}

and
{
W

(j)
A , A ∈ Ar, j ∈ R(b)\{1}

}
, respectively. The W (j)

A s are i.i.d. across j. Consequently, for
every b′ ∈ B2(b),

E
(
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W1

)
=E

(
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W ′1
)

=E
(
h

((
W

(b(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W ′1
)
.

As a result, using the partition B(b) = {b} ∪B1(b) ∪B2(b), we obtain

h

((
W

(b(e))
{i�e}+

)
e∈Er

, i

)
=E


 ∑

b′∈B(b)
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W1




−E

 ∑

b′∈B1(b)
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W1




−
(
|b−1(1)| − 1

)
E
[
h

((
W

(b(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W ′1
]
.
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Then, by Lemma S1.

3EΦ


sup
h∈H

∣∣∣∣∣∣
∑

i∈In,k
h

((
W

(b(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣




≤ E


Φ


3 sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
E


 ∑

b′∈B(b)
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W1



∣∣∣∣∣∣






+ E


Φ


3 sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
E


 ∑

b′∈B1(b)
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W1



∣∣∣∣∣∣






+ E


Φ


3

(
|b−1(1)| − 1

)
sup
h∈H

∣∣∣∣∣∣
∑

i∈In,k
E
[
h

((
W

(b(e))
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W ′1
]∣∣∣∣∣∣




 . (3.12)

Denote by T1, T2 and T3 the three terms on the RHS and let b̃(e) = `′(e) if e ∈ b−1(1) and b̃(e) = b(e)
otherwise. Then

T1 ≤E

Φ


3 sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k

∑

b′∈B(b)
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣






=E


Φ


3|B(b)| sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
E
(
h

((
W̃

(e)
{i�e}+

)
e∈Er

, i

) ∣∣∣∣W
)∣∣∣∣∣∣






≤E

Φ


3|B(b)| sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
h

((
W

(̃b(e))
{i�e}+

)

e∈Er
, i

)∣∣∣∣∣∣






≤E

Φ


3|B(b)|Lr,j+1 sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
h

((
W

(`(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣




 . (3.13)

The first inequality follows by Jensen’s inequality. The first equality is due to (3.11). The second
inequality uses Jensen’s inequality and (3.10). Finally, (3.13) relies on the induction hypothesis and
|R(b̃)| > j. Similarly,

T2 ≤
1

|B1(b)|
∑

b′∈B1(b)
E


Φ


3|B1(b)| sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
h

((
W

(b′(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣






≤E

Φ


3|B1(b)|Lr,j+1 sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
h

((
W

(`(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣




 , (3.14)

where the first inequality follows by Jensen’s inequality and the second by the induction hypothesis,
since |R(b′)| > j for all b′ ∈ B1(b). Finally, note that for each i, all the {i� e}+s are disjoint so,
conditional on W ′1, (

W
(b(e))
{i�e}+

)
e∈Er

d=
(
W

(̃b(e))
{i�e}+

)

e∈Er
.
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As a result,

T3 =E


Φ


3

(
|b−1(1)| − 1

)
sup
h∈H

∣∣∣∣∣∣
∑

i∈In,k
E
[
h

((
W

(̃b(e))
{i�e}+

)

e∈Er
, i

) ∣∣∣∣W ′1
]∣∣∣∣∣∣






≤E

Φ


3

(
|b−1(1)| − 1

)
Lr,j+1 sup

h∈H

∣∣∣∣∣∣
∑

i∈In,k
h

((
W

(`(e))
{i�e}+

)
e∈Er

, i

)∣∣∣∣∣∣




 , (3.15)

where the inequality follows by Jensen’s inequality and the induction hypothesis again. We finally
get (3.9) by combining (3.12)-(3.15) with monotonicity of Φ, the expression of Lr,j+1 and

max
(
|B(b)|, |B1(b)|, |b−1(1)− 1|

)
≤ |Er||Er|.

This concludes the induction step, and thus the proof of the lemma.

3.4 Lemma A.3

Let bn/kc denote the largest integer smaller or equal to n/k. For any array (Ai)i∈In,k and any
i ∈ In,k, we have

Ai =
∑bn/kc
t=1

∑
π∈Sn Aπ(k(t−1)+1),...,π(kt)1{π(k(t−1)+1)=i1,...,π(kt)=ik}∑bn/kc
t=1

∑
π∈Sn 1{π(k(t−1)+1)=i1,...,π(kt)=ik}

.

The denominator is bn/kc times the number of permuations over {1, ..., n} with k values fixed. It is
thus equal to bn/kc(n− k)!. Hence,

∑

i∈In,k
Ai = 1

bn/kc(n− k)!
∑

π∈Sn

bn/kc∑

t=1
Aπ(k(t−1)+1),...,π(kt)

×
∑

i∈In,k
1{π(k(t−1)+1)=i1,...,π(kt)=ik}

= 1
bn/kc(n− k)!

∑

π∈Sn

bn/kc∑

t=1
Aπ(k(t−1)+1),...,π(kt).

Let c = max1≤j≤N ||fj ||∞ and σ2 = max1≤j≤N V(fj(Y1)). For any n ≥ k, let rn = (n/bn/kc)1/2.
Then: √

n(n− k)!
n!

√
bn/kc
2crn

∑

i∈In,k
(g(Yi)− E[g(Y1)]) = 1

n!
∑

π∈Sn
Vn,g,π,

with

Vn,g,π = 1
2c

bn/kc∑

t=1
g(Yπ(k(t−1)+1),...,π(kt))− E[g(Y1)].

For every s > 0, and g ∈ F let ϕn,g(s) = E
[
exp

(
s 1
n!
∑
π∈Sn Vn,g,π

)]
. By convexity of x 7→ exp(sx)

and joint exchangeability, we get

ϕn,g(s) ≤
1
n!

∑

π∈Sn
E
[
esVn,g,π

]
= E

[
esVn,g,id

]
,
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where id denotes the identity permutation. Vn,g,id is a sum of bn/kc i.i.d. random variables. Then,
by Theorem 3.1.5 in Giné and Nickl (2015),

E
[
esVn,g,id

]
≤ exp

(
bn/kc σ

2

4c2 (exp(s)− 1− s)
)
.

Hence, Theorem 3.1.10 (b) in Giné and Nickl (2015) entails

E
[
max
f∈F
|Gn(f)|

]
≤ 2crn√
bn/kc



√

2bn/kcσ2 log 2N
4c2 + log 2N

3




≤2
√
kσ2 log 2N + 4ck log 2N

3
√
n

,

where the last inequality follows by remarking that rn ≤
√

2k.

3.5 Theorem 2.1

3.5.1 Uniform law of large numbers

Convergence in L1 under Assumption 4-(i) Let M be some arbitrary positive constant. The
symmetrization Lemma A.1 applied to the class G =

{
f1{F≤M}, f ∈ F

}
and Φ =Id ensures that

E
[
sup
F
|Pnf − Pf |

]
≤ 2E

[
F (Y1)1{F (Y1)>M}

]

+
k∑

r=1

∑

e∈Er
Kr,kE


sup
F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i�e}+f (Y r

i )1{F (Y r
i

)≤M}

∣∣∣∣∣∣


 ,

with Kr,k some non negative number depending on r and k only.

For every (aij)i=1...n,j=1...m ∈ Rnm and independent Rademacher random variables (εi)i=1...n, we
have (see for instance Lemma 2.3.4 in Giné and Nickl, 2015)

E
[

max
j∈{1,...,m}

∣∣∣∣∣
n∑

i=1
εiaij

∣∣∣∣∣

]
≤
[
2 log(2m) max

j∈{1,...,m}

n∑

i=1
a2
ij

]1/2

. (3.16)

Next, reasoning conditionally on the data, we can consider for every η1 > 0 a minimal η1-covering of
F for the seminorm || · ||e,M,1 with closed balls centered in F . This implies

E


sup
F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i�e}+f (Y r

i )1{F (Y r
i

)≤M}

∣∣∣∣∣∣

∣∣∣∣(Y
r

i )i∈In,k




=E


sup
F

∣∣∣∣∣∣∣

(n− k)!
n!

∑

i∈−−→In,r

ε{i}
∑

π∈Sr

∑

i′∈({1,...,n}\{i})k−r
f
(
Y r

(iπ)e+i′(1−e)

)
1{

F

(
Y r

(iπ)e+i′(1−e)

)
≤M
}

∣∣∣∣∣∣∣

∣∣∣∣(Y
r

i )i∈In,k




≤M
(2 log 2N (η1,F , || · ||e,M,1) (n− r)!r!

n!

)1/2
+ η1. (3.17)

To obtain the inequality, we apply (3.16) with m = N (η1,F , || · ||e,M,1) and

aij = (n− k)!
n!

∑

π∈Sr

∑

i′∈({1,...,n}\{i})k−r
fj
(
Y r

(iπ)e+i′(1−e)

)
1{F (Y r

(iπ)e+i′(1−e) )≤M},
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where fj is one of the N (η1,F , || · ||e,M,1) centers of balls needed to cover F . Inequality then (3.17)
follows by remarking that

(
n∑

i=1
a2

ij

)1/2

≤M
(
n

r

)1/2 (n− k)!
n! r! (n− r)!

(n− r − (k − r))! = M

((n− r)!r!
n!

)1/2
.

Observe that ||g||e,M,1 ≤ ||g||Qrn,1. Thus, considering η1 = η||F ||Qrn,1 and using Point 2 of Lemma
S12, we have, for every η > 0,

E


sup
F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i�e}+f (Y r

i )1{F (Y r
i

)≤M}

∣∣∣∣∣∣

∣∣∣∣(Y
r

i )i∈In,k




≤M
(

2 log 2 supQN (η||F ||Q,1,F , || · ||Q,1) (n− r)!r!
n!

)1/2

+ η||F ||Qrn,1.

For any r and any i ∈ Ik, we have E(F (Y r
i )) = E(F (Y1)), and next E

(||F ||Qrn,1
)

= E(F (Y1)).
Integration with respect to the distribution of (Y r

i )i∈In,k ensures

E


sup
F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i�e}+f (Y r

i )1{F (Y r
i

)≤M}

∣∣∣∣∣∣




≤M
(

2 log 2 supQN (η||F ||Q,1,F , || · ||Q,1) (n− r)!r!
n!

)1/2

+ ηE (F (Y1)) .

It follows that there exists a constant K ′k such that

E
[
sup
F
|Pnf − Pf |

]
≤ K ′k


E

[
F (Y1)1{F (Y1)>M}

]

+M
(

2 log 2 supQN (η||F ||Q,1,F , || · ||Q,1)
n

)1/2

+ ηE(F (Y1))


 .

Picking M and η such that E
[
F (Y1)1{F (Y1)>M}

]
+ηE(F (Y1)) is small and letting n tend to infinity,

we conclude that E [supF |Pnf − Pf |] = o(1).

Almost-sure convergence under Assumption 4-(i). Let Σn the σ-algebra generated by Hn,
the set of functions g from YIk to R that are invariant by the action of any permutation π on N+

such that π(j) = j for j ≥ n:

g ((Yi)i∈Ik) = g
(
(Y(π(i1),...,π(ik)))i∈Ik

)
.

Let h
(
(Yi)i∈In,k

)
= supF |Pnf−Pf | and for l = 1, ..., n+1, let P\{l}n+1f = (n−k)!

n!
∑

i∈In+1,k f (Yi)1{l /∈{i}}.
Let π denote the transposition on N+ exchanging n+ 1 and l. Exchangeability and the definition of
Hn ensure that
(

(Yi)i∈({1,...,n+1}\{l})k ,
(
g
(
(Yi)i∈Ik

))
g∈Hn+1

)
d=
(

(Yπ(i))i∈({1,...,n+1}\{l})k ,
(
g

((
Yπ(i)

)
i∈Ik

))

g∈Hn+1

)

a.s.=
(

(Yi)i∈In,k ,
(
g
(
(Yi)i∈Ik

))
g∈Hn+1

)
.
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For every l < n+ 1, the above implies that conditional on Σn+1, (Yi)i∈({1,...,n+1}\{l})k has the same
distribution as (Yi)i∈In,k . As a result,

E
(

sup
F

∣∣∣P\{l}n+1f − Pf
∣∣∣
∣∣Σn+1

)
= E

(
h((Yi)i∈({1,...,n+1}\{l})k)

∣∣Σn+1
)

= E
(
h((Yi)i∈In,k)

∣∣Σn+1
)

= E
(

sup
F
|Pnf − Pf |

∣∣Σn+1

)
.

Because ∑n+1
l=1 P\{l}n+1f = (n−k)!

n!
∑

i∈In+1,k

∑n+1
l=1 f(Yi)1{l /∈{i}} = (n+1−k)!

n!
∑

i∈In+1,k f(Yi), we have

1
n+ 1

n+1∑

l=1
P\{l}n+1f = Pn+1f.

The triangle inequality ensures

sup
F
|Pn+1f − Pf | ≤

1
n+ 1

n+1∑

l=1
sup
F

∣∣∣P\{l}n+1f − Pf
∣∣∣ .

Combining the last inequality with E
(
supF |Pn+1f − Pf |

∣∣Σn+1
)

= supF |Pn+1f − Pf | yields

sup
F
|Pn+1f − Pf | ≤

1
n+ 1

n+1∑

l=1
E
(

sup
F

∣∣∣P\{l}n+1f − Pf
∣∣∣
∣∣Σn+1

)

= E
(

sup
F
|Pnf − Pf |

∣∣Σn+1

)
.

This means that supF |Pnf − Pf | is a backward submartingale with respect to the decreasing
filtration Σn. Hence, by the convergence theorem for backwards submartingale (see, e.g., Theorem
22 of Chapter 24 in Fristedt and Gray, 2013) and its convergence to 0 in L1, supF |Pnf − Pf |
converges almost surely to 0.

Results under Assumption 4-(ii) Thanks to the previous almost-sure convergence result
applied to F reduced to a single function, we know that for every f ∈ F , Pnf L1,a.s.−→ Pf. Using this
observation, we can replicate the proof of Theorem 2.4.1 in van der Vaart and Wellner (1996).

3.5.2 Uniform central limit theorem

We follow the usual strategy here by showing the pointwise convergence, asymptotic equicontinuity
and total boundedness of F (see, e.g., van der Vaart and Wellner, 1996).

First step: pointwise convergence Let (f1, ..., fm) ∈ F × ... × F . The Cramer-Wold device
ensures the joint asymptotic normality of (f1, ..., fm) if the asymptotic normality holds for f =
∑m
i=1 λifi for every (λ1, ..., λm) ∈ Rm. For f ∈ L2(P ), θ̂ = (n−k)!

n!
∑

i∈In,k f(Yi) denotes the estimator
of θ0 = E (f(Y1)). Theorem A in Silverman (1976) ensures that

√
n
(
θ̂ − θ0

)
d−→ N (0,K(f, f)).
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Second step: asymptotic equicontinuity under Assumption 4-(i) We have to show that,
for every ε > 0, limδ→0 lim supn→∞ P

(
supf∈Fδ |Gnf | > ε

)
= 0. We show the stronger result that

lim
δ→0

lim sup
n→∞

E
[
sup
Fδ
|Gnf |

]
= 0.

A weighted Rademacher empirical process is sub-Gaussian with respect to the Euclidean norm of
the vector of weights. As a result, conditionally on the original data, we can apply Theorem 2.3.6 in
Giné and Nickl (2015). This observation implies that for every r = 1, ..., k and e ∈ Er,

E


sup
Fδ

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i�e}+f (Y r

i )

∣∣∣∣∣∣

∣∣∣∣(Y
r

i )i∈In,k




=E


sup
Fδ

∣∣∣∣∣∣∣

(n− k)!
n!

∑

i∈−−→In,r

ε{i}
∑

π∈Sr

∑

i′∈({1,...,n}\{i})k−r
f
(
Y r

(iπ)e+i′(1−e)

)
∣∣∣∣∣∣∣

∣∣∣∣(Y
r

i )i∈In,k




≤4
√

2(n− r)!r!√
n!

∫ σe

0

√
log 2N

(
ε,Fδ, ||·||e,2

)
dε,

with

||f ||2e,2 = (n− r)!r!
n!

∑

i∈−−→In,r




(n− k)!
(n− r)!r!

∑

π∈Sr

∑

i′∈({1,...,n}\{i})k−r
f
(
Y r

(iπ)e+i′(1−e)

)



2

and σ2
e = supFδ ||f ||2e,2. A convexity argument ensures ||f ||2e,2 ≤ ||f ||2Prn,2. As a result, N

(
ε,Fδ, ||·||e,2

)
≤

N
(
ε,Fδ, ||·||Prn,2

)
and σ2

e ≤ σ2
r , with σ2

r = supFδ ||f ||2Prn,2. Next for every r = 1, ..., k and e ∈ Er:

√
nE


sup
Fδ

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i�e}+f (Y r

i )

∣∣∣∣∣∣

∣∣∣∣(Y
r

i )i∈In,k




≤4
√

2k!
∫ σr

0

√
log 2N

(
ε,Fδ, ||·||Prn,2

)
dε. (3.18)

Since
√
a+ b ≤ √a+

√
b and Prn is a (random) probability measure on Y with finite support for any

r = 1, ..., k, we obtain
∫ σr

0

√
log 2N

(
ε,Fδ, ||·||Prn,2

)
dε

≤
√

log 2σr + ||F ||Prn,2
∫ σr/||F ||Prn,2

0
sup
Q

√
logN(η||F ||Q,2,Fδ, || · ||Q,2)dη. (3.19)

Let JFδ(u) =
∫ u

0 supQ
√

logN(η||F ||Q,2,Fδ, || · ||Q,2)dη. The functions x 7→ √
x and (x, y) 7→

√
yJFδ(

√
x/
√
y) are both concave (the latter in view of Point 2 of Lemma S11) and E

(
||F ||2Prn,2

)
=

E
(||F 2||Prn,1

)
= E(F 2(Y1)). Then, by Lemma A.1 applied to the class Fδ, (3.18)-(3.19) and Jensen’s

inequality,

E
[
sup
Fδ
|Gnf |

]
.

k∑

r=1
E(σ2

r )1/2 + E(F 2(Y1))1/2JFδ

(
E(σ2

r )1/2

E(F 2(Y1))1/2

)
.
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Thanks to Points 3 and 4 of Lemmas S12, we further get

E
[
sup
Fδ
|Gnf |

]
.

k∑

r=1
E(σ2

r )1/2 + E(F 2(Y1))1/2JF

(
E(σ2

r )1/2

4E(F 2(Y1))1/2

)
.

As limx→0 JF (x) = 0, it is sufficient to show that

lim
δ→0

lim sup
n→∞

E(σ2
r ) = 0, for every r = 1, ..., k (3.20)

By the triangle inequality and the definition of Fδ and F∞,

σ2
r = sup

Fδ

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
f2(Y r

i )

∣∣∣∣∣∣
≤ sup
Fδ

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
f2(Y r

i )− Pf2

∣∣∣∣∣∣
+ δ2

≤ sup
F∞

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
f2(Y r

i )− Pf2

∣∣∣∣∣∣
+ δ2.

Noting that 4F 2 is an envelope for F2
∞, Point 5 of Lemma S12 yields

sup
Q
N
(
η||4F 2||Q,1,F2

∞, || · ||Q,1
)
<∞ for every η > 0.

Applying Theorem 2.1.1 to the class F2
∞ for the array (Y r

i )i∈Ik , we get

lim
n→∞E


sup
F∞

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
f2(Y r

i )− Pf2

∣∣∣∣∣∣


 = 0,

and then (3.20) holds.

Third step: asymptotic equicontinuity under Assumption 4-(ii) The proof in the i.i.d
case is detailed in, e.g., Giné and Nickl (2015), see their Theorem 3.7.38. We simply remark that
once the maximal inequality for independent data (cf. Lemma 3.5.12 in Giné and Nickl, 2015) is
replaced with Lemma A.3, the proof of Theorem 3.7.38 in Giné and Nickl (2015) remains valid in
our setup up to a modification of the constants, which now depend on k.

Fourth step: total boundedness We start with Assumption 4-(i). Fix ε > 0. The reasoning
previously used to control σr ensures limn→∞ E

(
supF∞

∣∣Pnf2 − Pf2∣∣) = 0. Then we have with
probability approaching one and for every (f1, f2) ∈ F × F

||f1 − f2||2P,2 ≤ ||f1 − f2||2Pn,2 + ε2.

As a consequence,

N(ε,F , || · ||P,2) ≤ N
(
ε√
2
,F , || · ||Pn,2

)
+ op(1)

≤ 1{||F ||Pn,2=0} + sup
Q
N

(
ε||F ||Q,2√
2||F ||Pn,2

,F , || · ||Q,2
)
1{||F ||Pn,2>0} + op(1)

= Op(1),
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because ||F ||Pn,2 converges almost surely to E(F 2(Y1))1/2. Then N(ε,F , || · ||P,2) <∞.

Under Assumption 4-(ii), we use the following relation (see, e.g. van der Vaart andWellner, 1996, p.84):
for every ε > 0, N (ε,F , || · ||P,2) ≤ N[ ] (2ε,F , || · ||P,2) . Finiteness of

∫∞
0

√
logN[ ] (2η,F , || · ||P,2)dη

is then enough to conclude.

3.6 Proposition 2.1

Sufficient condition

LetAn = n(n−1)E
[
supf∈F |Pnf − Pf |

]
. Remark thatAn = E

[
supFs

∣∣∣
∑

i∈In,2 f(Y{i})− E[f(Y{1})]
∣∣∣
]
.

Then, by the triangle inequality,

An ≤ E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣


+E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])
∣∣∣∣∣∣


 .

(3.21)
Next, remark that for all f ∈ Fs,

∑

i∈In,2
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
= 2

∑

i2<i1

(
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

])
,

which is a sum of n(n − 1)/2 mutually independent and centered terms. Hence, by the usual
symmetrization lemma (see, e.g., Lemma 2.3.1 in van der Vaart and Wellner, 1996),

E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣




≤4E


sup
Fs

∣∣∣∣∣∣∣

∑

i∈−−→In,2

ε{i}E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣∣


 . (3.22)

Let us turn to the second term in the right-hand side of (3.21). By Lemma 2.1, the random map

f 7→
∑

i∈In,2

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])

is, conditional on (U{i})i∈In,2 , a nondegenerate and centered (generalized) U-process with symmetric
kernels indexed by {i}. Applying Theorem 3.5.3 in de la Peña and Giné (1999) and their remark
3.5.4 (ii) conditional on (U{i})i∈In,2 and then re-integrating, we obtain

E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])
∣∣∣∣∣∣




.E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
εi1

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])
∣∣∣∣∣∣




.E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
εi1f(Y{i})

∣∣∣∣∣∣


+ E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
E
[
εi1f(Y{i})

∣∣(εi1)i1 , (U{i})i∈In,2
]
∣∣∣∣∣∣




.E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
εi1f(Y{i})

∣∣∣∣∣∣


 . (3.23)
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(3.21), (3.22) and (3.23) together yield

An . E


sup
Fs

∣∣∣∣∣∣∣

∑

i∈−−→In,2

ε{i}E
[
f(Y{i})

∣∣U{i}
]
∣∣∣∣∣∣∣


+ E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
εi1f(Y{i})

∣∣∣∣∣∣


 . (3.24)

Applying this inequality to {f1F≤M : f ∈ Fs} instead of Fs and following the same reasoning as in
the proof of the uniform LLN in Theorem 2.1 until (3.17), we get for every ε > 0 and M > 0

An
n(n− 1) . E[F (Y1)1F (Y1)>M ]

+ME
[( logN(ε,F , || · ||M,1,2)

n2

)1/2
+
( logN(ε,F , || · ||M,1,1)

n

)1/2]
+ ε, (3.25)

with ||f ||M,1,1 := 1
n

∑n
i1=1

∣∣∣ 1
n−1

∑
i2 6=i1 f(Yi)1{F (Yi)≤M}

∣∣∣ and
||f ||M,1,2 := 1

n(n−1)
∑n

i∈−−→In,2

∣∣∣E
[
f(Yi)1{F (Yi)≤M}|U{i}

]∣∣∣ . Now, mimicking the proof of (5.2.12) on page
230 in de la Peña and Giné (1999), we can see that the condition

max
( logN(ε,F , || · ||1,2)

n2 ,
logN(ε,F , || · ||1,1)

n

)
P−→ 0 ∀ε > 0

together with E[F (Y1)] <∞ implies that for every ε > 0 there exists M1(ε) > 0 such that

lim sup
n→∞

E



(

logN(ε,F , || · ||M1(ε),1,2)
n2

)1/2

+
(

logN(ε,F , || · ||M1(ε),1,1)
n

)1/2

 = 0

Inequality (3.25) then implies that for every ε > 0, there exists M2(ε) ≥ M1(ε) such that
lim supn→∞An/n(n − 1) . ε. Hence, An/n(n − 1) → 0. Finally, to move from convergence in
L1 to a.s. convergence, we apply the same backward martingale argument as in Theorem 2.1.

Necessary condition

First, supF |Pnf −Pf | ≤ PnF +PF . Moreover, PnF is uniformly integrable (since PF <∞). Thus,
supF |Pnf − Pf | is also uniformly integrable, and its almost-sure convergence implies An L1

−→ 0. We
now show the converse of inequalities (3.21) and (3.24). We start by proving that

An & E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣
+ sup
Fs

∣∣∣∣∣∣
∑

i∈In,2

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])
∣∣∣∣∣∣


 .

(3.26)
To establish (3.26), observe first that almost surely,

sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣

= sup
Fs

∣∣∣∣∣∣
E


 ∑

i∈In,2

(
f(Y{i})− f(Y ∗{i}))

) ∣∣(U{j})j∈In,2



∣∣∣∣∣∣
,

where (Y ∗i )i∈In,2 is an independent copy of (Yi)i∈In,2 . Then, by Jensen’s inequality,

E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣


 ≤ E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2

(
f(Y{i})− f(Y ∗{i})

)
∣∣∣∣∣∣




≤ 2E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
f(Y{i})− E

[
f(Y{1})

]
∣∣∣∣∣∣


 , (3.27)
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where (3.27) follows by the triangle inequality. We also have, almost surely,

sup
Fs

∣∣∣∣∣∣
∑

i∈In,2

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])
∣∣∣∣∣∣

= sup
Fs

∣∣∣∣∣∣
E


 ∑

i∈In,2

(
f(Y{i})− f(Y ∗∗{i})

) ∣∣(U`)n`=1, (U{j})j∈In,2



∣∣∣∣∣∣
,

where (Y ∗∗i )i∈In,2 = (τ(Vi, Vj , U{i}))i∈In,2 , and (V`)n`=1 is an independent copy of (U`)n`=1. Then, by
similar arguments as above,

E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])
∣∣∣∣∣∣


 ≤ 2E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
f(Y{i})− E

[
f(Y{1})

]
∣∣∣∣∣∣


 . (3.28)

(3.26) follows by (3.27) and (3.28). Then, by the desymmetrization lemmas for i.i.d. data and
U-statistics (see respectively Lemma 2.3.6 in van der Vaart and Wellner, 1996, and Theorem 3.5.3
in de la Peña and Giné, 1999), we obtain

E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
f(Y{i})− E

[
f(Y{1})

]
∣∣∣∣∣∣


 & E


sup
Fs

∣∣∣∣∣∣∣

∑

i∈−−→In,2

ε{i}
(
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

])
∣∣∣∣∣∣∣




+ E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
εi1

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])
∣∣∣∣∣∣


 . (3.29)

Up to the conditional expectation, this may be seen as a converse of the symmetrization lemma for
k = 2. Now, let us define

Bn = E


sup
Fs

∣∣∣∣∣∣∣

1
n(n− 1)

∑

i∈−−→In,2

ε{i}E[f(Y{i})
∣∣U{i}]

∣∣∣∣∣∣∣

∣∣(U{i})i≥1


 ,

Cn = E


sup
Fs

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
εi1f(Y{i})

∣∣∣∣∣∣
∣∣(Uj)j≥1


 ,

‖f‖2,1 =




1
n

n∑

i1=1


 1
n− 1

∑

i2 6=i1
f(Yi1,i2) + f(Yi2,i1)




2



1/2

,

‖f‖2,2 =


 1
n(n− 1)

∑

1≤i1<i2≤n
E
[
f(Yi1,i2) + f(Yi2,i1)

∣∣U{i1,i2}
]2



1/2

.

By following the proof of (ii) ⇒ (iii) in Theorem 5.2.2 in de la Peña and Giné (1999), there exists a
universal constant K such that for every ε > 0,

ε2 logN (ε,F , || · ||2,1) ≤Kn(n− 1)
2 B2

n log
(
2 +B−1

n

)
,

ε2 logN (ε,F , || · ||2,2) ≤Kn C2
n log

(
2 + C−1

n

)
.

For every ε > 0, N(ε,F , || · ||1,1) ≤ N(ε,F , || · ||2,1) and N(ε,F , || · ||1,2) ≤ N(ε,F , || · ||2,2). Hence,

logN(ε,F , || · ||1,2)
n(n− 1) ∨ logN(ε,F , || · ||1,1)

n
≤ K

ε2

(
B2
n log(2 +B−1

n )
2 ∨ C2

n log(2 + C−1
n )

)
.
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We now prove that Bn and Cn converge to 0 in L1, and thus in probability. The result will follow by
the continuous mapping theorem, since limx→0 x2 log(2 + 1/x) = 0. First, by the triangle inequality,

E[Bn] ≤ 1
n(n− 1)E


sup
Fs

∣∣∣∣∣∣∣

∑

i∈−−→In,2

ε{i}
(
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

])
∣∣∣∣∣∣∣




+ 1
n(n− 1)E


sup
Fs

∣∣∣∣∣∣∣

∑

i∈−−→In,2

ε{i}E
[
f(Y{1})

]
∣∣∣∣∣∣∣


 .

The first term tends to zero by (3.29). By the Cauchy-Schwarz inequality, the second term is
bounded by

E [F (Y1]E
[ 1
n(n− 1)

∣∣∣∣
∑

i∈−−→In,2

ε{i}

∣∣∣∣
]
. 1√

n(n− 1)
.

Hence, E(Bn)→ 0. Turning to Cn, we have

E[Cn] ≤ 1
n(n− 1)



E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
εi1

(
f(Y{i})− E

[
f(Y{i})

∣∣U{i}
])
∣∣∣∣∣∣




+E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
εi1

(
E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

])
∣∣∣∣∣∣


+ E


sup
Fs

∣∣∣∣∣∣
∑

i∈In,2
εi1E

[
f(Y{1})

]
∣∣∣∣∣∣





 .

The first term tends to zero by (3.29). By the same reasoning as above, the third term also tends to
0. Let Dn denote the second term. By the triangle inequality,

Dn ≤
1

n(n− 1)E


sup
Fs

∣∣∣∣∣∣

n∑

i1=1
εi1

∑

i2<i1

E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣




+ 1
n(n− 1)E


sup
Fs

∣∣∣∣∣∣

n∑

i1=1
εi1

∑

i2>i1

E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣


 .

Let D1n and D2n denote the two expectations on the right-hand side. The two terms are similar, so
we only consider D1n. The variable in the supremum may be written as |∑i1 εi1Wi1 |, where the
(Wi1)i1=1...n are mutually independent and centered. Thus, by the desymmetrization lemma for
independent variables (see, e.g., Lemma in van der Vaart and Wellner, 1996), Jensen’s inequality
and f(Yi1,i2) = f(Yi2,i1) for all f ∈ Fs,

D1n ≤
2

n(n− 1)E


sup
Fs

∣∣∣∣∣∣

n∑

i1=1

∑

i2<i1

E
[
f(Y{i})

∣∣U{i}
]
− E

[
f(Y{1})

]
∣∣∣∣∣∣




≤ 2
n(n− 1)E


sup
Fs

∣∣∣∣∣∣

n∑

i1=1

∑

i2<i1

f(Y{i})− E
[
f(Y{1})

]
∣∣∣∣∣∣




≤ An
n(n− 1) ,

which tends to 0. The result follows.
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3.7 Theorem 2.2

We only have to prove the pointwise convergence and the asymptotic equicontinuity, since the total
boundedness of F is proved in Theorem 2.1. In the bootstrap scheme, we sample n units independently
in {1, ..., n} with replacement and equal probability. Then, for any i = 1, ..., n, i∗ denotes the i-th
sampled unit and for i ∈ In,k, we let i∗ = (i∗1, ..., i∗k). Then P∗nf = (n−k)!

n!
∑

i∈In,k f(Yi∗)1{i∗∈In,k}.

First step: pointwise convergence

As in Theorem 2.1, it suffices to prove the result for a single f such that E[f(Y1)2] <∞.

Substep 1: asymptotic equivalence Let θ = E(f(Y1)), θ∗ = (n−k)!
n!

∑
i∈In,k f(Yi∗)1{i∗∈In,k} and

θ̂ = (n−k)!
n!

∑
i∈In,k f(Yi) its bootstrap counterpart. For i ∈ {1, ..., n}k, let h(i) = 1{i∈In,k}

∑
π∈Sk f(Yiπ).

We have θ∗ = (n−k)!
n!k!

∑
i∈In,k h(i∗), θ̂ = (n−k)!

n!k!
∑

i∈In,k h(i) = (n−k)!
n!k!

∑
i∈{1,...,n}k h(i) and E (θ∗|(Yi)i∈Ik) =

n!
nk(n−k)! θ̂. Let

θ∗1 = (n− k)!
n!k!

∑

j∈{1,...,n}k
h(j∗1 , j2, ..., jk).

We have E (θ∗1|(Yi)i∈Ik) = θ̂. For (i, j) ∈ In,k × {1, ..., n}k, observe that

E
(
h(i∗)h(j∗1 , j2, ..., jk)|(Yi′)i′∈In,k

)

=





n!k!
nk(n−k)! θ̂ ×

1
n

∑n
j=1 h(j, j2, ..., jk) if j1 /∈ {i1, ..., ik}

1
nk
∑n
i1=1

(∑
(i2,...,ik)∈{1,...,n}k−1 h(i)× h(i1, j2, ..., jk)

)
otherwise.

Consequently,

nE
(
θ∗θ∗1|(Yi′)i′∈In,k

)
=n(n− k)!2

n!2k!2 (n− k) n!
(n− k)!


 n!k!
nk(n− k)! θ̂

1
n

∑

j∈In,k
h(j)




+ n
(n− k)!2
n!2k!2 k

n!
(n− k)!

1
nk

n∑

i1=1


 ∑

(i2,...,ik)∈{1,...,n}k−1

h(i)




2

.

Hence,

nE
(
θ∗θ∗1|(Yi′)i′∈In,k

)
= n− k

nk
n!

(n− k)! θ̂
2 + k

k!2
nk(n− k)!

n!
1

n2k−1

n∑

i1=1


 ∑

(i2,...,ik)∈{1,...,n}k−1

h(i)




2

.

Focusing on the last sum, Lemma S7 allows us to conclude that

n∑

i1=1


 ∑

(i2,...,ik)∈{1,...,n}k−1

h(i)




2

=
∑

j∈{1,...,n}2k−1

h(j1, ..., jk)h(j1, jk+1, ..., j2k−1)

=
k−1∑

c=0

(
k − 1
c

)2 (
n2k−1−cE [h(1, ..., k)h(1, ..., 1 + c, k + 1, ..., 2k − c− 1)] + oa.s.(n2k−1−c)

)
.
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As nk(n−k)!
n! converges to 1, the quantity nk(n−k)!

n!
1

n2k−1
∑n
i1=1

(∑
(i2,...,ik)∈{1,...,n}k−1 h(i)

)2
converges

almost surely to E (h(1)h(1′)).

Combining the exchangeability assumption, symmetry of h and a combinatorial argument (see the
proof of Theorem 12.3 in van der Vaart, 2000), we obtain

nE
(
θ∗2|(Yi′)i′∈In,k

)

=n(n− k)!2
n!2k!2

∑

i∈In,k

∑

j∈In,k
E
(
h(i∗)h(j∗)

∣∣(Yi′)i′∈In,k
)

=n(n− k)!
n!k!2 E

(
h(1∗, ..., k∗)2∣∣(Yi′)i′∈In,k

)

=n(n− k)!2
n!2

k∑

l=0

(
n

k

)(
k

l

)(
n− k
k − l

)
E
[
h(1∗, ..., k∗)h(1∗, ..., l∗, (k + 1)∗, ..., (2k − l)∗)

∣∣(Yi′)i′∈In,k
]
.

When l = 0

n
(n− k)!2
n!2

(
n

k

)(
k

l

)(
n− k
k − l

)
E
[
h(1∗, ..., k∗)h(1∗, ..., l∗, (k + 1)∗, ..., (2k − l)∗)

∣∣(Yi′)i′∈In,k
]

= n(n− k)!2n!
n!2k!2(n− 2k)!


 1
nk

∑

i∈{1,...,n}k
h(i)




2

= n
n!

n2k(n− 2k)! θ̂
2.

For every l = 1, ..., k,

E
[
h(1∗, ..., (k − 1)∗, k∗)h(1∗, ..., l∗, (k + 1)∗, ..., (2k − l)∗)

∣∣(Yi′)i′∈In,k
]

= 1
nl

∑

i∈{1,...,n}l




1
nk−l

∑

j∈{1,...,n}k−l
h(i1, ..., il, j1, ..., jk−l)




2

= 1
n2k−l

∑

j∈{1,...,n}2k−l
h(j1, ..., jk)h(j1, ..., jl, jk+1, ..., j2k−l)

= 1
n2k−l

k−l∑

c=0

(
k − l
c

)2 (
n2k−l−cE [h(1, ..., k)h(1, ..., l + c, k + 1, ..., 2k − c− l)] + oa.s.(n2k−l−c)

)

=E [h(1, ..., k)h(1, ..., l, k + 1, ..., 2k − l)] + oa.s.(1),

using Lemma S7 once more. As n (n−k)!2
n!2

(n
k

)(k
l

)(n−k
k−l
)

= O(n1−k+k−l) = o(1) for every l ≥ 2 and
n (n−k)!2

n!2
(n
k

)(k
1
)(n−k
k−1

)
= k2

k!2 + o(1), we get

nE
(
θ∗2|(Yi′)ki′∈{1,...,n}

)
= n

n!
n2k(n− 2k)! θ̂

2 + k2

k!2E [h(1, ..., k)h(1, ..., l, k + 1, ..., 2k − 1)] + oa.s.(1).
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We also have

nE
(
θ∗21
∣∣(Yi′)i′∈In,k

)
= n

(n− k)!2
n!2k!2

∑

i∈{1,...,n}k

∑

j∈{1,...,n}k
E
(
h(i∗1, i2, ..., ik)h(j∗1 , j2, ..., jk)

∣∣(Yi′)i′∈In,k
)

= n
(n− k)!2
n!2k!2 n

1
n

n∑

i1=1


 ∑

(i2,...,ik)∈{1,...,n}k−1

h(i)




2

+ n
(n− k)!2
n!2k!2

n(n− 1)
n2


 ∑

i∈{1,...,n}k
h(i)




2

= n
(n− k)!2
n!2k!2

n∑

i1=1


 ∑

(i2,...,ik)∈{1,...,n}k−1

h(i)




2

+ (n− 1)θ̂2.

It follows that

E
(
n
(
(θ∗ − θ̂)− k(θ∗1 − θ̂)

)2
|(Yi′)i′∈In,k

)

=nE
(
θ∗2|(Yi′)i′∈In,k

)
+ nk2E

(
θ∗21 |(Yi′)i′∈In,k

)
+ n(k − 1)2θ̂2

− 2knE
(
θ∗θ∗1|(Yi′)i′∈In,k

)
+ 2n(k − 1) n!

nk(n− k)! θ̂
2 − 2n(k − 1)kθ̂2

=nθ̂2
(

n!
n2k(n− 2k)! + k2 (n− 1)

n
+ (k − 1)2 +

(
2(k − 1)− 2kn− k

n

)
n!

nk(n− k)! − 2(k − 1)k
)

+
(
k2

k!2 + k2

k!2 − 2 k
2

k!2

)
E(h(1, ..., k)h(1′)) +R,

with R
a.s.−→ 0 and θ̂2 a.s.−→ θ2

0. Moreover n!
n2k(n−2k)! = 1 − 1

n (k(2k − 1)) + O(n−2), n!
nk(n−k)! =

1− 1
n

(
k(k−1)

2

)
+O(n−2). Next

(
n!

n2k(n− 2k)! + k2 (n− 1)
n

+ (k − 1)2 +
(

2(k − 1)− 2kn− k
n

)
n!

nk(n− k)! − 2(k − 1)k
)

=
(

n!
n2k(n− 2k)! + k2 (n− 1)

n
+ (k − 1)2 + 2

(
k2

n
− 1

)
n!

nk(n− k)! − 2(k − 1)k
)

=1 + k2 + (k − 1)2 − 2− 2k2 + 2k + 1
n

(
k − 2k2 − k2 + 2k2 + k(k − 1)

)
+O(n−2)

=O(n−2).

We have thus proved that

E
(
n
(
(θ∗ − θ̂)− k(θ∗1 − θ̂)

)2
|(Yi′)i′∈In,k

)
a.s.−→ 0.

Characterization of the convergence in distribution for the bootstrap using the bounded-Lipschitz
metric ensures that it is sufficient to prove the asymptotic normality of

√
nk(θ∗1 − θ̂). Indeed if L is

a random variable whose distribution is the limit distribution of
√
nk(θ∗ − θ̂) we have:

sup
h∈BL1(R)

∣∣∣E
(
h(
√
n(θ∗ − θ̂))|(Yi′)i′∈In,k

)
− E(h(L))

∣∣∣

≤ sup
h∈BL1(R)

∣∣∣E
(
h(
√
nk(θ∗1 − θ̂))|(Yi′)i′∈In,k

)
− E(h(L))

∣∣∣

+ E
(∣∣∣
√
n((θ∗ − θ̂)− k(θ∗1 − θ̂))

∣∣∣ |(Yi′)i′∈In,k
)
.
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Then, by Levy criterion, pointwise convergence follows if we prove that for every t ∈ R
∣∣∣E
(
exp

(
it
√
nk(θ∗1 − θ̂)

)
|(Yi′)i′∈In,k

)
− E (exp (itL))

∣∣∣ = oa.s.(1), (3.30)

where i2 = −1. The next two substeps are devoted to proving this result.

Substep 2: limn E
(∣∣∣E

(
exp

(
it
√
nk!(θ∗1 − θ̂)

)
|(Yi′)i′∈In,k

)
− e−t2VE(h(1)|U{1})/2

∣∣∣
)

= 0. Let us de-
fine

an,i = (n− k)!
(n− 1)!

∑

(i2,...,ik)∈In,k−1

h(i, i2, ..., ik),

a∗n,i = (n− k)!
(n− 1)!

∑

(i2,...,ik)∈In,k−1

h(i∗, i2, ..., ik).

Given the sampling procedure in the bootstrap we have E(g(a∗n,i)|(Yi′)i′∈In,k) = 1
n

∑n
i=1 g(an,i).

Furthermore, (a∗n,i)i=1,...,n forms an i.i.d. sequence conditional on (Yi′)i′∈In,k . Let Zn =
√
nk!(θ∗1− θ̂).

Remark that Zn = ∑n
i=1 zn,i/

√
n, with zn,i = a∗n,i− 1

n

∑n
i′=1 an,i′ . We have for every ε > 0 and t ∈ R,

∣∣∣∣∣exp
(
itzn,i√
n

)
−
(

1 + itzn,i√
n
−
t2z2

n,i

2n

)∣∣∣∣∣ ≤ min
(
|t3zn,i|3√

n
3 ,

t2z2
n,i

n

)

≤
|t3z3

n,i|√
n

3 1{|zn,i|<ε
√
n} +

t2z2
n,i

n
1{|zn,i|>ε

√
n}

≤
(
ε|t|3 + t21{|zn,i|>ε

√
n}
) z2

n,i

n
.

Let Vn = E(z2
n,i|(Yi′)i′∈In,k) = 1

n

∑n
i=1 a

2
n,i −

(
1
n

∑n
i=1 an,i

)2
and V = VE(h(1)|U{1}). Lemma S7 and

the fact that (h(i))i∈Ik is k jointly exchangeable and dissociated allow us to claim that

Vn
L1,a.s.−→ E

[
h(1, ..., k)h(1′)

]− E [h(1, ..., k)]2

= E
[
E
[
h(1, ..., k)h(1′)

∣∣U{1}
]]
− E

[
E
[
h(1, ..., k)

∣∣U{1}
]]2

= E
[
E
[
h(1, ..., k)

∣∣U{1}
]2]
− E

[
E
[
h(1, ..., k)

∣∣U{1}
]]2

= V,

where the last equality can be recovered thanks to Assumption 1 and the almost-sure representation
of (h(i))i∈Ik . As E(zn,i|(Yi′)i′∈In,k) = 0, we deduce from the triangle inequality that

∣∣∣∣∣E
(

exp
(
itzn,i√
n

) ∣∣∣∣(Yi′)i′∈In,k

)
−
(

1− t2Vn
2n

)∣∣∣∣∣ ≤ ε|t|
3Vn
n

+ t2

n
E
(
z2
n,i1{|zn,i|>ε

√
n}|(Yi′)i′∈In,k

)
,

and then
∣∣∣∣∣E
(

exp
(
itzn,i√
n

) ∣∣∣∣(Yi′)i′∈In,k

)
−
(

1− t2V

2n

)∣∣∣∣∣

≤ε|t|3Vn
n

+ t2

n
E
(
z2
n,i1{|zn,i|>ε

√
n}|(Yi′)i′∈In,k

)
+ t2

2n |Vn − V |.
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Because |∏n
i=1 ai−

∏n
i=1 bi| ≤

∑n
i=1 |ai−bi| if maxi=1,...,n max(|ai|, |bi|) ≤ 1 and since the (zn,i)i=1...n

are i.i.d. conditional on the data, we obtain
∣∣∣∣∣E
(
exp (itZn) |(Yi′)i′∈In,k

)
− exp

(
− t

2V

2

)∣∣∣∣∣

≤ε|t|3Vn + t2E
(
z2
n,11{|zn,1|>ε

√
n}|(Yi′)i′∈In,k

)
+ t2|Vn − V |+

∣∣∣∣∣exp
(
− t

2V

2

)
−
(

1− t2V

2n

)n∣∣∣∣∣ .

A convexity argument and the Cauchy-Schwarz inequality ensure z2
n,1 ≤ 2a∗2n,1 + 2

(
1
n

∑n
i′=1 an,i′

)2
≤

2a∗2n,1 + 2 (n−k)!
n!

∑
i∈In,k h(i)2. This implies

E
(
z2
n,11{|zn,1|>ε

√
n}
)

≤2E
[
E
(
a∗2n,11{a∗2n,1>ε2n/4}|(Yi′)i′∈In,k

)]
+ 2E


E
(
a∗2n,1|(Yi′)i′∈In,k

)
1{ (n−k)!

n!
∑

i∈In,k
h(i)2>ε2n/4

}



+ 2E


(n− k)!

n!
∑

i∈In,k
h(i)2E

(
1{a∗2n,1>ε2n/4}|(Yi′)i′∈In,k

)


+ 2E


(n− k)!

n!
∑

i∈In,k
h(i)21{ (n−k)!

n!
∑

i∈In,k
h(i)2>ε2n/4

}



≤2E
[
a2
n,11{a2

n,1>ε
2n/4}

]
+ 2E


h2(1)1{ (n−k)!

n!
∑

i∈In,k
h2(i)>ε2n/4

}



+ 2
(

1− k

n

)
E
[
h2(2, 3, ..., k + 1)1{a2

n,1>ε
2n/4}

]
+ 2k

n
E
[
h2(1)1{a2

n,1>ε
2n/4}

]

+ 2E


h2(1)1{ (n−k)!

n!
∑

i∈In,k
h2(i)>ε2n/4

}

 . (3.31)

Conditional on U{1}, (h(1, i2, ..., ik))(i2,...,ik)∈(N+\{1})k−1 is a jointly exchangeable and dissociated

array of dimension k − 1. Hence an,1 a.s.−→ E
(
h(1)|U{1}

)
. Furthermore, (n−k)!

n!
∑

i∈In,k h
2(i) a.s.−→

E(h2(1, ..., k)). As a result, all the indicator functions on the right-hand side of the last inequal-
ity in (3.31) tend to 0 almost surely. The dominated convergence theorem also ensures that
E
(
z2
n,11{|zn,1|>ε

√
n}
)
→ 0 for every ε > 0. Further, E(|Vn − V |)→ 0 and

∣∣∣exp
(
− t2V

2

)
−
(
1− t2V

2n

)n∣∣∣
converges almost surely to 0 and is bounded. As a consequence,

lim sup
n

E
(∣∣∣E(exp(itZn)|(Yi′)i′∈In,k)− e−t2V/2

∣∣∣
)
≤ ε|t|3.

Since ε could be chosen arbitrarily small, we finally get

lim
n

E
(∣∣∣E(exp(itZn)|(Yi′)i′∈In,k)− e−t2V/2

∣∣∣
)

= 0.

Substep 3: conclusion on the almost-sure weak convergence of the bootstrap mean
We finally prove the almost-sure convergence of E(exp(itZn)|(Yi′)i′∈In,k), not only its convergence
in L1 as above. Recall that V = VE(h(1)|U{1}) with U stemming from the AHK representation of
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h(i). We have

E(Z2
n|(Yi)i∈Ik) = 1

n

n∑

i=1
V
(
a∗n,i|(Yi)i∈Ik

)
= Vn

a.s.−→ V.

Given (Yi)i∈Ik , Zn is bounded in probability: for every ε ∈ (0, 1), considering

η((Yi)i∈Ik) =
supn E

(
Z2
n

∣∣(Yi)i∈Ik
)

ε
,

we have P
(
Z2
n ≥ η((Yi)i∈Ik)|(Yi)i∈Ik

) ≤ ε by Markov’s inequality. Given (Yi)i∈Ik , every subsequence
Zσ(n) admits a further subsequence Zσ′◦σ(n) that converges in distribution to Lσ′◦σ, by Prohorov’s
Theorem. By Levy’s criterion for weak convergence, this means that there is a set Ω′ of probability
one, independent of σ′ and σ, such that for every ω ∈ Ω′, E

(
eitZσ′◦σ(n) |(Yi)i∈Ik = (Yi(ω))i∈Ik

)

converges to E(eitLσ′◦σ |(Yi)i∈Ik = (Yi(ω))i∈Ik) for every t ∈ R. Note that Lσ′◦σ could depend on
(Yi)i∈Ik . We can now write

E
[∣∣∣E[eitLσ′◦σ |(Yi)i∈Ik ]− exp(−t2V/2)

∣∣∣
]

≤E
[∣∣∣E[eitLσ′◦σ |(Yi)i∈Ik ]− E[eitZσ′◦σ(n) |(Yi)i∈Ik ]

∣∣∣
]

+ E
[∣∣∣E[eitZσ′◦σ(n) |(Yi)i∈Ik ]− exp(−t2V/2)

∣∣∣
]
.

The first term on the right-hand side converges to 0 by dominated convergence. The second term
converges to 0 by the result proved in the second substep. We finally have that almost surely,
E
[
eitLσ′◦σ |(Yi)i∈Ik

]
= exp(−t2V/2) for every t ∈ R, every subsequence σ and some subsequence σ′.

From Urysohn’s subsequence principle (see Tao, 2011, Section 2.1.17, Pages 185-186), this means
that almost surely, Zn converges in distribution conditionally on (Yi)i∈Ik to N (0, V ). We conclude
that (3.30) holds with L ∼ N

(
0, k2

k!2V
)
.

Second step: Asymptotic equicontinuity

Let Fδ = {f = f1 − f2 : (f1, f2) ∈ F × F ,E (f2(Y1)
) ≤ δ2}. We have to show

lim
δ→0

lim sup
n→∞

E
(

sup
Fδ
|G∗n(f)|

∣∣(Yi)i∈Ik

)
a.s.= 0.

Let N∗ = (n−k)!
n!

∑
i∈In,k 1{i∗∈In,k}. Note that E [P∗nf |(Yi)i∈Ik ] = P′nf = 1

nk
∑

i∈In,k f(Yi). By
independence of the i∗ with (Yi)i∈Ik , we have:

E
[

sup
f∈Fδ

|G∗nf |
∣∣∣∣(Yi)i∈Ik

]

≤E
[

sup
f∈Fδ

√
n
∣∣P∗nf − P′nf

∣∣
∣∣∣∣(Yi)i∈Ik

]
+
√
n

(
1− n!

nk(n− k)!

) (n− k)!
n!

∑

i∈In,k
F (Yi)

≤E
[

sup
f∈Fδ

√
n
∣∣P∗nf − P′nf

∣∣
∣∣∣∣(Yi)i∈Ik

]
+ (n− k)!

n!
∑

i∈In,k
F (Yi)× o(1)

Because (n−k)!
n!

∑
i∈In,k F (Yi)

a.s.−→ E (F (Y1)), we only have to show that

lim sup
n→∞

E
[

sup
f∈Fδ

√
n
∣∣P∗nf − P′nf

∣∣
∣∣∣∣(Yi)i∈Ik

]
a.s.−→ 0 as δ → 0.
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Using the symmetrization step of Lemma S5, we can write that for some constant Ck that depends
on k only

E
[

sup
f∈Fδ

√
n
∣∣P∗nf − P′nf

∣∣
∣∣∣∣(Yi)i∈Ik

]

≤kCk
√
nE


 sup
f∈Fδ

∣∣∣∣∣∣
1
n

n∑

i1=1
ε{i1}

(n− k)!
(n− 1)!

∑

(i2,...,ik):i∈In,k
f (Yi∗)1{i∗∈In,k}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik , N
∗ > 0


P (N∗ > 0) .

We have

E


 sup
f∈Fδ

∣∣∣∣∣∣
1
n

n∑

i1=1
ε{i1}

(n− k)!
(n− 1)!

∑

(i2,...,ik):i∈In,k
f (Yi∗)1{i∗∈In,k}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik , (i∗)i∈In,k , N
∗ > 0




≤4
√

2√
n

∫ σ1,2

0

√
log 2N(ε,Fδ, || · ||∗1,2)dε,

for ||f ||2∗1,2 = 1
n

∑n
i1=1

(
(n−k)!
(n−1)!

∑
(i2,...,ik):i∈In,k f(Yi∗)1{i∗∈In,k}

)2
and σ2

1,2 = supFδ ||f ||∗21,2. We now
reason conditional on N∗ > 0. The Cauchy-Schwarz inequality ensures ||f ||∗21,2 ≤ N∗||f ||∗2P∗n,2
for ||f ||∗2P∗n,2 = N∗−1 (n−k)!

n!
∑

i∈In,k f
2(Yi∗)1{i∗∈In,k}. It follows that (see Point 1 of Lemma S12)

σ2
1,2 ≤ σ∗2n = supFδ N

∗||f ||2P∗n,2 and

N(ε,Fδ, || · ||∗1,2) ≤ N(ε,Fδ, N∗1/2|| · ||∗P∗n,2) ≤ N(εN∗−1/2,Fδ, || · ||∗P∗n,2).

Monotonicity of the integral, Points 3-4 of Lemma S12 and
√
a+ b ≤ √a+

√
b entail

E
[

sup
f∈Fδ

|G∗nf |
∣∣∣∣(Yi)i∈Ik

]

≤K ′kE
[
σ∗n +

∫ σ∗n

0

√
logN

(
4εN∗−1/2,F , || · ||∗P∗n,2

)
dε

∣∣∣∣(Yi)i∈Ik , N
∗ > 0

]
P (N∗ > 0) ,

for some constant K ′k depending only on k. Furthermore, when N∗ > 0 the following holds:
∫ σ∗n

0

√
logN

(
4εN∗−1/2,F , || · ||∗P∗n,2

)
dε

=
∫ σ∗n

0

√
logN

(
ε||F ||∗P∗n,2/(4N

∗1/2||F ||∗P∗n,2),F , || · ||∗P∗n,2
)
dε

=4N∗1/2||F ||∗P∗n,2
∫ σ∗n/(4N∗1/2||F ||∗P∗n,2)

0

√
logN

(
ε||F ||∗P∗n,2,F , || · ||

∗
P∗n,2

)
dε

≤4
√
N∗||F ||∗2P∗n,2JF




√
σ∗2n

4
√
N∗||F ||∗2P∗n,2


 .

This, Lemma S11, the facts that E
(
σ∗2n |(Yi)i∈Ik , N

∗ > 0
)

= E
(
σ∗2n |(Yi)i∈Ik

)
/P (N∗ > 0),

E
(
N∗||F ||∗2P∗n,2|(Yi)i∈Ik , N

∗ > 0
)

= 1
nk
∑

i∈In,k F
2(Yi)/P (N∗ > 0) and Jensen’s inequality thus ensure

E
[

sup
f∈Fδ

|G∗nf |
∣∣∣∣(Yi)i∈Ik

]

≤K ′k


E

(
σ∗2n |(Yi)i∈Ik

)1/2
+


 1
nk

∑

i∈In,k
F 2(Yi)




1/2

JF




E
(
σ∗2n |(Yi)i∈Ik

)1/2

4
(

1
nk
∑

i∈In,k F
2(Yi)

)1/2



√
P (N∗ > 0)


 .
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Since 1
nk
∑

i∈In,k F
2(Yi)

a.s.−→ E
(
F 2(Y1)

)
, we only have to show that

lim sup
n→∞

E
(
σ∗2n |(Yi)i∈Ik

) a.s.−→ 0. (3.32)

We have

σ∗2n = sup
Fδ
|P∗nf2| ≤ sup

Fδ

∣∣∣P∗nf2 − Pnf2
∣∣∣+ sup

Fδ

∣∣∣Pnf2 − Pf2
∣∣∣+ δ2

≤ sup
F∞

∣∣∣P∗nf2 − Pnf2
∣∣∣+ sup

F∞

∣∣∣Pnf2 − Pf2
∣∣∣+ δ2.

Point 5 of Lemma S12 implies that supQN
(
η||4F 2||Q,1,F2

∞, || · ||Q,1
)
<∞ for every η > 0. Theo-

rem 2.1 and Lemma S5 imply

E
(

sup
F∞

∣∣∣P∗nf2 − Pnf2
∣∣∣
∣∣(Yi)i∈Ik

)
a.s.−→ 0 and sup

F∞

∣∣∣Pnf2 − Pf2
∣∣∣ a.s.−→ 0,

which finally yields (3.32). The result follows.

3.8 Theorem 2.3

The proof is the same as that of Theorem 13.4 in Kosorok (2006), with one change only: we have to
check that G, the limit of θ 7→ √n(Ψn(θ)−Ψ(θ)), is continuous. Given the kernel of G, it suffices
to check that for all (π, π′) ∈ S({1})×S({1′}),

sup
h∈H

∣∣∣Cov
(
[ψθ,h − ψθ0,h](Yπ(1)), [ψθ,h − ψθ0,h](Yπ′(1′))

)∣∣∣→ 0. (3.33)

By Cauchy-Schwarz’s inequality and joint exchangeability, this covariance is smaller than

E
{

[ψθ,h − ψθ0,h]2 (Yπ(1))
}

= P (ψθ,h − ψθ0,h)2.

Therefore, Condition 4 ensures that (3.33) holds. The result follows.

3.9 Theorem 2.4

The first result follows by Theorem 2.1.2 because the class {u 7→ 1{u ≤ y} : y ∈ Rp} is pointwise
measurable and satisfies Assumption 4. The second point follows directly from Point 1 and the
functional delta method, see e.g. Theorem 20.8 in van der Vaart (2000). Finally, Point 3 follows
from Theorem 2.2 and the functional delta method for the bootstrap, see e.g. Theorem 23.9 in
van der Vaart (2000).

4 Proofs of the extensions

4.1 Theorem 3.1

For random variables (respectively vectors, matrices) X and L indexed by a set I, (Xi)i∈I
d (Li)i∈I

means that (Xi)i∈I′ converges weakly to (Li)i∈I′ for any finite subset I ′ of I. This differs from
(Xi)i∈I d−→ (Li)i∈I , which means that I, (Xi)i∈I

d (Li)i∈I but also that (Xi)i∈I is asymptotically
tight. Asymptotic tightness is implied by asymptotic equicontinuity and total boundedness of the
process (Xi)i∈I .
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4.1.1 Pointwise convergence

Because Gf = 0, we have E(f(Y1,2)|U1) = E(f(Y1,2|U2) = E(f(Y1,2)), and next µm = 0 for any
m ∈ M0 = {m ∈ N3 : min(m1,m2) = 0,max(m1,m2) > 0,m3 = 0}. So µm 6= 0 only if
m ∈ M1 ∪ M2 ∪ M3 = {m ∈ N3 : min(m1,m2) > 0;m3 = 0} ∪ {m ∈ N3 : m1 = m2,m3 >

0} ∪ {m ∈ N3 : m1 6= m2,m3 > 0}. LetM =M0 ∪M1 ∪M2 ∪M3, because V(f(Y1,2)) <∞, we
also have ∑m∈M µ2

m(f) <∞.

We have:

n

n(n− 1)
∑

i∈In,2
ψm1(Ui1)ψm2(Ui2)

= n

n− 1

((
1√
n

n∑

i=1
ψm1(Ui)

)(
1√
n

n∑

i=1
ψm2(Ui)

)
− 1
n

n∑

i=1
ψm1(Ui)ψm2(Ui)

)
.

It follows from the law of large numbers, the multivariate central limit theorem and the continuous
mapping theorem that


 n

n(n− 1)
∑

i∈In,2
ψm1(Ui1)ψm2(Ui2)




m∈M1

d 
(
Zm1Zm2 − 1{m1=m2}

)
m∈M1

(4.1)

By almost-sure convergence of the sample mean of jointly exchangeable arrays (Eagleson and Weber,
1978), ergodicity of dissociated arrays (Kallenberg, 2005), the independence of the Ui and the
orthogonality of the ψm, we obtain

1
n(n− 1)

∑

i∈In,2
ψm1(Ui1)ψm2(Ui2)ψm′1(Ui1)ψm′2(Ui2) a.s.−→1{m1=m′1,m2=m′2}. (4.2)

We have:

 n

n(n− 1)
∑

i∈In,2
ψm1(Ui1)ψm2(Ui2)ψm3(U{i1,i2})




m∈M2∪M3

=


 n√

n(n− 1)
1√

n(n− 1)
∑

1≤i1<i2≤n
[ψm1(Ui1)ψm2(Ui2) + ψm1(Ui2)ψm2(Ui1)]ψm3(U{i1,i2})




m∈M2∪M3

Note that the ψm are uniformly bounded, so for any η > 0,

1{|(ψm1 (Ui1 )ψm2 (Ui2 )+ψm1 (Ui2 )ψm2 (Ui1 ))ψm3 (U{i1,i2})|>
√
n(n−1)η} = 0

for
√
n(n− 1)η > 23/2. Then conditionally on (Ui)i≥1, the Lindeberg-Feller theorem and the

almost-sure convergence (4.2) imply:



(
1√

n(n−1)
∑

i∈In,2 ψm1(Ui1)ψm2(Ui2)ψm3(U{i1,i2})
)

m∈M2(
1√

n(n−1)
∑

i∈In,2 ψm1(Ui1)ψm2(Ui2)ψm3(U{i1,i2})
)

m∈M3




d 
(

(Zm1,m3)m∈M2

(Z{m1;m2},m3)m∈M3

)
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Considering Vm = n
n(n−1)

∑
i∈In,2 ψm1(Ui1)ψm2(Ui2)ψm3(U{i1,i2}) for m ∈ M1 ∪ M2 ∪ M3, the

previous convergence means that for any (tm) ∈ RM and any finite subsetM′2 ⊂M2 andM′3 ⊂M3:

E


exp


i

∑

m∈M′2∪M′3

tmVm



∣∣∣∣(Ui)i≥1


 a.s.−→ exp


−1

2
∑

m∈M′2∪M′3

t2m




LetM′ =M′1∪M′2∪M′3 a finite subset ofM withM′1 ⊂M1,M′2 ⊂M2 andM′3 ⊂M3, triangle
inequality ensures that
∣∣∣∣∣∣
E


exp


i

∑

m∈M′
tmVm




− exp


−1

2
∑

m∈M′2∪M′3

t2m


E


exp


i

∑

m∈M′1

tmVm





∣∣∣∣∣∣

≤ E



∣∣∣∣∣∣
exp


i

∑

m∈M′1

tmVm



∣∣∣∣∣∣
×
∣∣∣∣∣∣
E


exp


i

∑

m∈M′2∪M′3

tmVm



∣∣∣∣(Ui)i≥1


− exp


−1

2
∑

m∈M′2∪M′3

t2m



∣∣∣∣∣∣




≤ E



∣∣∣∣∣∣
E


exp


i

∑

m∈M′2∪M′3

tmVm



∣∣∣∣(Ui)i≥1


− exp


−1

2
∑

m∈M′2∪M′3

t2m



∣∣∣∣∣∣


 ,

which tends to 0 by the dominated convergence theorem. Convergence (4.1) implies

lim
n

E


exp


i

∑

m∈M′1

tmVm




 = E


exp


i


 ∑

m∈M′1

tm(Zm1Zm2 − 1{m1=m2})






 ,

and again by dominated convergence and the Levy theorem:



(
n

n(n−1)
∑

i∈In,2 ψm1(Ui1)ψm2(Ui2)
)

m∈M1(
n

n(n−1)
∑

i∈In,2 ψm1(Ui1)ψm2(Ui2)ψm3(U{i1,i2})
)

m∈M2(
n

n(n−1)
∑

i∈In,2 ψm1(Ui1)ψm2(Ui2)ψm3(U{i1,i2})
)

m∈M3




d 




(
Zm1Zm2 − 1{m1=m2}

)
m∈M1

(Zm1,m3)m∈M2(
Z{m1,m2},m3

)
m∈M3




(4.3)

To finish the proof of pointwise convergence, we use an approximation argument. For m ∈ N+ ∪∞,
letM(m) = {m ∈ {0, ...,m}3 : m 6= (0, 0, 0)} andMj(m) =Mj ∩M(m), for j = 1, 2, 3. Let

Rm = n

n(n− 1)
∑

i∈In,2

∑

m∈
⋃
j=1,2,3Mj(m)

µm(f)ψm1(Ui1)ψm2(Ui2)ψm3(U{i1,i2},

so that R∞ = n1/2Gnf . Similarly, let

Gd
m(f) =

∑

m∈M1(m)
µm(Zm1Zm2 − 1{m1=m2}) +

∑

m∈M2(m)
µmZm1,m3 +

∑

m∈M3(m)
µmZ{m1,m2},m3 ,

so that Gd
∞(f) = Gd(f). For any Lipschitz function ϕ from (R, || · ||1) to (R, || · ||1) with Lipschitz

coefficient Cϕ, we have:
∣∣∣E [ϕ(R∞)]− E

[
ϕ(Gd

∞(f))
]∣∣∣

≤CϕE [|R∞ −Rm|] +
∣∣∣E [ϕ(Rm)]− E

[
ϕ(Gd

m(f))
]∣∣∣+ CϕE

[∣∣∣Gd
∞(f)−Gd

m(f)
∣∣∣
]

≤Cϕ
√
V(R∞ −Rm) +

∣∣∣E [ϕ(Rm)]− E
[
ϕ(Gd

m(f))
]∣∣∣+ Cϕ

√
V(Gd∞(f)−Gd

m(f)) (4.4)
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Now, remark that

V(Gd
∞(f)−Gd

m(f)) =
∑

m1<m2

(µm1,m2,0(f) + µm2,m1,0(f))2
1{m<m2} + 2

∑

m≥m
µ2
m,m,0(f)

+
∑

m∈
⋃
j=2,3Mj\Mj(m)

µ2
m

≤ 2
∑

m∈M\M(m)
µ2

m(f). (4.5)

Moreover, because,

E(ψm1(Ui1)ψm2(Ui2)ψm3(U{i1,i2})ψm′1(Ui′1)ψm′2(Ui′2)ψm′3(U{i′1,i′2}))

=1{m3=m′3,}
(
1{i1=i′1,i2=i′2}1{m1=m′1,m2=m′2} + 1{i1=i′2,i2=i′1}1{m1=m′2,m2=m′1}

)

we have
V(R∞ −Rm) = n

n− 1V(Gd
∞(f)−Gd

m(f)) ≤ 4
∑

m∈M\M(m)
µ2

m(f). (4.6)

By (4.3), limn→∞
∣∣∣E [ϕ(Rm)]− E

[
ϕ(Gd

m(f))
]∣∣∣ = 0 for any fixed m. Next, by choosing m so that

∑
m∈M\M(m) µ

2
m is arbitrarily small, (4.4)-(4.6) ensure that E [ϕ(R∞)]→ E

[
ϕ(Gd

∞(f))
]
. Therefore,

n1/2Gn(f) d−→ Gd
∞(f).

4.1.2 Asymptotic equicontinuity

We want to prove limδ→0 lim supn→∞ E
[
supf∈Fδ

∣∣∣ n
n(n−1)

∑
i∈In,2 f(Yi)− E[f(Y1)]

∣∣∣
]

= 0. We first use
Lemma S3:

E


 sup
f∈Fδ

∣∣∣∣∣∣
n

n(n− 1)
∑

i∈In,2
f(Yi)− E[f(Y1)]

∣∣∣∣∣∣




.E


 sup
f∈Fδ

∣∣∣∣∣∣
n

n(n− 1)
∑

i∈In,2
ε{i}f(Yi)

∣∣∣∣∣∣




︸ ︷︷ ︸
=:A1(n,δ)

+E


 sup
f∈Fs

δ

∣∣∣∣∣∣
n

n(n− 1)
∑

i∈In,2
ε1
i1ε

2
i2f(Y 1

{i})

∣∣∣∣∣∣




︸ ︷︷ ︸
=:A2(n,δ)

. (4.7)

To control A1(n, δ), we remark that in the proof of Theorem 2.1.2 (second step in Section 3.5.2),
the following result is given (setting k and r equal to 2)

E


 sup
f∈Fδ

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε{i}f(Yi)

∣∣∣∣∣∣


 ≤ 8√

n(n− 1)
E
[∫ σ2

0

√
log 2N

(
η,Fδ, ||·||P2

n,2

)
dη

]
,

where σ2
2 := supf∈Fδ ||f ||P2

n,2 and || · ||P2
n,2 is defined in Section 3.1. As a result,

E


 sup
f∈Fδ

∣∣∣∣∣∣
n

n(n− 1)
∑

i∈In,2
ε{i}f(Yi)

∣∣∣∣∣∣


 ≤ 8

√
2E
[∫ σ2

0

√
log 2N

(
η,Fδ, ||·||P2

n,2

)
dη

]
.

It is then shown in the second step in Section 3.5.2 that

lim
δ→0

lim sup
n→∞

E
[∫ σ2

0

√
log 2N

(
η,Fδ, ||·||P2

n,2

)
dη

]
= 0
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under Assumption 4-(i), and thus also if
∫∞

0 supQ∈Q logN (η||F ||Q,2,F , || · ||Q,2) dη <∞. Hence,

lim
δ→0

lim sup
n→∞

A1(n, δ) = 0. (4.8)

To control A2(n, δ), remark first that by Assumption 2,

E


 sup
f∈Fs

δ

∣∣∣∣∣∣∣

∑

i∈−−→In,2

ε1
i1ε

2
i2f(Y 1

{i})

∣∣∣∣∣∣∣

∣∣
(
Y 1

i

)
i∈I2


 = E


 sup
f∈Gs

δ

∣∣∣∣∣∣∣

∑

i∈−−→In,2

ε1
i1ε

2
i2f(Y 1

{i})

∣∣∣∣∣∣∣

∣∣
(
Y 1

i

)
i∈I2


 ,

where Gsδ is a countable subclass of Fsδ . Let ||f || :=
√

2
n(n−1)

∑
i∈−−→In,2 f(Y 1

{i})2 and remark that

T :=
{(√

2
n(n−1)f(Y 1

{i})
)

i∈−−→In,2
: f ∈ Gsδ

}
is a countable subset of Rn(n−1)/2 with diameter

D := sup
(f1,f2)∈Gs

δ
×Gs

δ

∣∣∣∣∣

∣∣∣∣∣

√
2

n(n− 1)(f1 − f2)
∣∣∣∣∣

∣∣∣∣∣
T

= sup
(f1,f2)∈Fs

δ
×Fs

δ

||f1 − f2|| ,

where ‖ · ‖T is defined in Lemma S10. Then, by this lemma,

E


 sup
f∈Fs

δ

∣∣∣∣∣∣∣

√
2

n(n− 1)
∑

i∈−−→In,2

ε1
i1ε

2
i2f(Y 1

{i})

∣∣∣∣∣∣∣

∣∣(Y 1
i )i∈I2


 .

∫ D/2

0
logN(η,Gsδ , || · ||)dη.

Let Qn := 1
n(n−1)

∑
i∈In,2 δ{Y 1

i
}. By the triangle inequality used twice, we have

D

2 ≤ sup
g∈Gs

δ

||g||

≤
√

1
2n(n− 1) sup

f∈Fδ





√√√√
∑

i∈−−→In,2

f(Y 1
i1,i2)2 +

√√√√
∑

i∈−−→In,2

f(Y 1
i2,i1)2





≤
√

1
2n(n− 1) sup

f∈Fδ





√ ∑

i∈In,2
f(Y 1

i1,i2)2 +
√ ∑

i∈In,2
f(Y 1

i2,i1)2





≤
√

2 sup
f∈Fδ

||f ||Qn,2.

In the same fashion, we can prove that for every (g1, g2) ∈ Gsδ × Gsδ , there exist (f1, f2) ∈ Fδ × Fδ
such that ||g1−g2|| ≤

√
2||f1−f2||Qn,2, g1(x, y) = (f1(x)+f1(y))/2 and g2(x, y) = (f2(x)+f2(y))/2.

As a result, for every ε > 0, N(ε,Gsδ , || · ||) ≤ N(ε/
√

2,Fδ, || · ||Qn,2). We get
∫ D/2

0
logN(η,Gsδ , || · ||)dη ≤

∫ √2σ

0
logN(η,Fδ, || · ||Qn,2)dη

≤
∫ √2σ/||2F ||Qn,2

0
sup
Q

logN(η||2F ||Q,2,Fδ, || · ||Q,2)dη,

where σ := supf∈Fδ ||f ||Qn,2. Integrating over (Y 1
i )i∈I2 and reasoning as in the end of the second

step in Section 3.5.2, we obtain

lim
δ→0

lim sup
n→∞

E


 sup
f∈Fs

δ

∣∣∣∣∣∣∣

√
2

n(n− 1)
∑

i∈−−→In,2

ε1
i1ε

2
i2f(Y 1

{i})

∣∣∣∣∣∣∣


 = 0.

This in turn implies that limδ→0 lim supn→∞A2(n, δ) = 0. This last result, combined with (4.7)
and (4.8) is enough to conclude.
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4.2 Theorem 3.2

Hereafter, we let K denote the covariance kernel of G, ρ(f1, f2) =
√
K(f1 − f2, f1 − f2) and

ν(f1, f2) =
√
K(f1 − f2, f1 − f2) + [E(f1 − f2)]2. We also introduce Fδ = {g = f1 − f2 : (f1, f2) ∈

F × F , ν(f1, f2) ≤ δ} and note that for all (f1, f2) ∈ F × F ,

ν(f1, f2) =
√
E [E((f1 − f2)(Y1,2) + (f1 − f2)(Y2,1)|U1)2].

Finally, we define the auxiliary bootstrap process

G∗n′(f) =
√
n


 1
n(n− 1)

∑

1≤i,j≤n

f(Yi,j∗) + f(Yj∗,i)
2 1{i 6=j∗} −

1
n(n− 1)

∑

i,j∈In,2
f(Yi,j)


 .

We prove the result in three steps. We first prove pointwise convergence of Gnf and total boundedness
with respect to ν. Next, we prove the convergence of the process G∗n′. Finally, we show the asymptotic
equicontinuity of Gn with respect to ν.

1. Pointwise convergence and total boundedness with respect to ν.
First, by the pointwise convergence established in the proof of Theorem 2.1 and since E(f2(Y1,2)) <∞,
Gnf converges to Gf for all f ∈ F . Second, because the process G∗n converges weakly in `∞(F) to G,
(F , ρ) is totally bounded. The set {f : |E(f)| ≤ 2E(F )} is also totally bounded for the semimetric
ρ′(f1, f2) = |E(f1 − f2)|. Now, let (B1

i )i=1,...,n1 (resp. (B2
i′)i′=1,...,n2) denotes a δ/2

√
2-covering

of (F , ρ) (resp. of (F , ρ′)). Each non-empty set B1
i ∩ B2

i′ is included in a ν-ball of radius δ and
F ⊂ ⋃i,i′(B1

i ∩B2
i′). This ensures that (F , ν) is totally bounded.

2. Asymptotic equicontinuity of the process G∗n′.

Let (1∗∗, ..., n∗∗) be an independent copy of (1∗, ..., n∗) and let

G∗n′′(f) =
√
n


 1
n(n− 1)

∑

1≤i,j≤n

f(Yi∗∗,j∗) + f(Yj∗,i∗∗)
2 1{i∗∗ 6=j∗} −

1
n(n− 1)

∑

1≤i,j≤n
f(Yi,j)1{i 6=j}


 .

Conditional on (Yi,j)i,j∈I2 , G∗n is a U -process on the class {g : {1, ..., n} → R : g(i, j) = (f(Yi,j) +
f(Yj,i))/2, f ∈ F}, while G∗n′′ corresponds to its decoupled version. Then by Theorem 3.1.1 of de la
Peña and Giné (1999),

E
[
sup
F

∣∣G∗n′′(f)
∣∣
∣∣∣∣(Yi,j)i,j∈I2

]
. E

[
sup
F
|G∗n(f)|

∣∣∣∣(Yi,j)i,j∈I2

]
.

Moreover, we have :

E
[
sup
F

∣∣G∗n′′(f)
∣∣
∣∣∣∣(Yi,j)i,j∈I2 , (1∗, ..., n∗)

]

= 1
nn

∑

1≤i1,...,in≤n
sup
F

∣∣∣∣∣∣
√
n


 1
n(n− 1)

∑

1≤j′,j≤n

f(Yij′ ,j∗) + f(Yj∗,ij′ )
2 1{ij′ 6=j∗} −

1
n(n− 1)

∑

1≤i,j≤n
f(Yi,j)1{i 6=j}



∣∣∣∣∣∣

≥ sup
F

∣∣∣∣∣∣
√
n


 1
n(n− 1)

1
nn

∑

1≤i1,...,in≤n

∑

1≤j′,j≤n

f(Yij′ ,j∗) + f(Yj∗,ij′ )
2 1{ij′ 6=j∗} −

1
n(n− 1)

∑

1≤i,j≤n
f(Yi,j)1{i 6=j}



∣∣∣∣∣∣

= sup
F

∣∣G∗n′(f)
∣∣ .
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Integrating over (1∗, ..., n∗), we then obtain E
[
supF |G∗n′(f)|

∣∣∣∣(Yi,j)i,j∈I2

]
. E

[
supF |G∗n(f)|

∣∣∣∣(Yi,j)i,j∈I2

]
.

The asymptotic equicontinuity of G∗n′ follows from that of G∗n.

3. Asymptotic equicontinuity of Gn with respect to ν.

The idea is to prove asymptotic equicontinuity for symmetrized processes and then exploit the
symmetrization lemma A.1. First, by Lemma S4, we have

(1− e−1)(1− e−1/2)√
2

E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
ε{i,j}

f(Yi,j) + f(Yj,i)
2

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




≤E

sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)

n∑

i,j=1
ε{i,j}

f(Yi∗,j∗) + f(Yj∗,i∗)
2 1{i∗ 6=j∗}

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




= 1
n(n− 1)

n∑

i,′j′=1
E


sup
Fδ

∣∣∣∣∣∣

√
n

n2

n∑

i,j=1
ε{i,j}

f(Yi′,j′) + f(Yj′,i′)
2 1{i′ 6=j′}

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




≤ 1
n(n− 1)

n∑

i′,j′=1
sup
Fδ

∣∣∣∣
f(Yi′,j′) + f(Yj′,i′)

2 1{i 6=j′}

∣∣∣∣n
−3/2E

∣∣∣∣∣∣
∑

1≤i,j≤n
ε{i,j}

∣∣∣∣∣∣

≤ 2√
n

1
n(n− 1)

∑

i,j∈In,2
F (Yi,j). (4.9)

Besides, using 1{a>b} ≤ (a/b)δ and convexity of u 7→ u1+δ,

E


 1
n(n− 1)

∑

i,j∈In,2
F (Yi,j)1{ 1

n(n−1)
∑

i,j∈In,2
F (Yi,j)>M

}

 ≤M−δE





 1
n(n− 1)

∑

i,j∈In,2
F (Yi,j)




1+δ



≤M−δE(F 1+δ(Y1,2)),

with E(F 1+δ(Y1,2)) <∞. It follows that ∑i,j∈In,2 F (Yi,j)/n(n− 1) is uniform integrable, namely

lim
M→∞

sup
n

E


 1
n(n− 1)

∑

i,j∈In,2
F (Yi,j)1{ 1

n(n−1)
∑

i,j∈In,2
F (Yi,j)>M

}

 = 0.

By (4.9) and monotonicity of y 7→ y1{y>M},

E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
ε{i,j}

f(Yi,j) + f(Yj,i)
2

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




is an uniformly integrable sequence as well. Then, Fatou’s inequality for uniformly integrable random
variables (see (see Shiryaev, 2007, Remark 2 in Chapter 1), together with (4.9), imply

lim sup
n

E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
ε{i,j}

f(Yi,j) + f(Yj,i)
2

∣∣∣∣∣∣




≤E

lim sup

n
E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
ε{i,j}

f(Yi,j) + f(Yj,i)
2

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2






=0. (4.10)
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Next, let (εj)j∈N+ denote independent Rademacher variables that are independent of the data. By
the first inequality in Proposition 2.2 of Giné and Zinn (1990),

1− e−1
√

2
E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
εj
f(Yi,j) + f(Yj,i)

2

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




=1− e−1
√

2
E


sup
Fδ

∣∣∣∣∣∣

√
n

n

n∑

j=1

εj
n− 1

n∑

i=1

f(Yi,j) + f(Yj,i)
2 1{i 6=j}

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




≤E

sup
Fδ

∣∣∣∣∣∣

√
n

n

n∑

j=1

εj
n− 1

n∑

i=1

f(Yi,j∗) + f(Yj∗,i)
2 1{i 6=j∗}

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




= 1
n

n∑

j′=1
E


sup
Fδ

∣∣∣∣∣∣

√
n

n

n∑

j=1

εj
n− 1

n∑

i=1

f(Yi,j′) + f(Yj′,i)
2 1{i 6=j′}

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




≤ 1
n

n∑

j′=1
sup
Fδ

∣∣∣∣∣
1

n− 1

n∑

i=1

f(Yi,j′) + f(Yj′,i)
2 1{i 6=j′}

∣∣∣∣∣

≤ 2
n(n− 1)

∑

i,j∈In,2
F (Yi,j). (4.11)

As above, this inequality and monotonicity of y 7→ y1{y>M} imply that

E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
εj
f(Yi,j) + f(Yj,i)

2

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




is an uniformly integrable sequence. Then, by Fatou’s inequality again,

lim sup
n

E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
εj
f(Yi,j) + f(Yj,i)

2

∣∣∣∣∣∣




≤E

lim sup

n
E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
εj
f(Yi,j) + f(Yj,i)

2

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




 . (4.12)

Now, we refine (4.11). Using again the first inequality in Proposition 2.2 of Giné and Zinn (1990),
the triangle inequality and the symmetrization lemma for independent random variable, we have:

1− e−1
√

2
E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
εj
f(Yi,j) + f(Yj,i)

2

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




≤E

sup
Fδ

∣∣∣∣∣∣
√
n




n∑

j=1
εj


 1
n(n− 1)

∑

1≤i≤n

f(Yi,j∗) + f(Yj∗,i)
2 1{i 6=j∗} −

1
n(n− 1)

∑

i′′,j′′∈In,2
f(Yi′′,j′′)





∣∣∣∣∣∣

+ sup
Fδ

∣∣∣∣∣∣
1√
n

n∑

j=1
εj

1
n(n− 1)

∑

i′′,j′′∈In,2
f(Yi′′,j′′)

∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




≤2E


sup
Fδ

∣∣∣∣∣∣
√
n


 1
n(n− 1)

∑

1≤i,j≤n

f(Yi,j∗) + f(Yj∗,i)
2 1{i 6=j∗} −

1
n(n− 1)

∑

i′′,j′′∈In,2
f(Yi′′,j′′)



∣∣∣∣∣∣

∣∣∣∣(Yi,j)i,j∈I2




+ sup
Fδ

∣∣∣∣∣∣
1

n(n− 1)
∑

i,j∈In,2
f(Yi,j)

∣∣∣∣∣∣
.
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Combined with (4.12) and Step 2, this entails

lim sup
n

E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
εj
f(Yi,j) + f(Yj,i)

2

∣∣∣∣∣∣




≤
√

2
1− e−1



2E

[
lim sup

n
E
(

sup
Fδ

∣∣G∗n′(f)
∣∣
∣∣∣∣(Yi,j)i,j∈I2

)]
+ E


lim sup

n
sup
Fδ

∣∣∣∣∣∣
1

n(n− 1)
∑

i,j∈In,2
f(Yi,j)

∣∣∣∣∣∣







≤
√

2
1− e−1



2E

[
sup
Fδ
|G(f)|

]
+ E


lim sup

n
sup
Fδ

∣∣∣∣∣∣
1

n(n− 1)
∑

i,j∈In,2
f(Yi,j)

∣∣∣∣∣∣





 . (4.13)

Now, (4.11) implies that

lim sup
n

E


sup
Fδ

∣∣∣∣∣∣
1

n(n− 1)
∑

i,j∈In,2
εj
f(Yi,j) + f(Yj,i)

2

∣∣∣∣∣∣


 = 0.

Together with (4.10), this implies, by the symmetrization lemma A.1 applied to the array Zi,j =
(Yi,j , Yj,i) and the class {g(zi,j) = (f(yi,j) + f(yj,i))/2 : f ∈ Fδ}), that

sup
Fδ

∣∣∣∣∣∣
1

n(n− 1)
∑

i,j∈In,2

f(Yi,j) + f(Yj,i)
2 − E

[
f(Y1,2) + f(Y2,1)

2

]∣∣∣∣∣∣
L1
−→ 0.

By a backward submartingale argument, convergence also holds almost surely. Hence, by the triangle
and Cauchy-Schwarz inequalities, we have, almost surely,

lim sup
n

sup
Fδ

∣∣∣∣∣∣
1

n(n− 1)
∑

i,j∈In,2
f(Yi,j)

∣∣∣∣∣∣
≤ sup
Fδ

∣∣∣∣E
[
f(Y1,2) + f(Y2,1)

2

]∣∣∣∣

≤ sup
Fδ

√
E (E(f(Y1,2) + f(Y2,1)|U1)2)/2

≤ δ/2.

Plugging in this inequality in (4.13), we obtain

lim
δ→0

lim sup
n

E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
εj
f(Yi,j) + f(Yj,i)

2

∣∣∣∣∣∣


 = 0.

Combined with (4.10), this implies, by the symmetrization lemma A.1,

lim
δ→0

lim sup
n

E


sup
Fδ

∣∣∣∣∣∣

√
n

n(n− 1)
∑

i,j∈In,2
f(Yi,j)

∣∣∣∣∣∣


 = 0.

4.3 Theorem 3.3

First step: pointwise convergence

With a slight abuse of notation, we assimilate f ∈ Fs with f ∈ F . Let V = V(E(2f(Y{1})|U1)). We
first establish that for all (f, t) ∈ F × R,

E
[
eitG

m∗
n f

∣∣(Yi)i∈I2

]
L1
−→ e−t

2V/2. (4.14)
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Let zni1 := 2ξi1
(

1
n−1

∑
i2 6=i1 f(Y{i})− Pnf

)
, Vni1 := V(zni1

∣∣(Yi)i∈I2). We have
∣∣∣E
[
eitG

m∗
n f

∣∣(Yi)i∈I2

]
− e−t2V/2

∣∣∣

=

∣∣∣∣∣∣

n∏

i1=1
E
[
eitzni1/

√
n
∣∣(Yi)i∈I2

]
− e−t2V/2

∣∣∣∣∣∣

≤
∣∣∣∣e
−t2
∑n

i1=1 Vni1 )/2n − e−t2V/2
∣∣∣∣+

∣∣∣∣∣∣

n∏

i1=1
E
[
eitzni1/

√
n
∣∣(Yi)i∈I2

]
−

n∏

i1=1
e−(t2Vni1 )/2n

∣∣∣∣∣∣

≤ t
2

2

∣∣∣∣∣∣
1
n

n∑

i1=1
Vni1 − V

∣∣∣∣∣∣
︸ ︷︷ ︸

=:An1

+
n∑

i1=1

∣∣∣E
[
eitzni1/

√
n
∣∣(Yi)i∈I2

]
− e−(t2Vni1 )/2n

∣∣∣

≤ t
2An1

2 +
n∑

i1=1

∣∣∣∣∣exp
(
−t2Vni12n

)
−
(

1− t2Vni1
2n

)∣∣∣∣∣
︸ ︷︷ ︸

=:An2

+
n∑

i1=1

∣∣∣∣∣E
[
eitzni1/

√
n
∣∣(Yi)i∈I2

]
−
(

1− t2Vni1
2n

)∣∣∣∣∣
︸ ︷︷ ︸

=:An3

.

To obtain the second inequality, we use | exp(a)− exp(b)| ≤ |a− b| for all a, b ≤ 0 and
∣∣∣∣∣
n∏

i=1
ai −

n∏

i=1
bi

∣∣∣∣∣ ≤
∑

i

|ai − bi|

which holds for all positive (ai, bi)i=1...n ∈ [0, 1]2n. Now, by convergence of sample means for jointly
exchangeable arrays of dimensions 2 and 3,

1
n

n∑

i1=1
Vni1 = 1

n

n∑

i1=1


 2
n− 1

∑

i2 6=i1
f(Y{i1,i2})




2

−

 2
n(n− 1)

∑

i∈In,2
f(Yi)




2

(4.15)

= 1
(n− 1)Pnf

2 + 1
n(n− 1)2

∑

i∈In,3
f(Y{i1,i2})f(Y{i1,i3})−

2
n(n− 1)

∑

i∈In,2
f(Yi)

L1
−→ E

[
f(Y{1})f(Y{1,3})

]
− E(2f(Y{1}))2 = V.

Hence, An1
L1
−→ 0.

Next, let us consider An2. For all x > δ, we have 1 − e−x = cx for some c ∈ [0, 1], so that
|e−x − (1 − x)| ≤ x. For all 0 < x ≤ δ, e−x = 1 − x + (x2/2)e−x′ for some x′ ∈ [0, 1]. Thus,
|e−x − (1− x)| ≤ δx/2. Hence, |e−x − (1− x)| . [δx+ 1{x > δ}x]. Therefore,

∣∣∣∣∣exp
(
−t2Vni12n

)
−
(

1− t2Vni1
2n

)∣∣∣∣∣ . δ
t2Vni1

2n + 1

{
t2Vni1

2n > δ

}
t2Vni1

2n .

Hence, taking δ = ε/
√
n, for any ε > 0, we get

E[An2] . t2
{
ε√
n
E[Vn1] + E

[
Vn11

{
Vn1 > ε

√
n
}]}

. (4.16)
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By definition of Vn1 and joint exchangeability,

E
[
Vn11

{
Vn1 > ε

√
n
}]

≤E



 4

(n− 1)2

n∑

i2=2
f2(Y{1,i2}) + 4

(n− 1)2
∑

2≤i2 6=i3≤n
f(Y{1,i2})f(Y{1,i3})


1

{
Vn1 > ε

√
n
}



≤ 1
(n− 1)E

[
4f2(Y{1})1

{
Vn1 > ε

√
n
}]

+ 4E
[∣∣∣f(Y{1})f(Y{1,3})

∣∣∣1
{
Vn1 > ε

√
n
}]
. (4.17)

By (4.15), Vn1 involves two sample means. Both converge almost surely, the first by the strong law
of large numbers for exchangeable sequences (see e.g. Kingman, 1978). Thus, Vn1/

√
n

a.s.−→ 0 and by
dominated convergence applied to the right-hand side of (4.17),

E
[
Vn11

{
Vn1 > ε

√
n
}]→ 0. (4.18)

Using this, E[Vn1]→ V and (4.16), we get An2
L1
−→ 0.

Finally let us turn to An3. Taylor expansions ensure that exp(itx) = 1 + itx − t2x2 exp(itx+) for
some x+ in [0, x] or [x, 0], and exp(itx) = 1 + itx− t2x2 exp(itx)− (it3/6) exp(itx∗)x3 for some x∗ in
[0, x] or [x, 0]. Using the first for |x| > δ and the second for |x| ≤ δ yields

exp(itx) = 1 + itx− 1
2 t

2x2 +
1{|x|>δ}

2 t2x2(1− exp(itx+))− i1{|x|≤δ}
6 t3x3 exp(itx∗)

for some x+, x∗ in [0, x] or [x, 0]. Thus, using |1−exp(itx)| ≤ 2 and 1{|zni1 |≤δ}z
3
ni1 ≤ δz2

ni1 , we obtain
∣∣∣∣∣E
[
eitzni1/

√
n
∣∣(Yi)i∈I2

]
−
(

1− t2Vni1
2n

)∣∣∣∣∣ =
∣∣∣∣∣
t2

n
E
[
1{|zni1 |>δ}z

2
ni1(1− exp(itz+

ni1))
∣∣(Yi)i∈I2

]

− it3

6n3/2E
[
1{|zni1 |≤δ}z

3
ni1 exp(itz∗ni1))

∣∣(Yi)i∈I2

]∣∣∣∣∣

. t
2

n
E
[
1{|zni1 |>δ}z

2
ni1

∣∣(Yi)i∈I2

]
+ |t|

3δ

n3/2Vni1 .

Hence, taking δ = ε
√
n, we get

An3 .
t2

n

n∑

i1=1
E
[
1{|zni1 |>ε

√
n}z

2
ni1

∣∣(Yi)i∈I2

]
+ |t|

3ε

n

n∑

i1=1
Vni1 .

Hence,

E[An3] .t2E
[
1{|zn1|>ε

√
n}z

2
n1
]

+ |t|3εE [Vn1] .

Because E[Vn1]→ V , the second term can be made arbitrarily small by choosing ε appropriately.
Further, by definition of zn1 and Vn1,

1{|zn1|>ε
√
n} ≤ 1{Vn1>ε2√n} + 1{|ξ1|>n1/4}.

Thus, by independence between Vn1 and ξ1,

E
[
1{|zn1|>ε

√
n}z

2
n1
]
≤ E[ξ2

1 ]E
[
1{|Vn1|>ε2√n}Vn1

]
+ E[1{|ξ1|>n1/4}ξ

2
1 ]E [Vn1] .
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Thus,
E
[
1{|zn1|>ε

√
n}z

2
n1
]
≤ E[ξ2

1 ]E
[
1{|Vn1|>ε2√n}Vn1

]
+ E[1{|ξ1|>n1/4}ξ

2
1 ]E [Vn1] .

The first term tends to zero by (4.18). The second term tends to 0 by the dominated convergence
theorem. Hence, the left-hand side converges to 0, showing that An3

L1
−→ 0. Thus, (4.14) holds.

Now, the same reasoning on An1 as above but replacing convergences in L1 by almost-sure conver-
gences show that

E
[
(Gm∗

n f)2 ∣∣(Yi)i∈I2

]
= 1
n

n∑

i1

Vni1
a.s.−→ V.

Then, by the same argument as in the Substep 3 of the proof of pointwise convergence in Theorem
2.2, convergence in (4.14) also holds almost surely:

E
[
eitG

m∗
n f

∣∣(Yi)i∈I2

] a.s.−→ e−t
2V/2.

Hence, conditional on (Yi)i∈I2 and almost surely, Gm∗
n f converges in distribution to Z ∼ N (0, V ).

Second step: Asymptotic equicontinuity

We want to prove that almost surely, limδ→0 lim supn→∞ E[supf∈Fδ |G∗nf |
∣∣(Yi)i∈I2 ] = 0. By the

triangle inequality, it suffices to control separately

E


 sup
f∈Fδ

∣∣∣∣∣∣
1√
n

n∑

i1=1
ξi1


 1
n− 1

∑

1≤i2 6=i1≤n
f(Yi1,i2)− Pnf



∣∣∣∣∣∣
∣∣(Yi)i∈I2




and E
[
supf∈Fδ

∣∣∣ 1√
n

∑n
i1=1 ξi1

(
1

n−1
∑

1≤i2 6=i1≤n f(Yi2,i1)− Pnf
)∣∣∣
∣∣(Yi)i∈I2

]
. The two terms can be

controled in a similar fashion, so we only prove the result for the first term. Now,

E


 sup
f∈Fδ

∣∣∣∣∣∣
1√
n

n∑

i1=1
ξi1


 1
n− 1

∑

1≤i2 6=i1≤n
f(Yi1,i2)− Pnf



∣∣∣∣∣∣
∣∣(Yi)i∈I2




≤ sup
f∈Fδ

|Pnf | × E



∣∣∣∣∣∣

1√
n

n∑

i1=1
ξi1

∣∣∣∣∣∣


+ E


 sup
f∈Fδ

∣∣∣∣∣∣
1√
n

n∑

i1=1
ξi1

1
n− 1

∑

1≤i2 6=i1≤n
f(Yi1,i2)

∣∣∣∣∣∣
∣∣(Yi)i∈I2




=:A1 +A2.

Because the (ξi)i=1...n are i.i.d. and standardized, E
[∣∣∣ 1√

n

∑n
i1=1 ξi1

∣∣∣
]
≤
√
E[ξ2

1 ] = 1. Then, using the
triangle and Jensen inequalities,

A1 ≤ sup
f∈Fδ

|Pnf | ≤ sup
f∈Fδ

|Pnf − Pf |+ sup
f∈Fδ

|Pf | ≤ 2 sup
f∈F
|Pnf − Pf |+ sup

f∈Fδ

√
Pf2.

We know that supf∈F |Pnf − Pf | = oa.s.(1) and supf∈Fδ
√
Pf2 ≤ δ by construction. As a result, for

every ω in a set of probability one and every δ, there exists nω,δ such that for every n ≥ nω,δ

A1(ω) := sup
f∈Fδ

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
f(Yi(ω))

∣∣∣∣∣∣
× E



∣∣∣∣∣∣

1√
n

n∑

i1=1
ξi1

∣∣∣∣∣∣


 ≤ 2δ. (4.19)
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We now control A2. Conditional on (Yi)i∈I2 , we are dealing with the supremum of a centered
empirical process over n i.n.i.d terms. We obtain

A2 ≤ 4
√

2E
[∫ σ1,2

0

√
log 2N

(
ε,Fδ, || · ||m1,2

)
dε
∣∣(Yi)i∈I2

]
,

where ||f ||m2
1,2 := 1

n

∑n
i1=1 ξ

2
i1

(
1

n−1
∑

1≤i2 6=i1≤n f(Yi1,i2)
)2

and σ2
1,2 := supf∈Fδ ||f ||m2

1,2 . Let Nm :=
1
n

∑n
i1=1 ξ

2
i1 . By convexity, ||f ||m2

1,2 ≤ Nm||f ||m2
2,2 , where ||f ||m2

2,2 := 1
n(n−1)Nm

∑
i∈In,2 ξ

2
i1f(Yi)2. We

deduce that σ2
1,2 ≤ σ2

2,2 := Nm supf∈Fδ ||f ||m2
2,2 .

Following the proof of Theorem 2.2 and acknowledging that conditional on (ξi1)ni1=1 and (Yi)i∈I2 ,∑
i∈In,2 ξ

2
i1δ{Yi}/[n(n− 1)Nm] is a probability measure, we obtain

E


 sup
f∈Fδ

∣∣∣∣∣∣
1√
n

n∑

i1=1
εi1ξi1

1
n− 1

∑

1≤i2 6=i1≤n
f(Yi1,i2)

∣∣∣∣∣∣
∣∣(Yi)i∈I2




.
{
E[σ2

2,2
∣∣(Yi)i∈I2 ]1/2 + 4

(
PnF 2

)1/2
JF

(
E[σ2

2,2
∣∣(Yi)i∈I2 ]1/2

4 (PnF 2)1/2

)}
. (4.20)

Since PnF 2 a.s.−→ PF 2 > 0, we only have to control E[σ2
2,2
∣∣(Yi)i∈I2 ]. By the triangle inequality and

definition of Fδ,

E[σ2
2,2
∣∣(Yi)i∈I2 ] ≤E


 sup
f∈F∞

∣∣∣∣∣∣
1
n

n∑

i1=1
ξ2
i1

1
n− 1

∑

1≤i2 6=i1≤n
f(Yi1,i2)2 − Pnf2

∣∣∣∣∣∣
∣∣(Yi)i∈I2




+ sup
f∈F∞

|Pnf2 − Pf2|+ δ2. (4.21)

It is shown in the proof of Theorem 2.2 that supf∈F∞ |Pnf2 − Pf2| = oa.s.(1). We turn to the first
term in (4.21). Conditional on (Yi)i∈I2 ,

(
(ξ2
i1 − 1) 1

n−1
∑

1≤i2 6=i1≤n f(Yi1,i2)2
)n
i1=1

is a centered i.n.i.d.
sequence. Then, by standard truncation, symmetrization arguments and Lemma 2.3.4 in Giné and
Nickl (2015), we obtain, for every possibly random η1 > 0,

E


 sup
f∈F∞

∣∣∣∣∣∣
1
n

n∑

i1=1
ξ2
i1

1
n− 1

∑

1≤i2 6=i1≤n
f(Yi1,i2)2 − Pnf2

∣∣∣∣∣∣
∣∣(Yi)i∈I2




≤2E


M

(
2 log 2N(η1,F2

∞, || · ||mM,1)
n

)1/2

+ η1
∣∣(Yi)i∈I2 , N

m > 0


P(Nm > 0)

+ 2
n(n− 1)

∑

i∈In,2
F (Yi)2E

[
1{ξ2

1F (Yi)2>M}
∣∣Yi

]

=:2(A3 +A4),

where ||f ||mM,1 := 1
n

∑n
i1=1 ξ

2
i1

∣∣∣ 1
n−1

∑
1≤i2 6=i1≤n f(Yi1,i2)1{F (Yi1,i2 )2≤M}

∣∣∣ .Moreover, ||f ||mM,1 ≤ Nm||f ||m1
where ||f ||m1 := 1

nNm

∑n
i1=1 ξ

2
i1

1
n−1

∑
1≤i2 6=i1≤n |f(Yi1,i2)|. Picking η1 = ηNm||F 2||m1 for some positive

constant η, we arrive at

A3 ≤M
(

2 log 2 supQN(η||F 2||Q,1,F2
∞, || · ||Q,1)

n

)1/2

+ ηPnF 2.
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Lemma S12.5 enables us to write

E


 sup
f∈F∞

∣∣∣∣∣∣
1
n

n∑

i1=1
ξ2
i1

1
n− 1

∑

1≤i2 6=i1≤n
f(Yi1,i2)2 − Pnf2

∣∣∣∣∣∣
∣∣(Yi)i∈I2




≤2



M

(
2 log 2 supQN(η||F ||Q,2/8,F , || · ||Q,2)2

n

)1/2

+ ηPnF 2 +A4



 .

For every M > 0, A4 converges a.s. to E
[
ξ2

1F (Y1)21{ξ2
1F (Y1)2>M}

]
. By combining this with (4.21)

and the end of the proof of Lemma S5, we conclude that lim supn→∞ E[σ2
2,2
∣∣(Yi)i∈I2 ] ≤ δ2 a.s.

Asymptotic equicontinuity then follows from (4.19) and (4.20).

4.4 Theorem 3.4

Recall that n1, ..., nk are all indexed by an index m, though we most often leave this dependence
implicit hereafter. They also satisfy, as m→∞, n = min(n1, ..., nk)→∞ and n/nk → λj .

4.4.1 Uniform law of large numbers

The triangle inequality and the symmetrization Lemma S2 for the class G =
{
f1{F≤M} : f ∈ F

}

and Φ=Id ensure that for every M > 0

E
[

sup
f∈F
|Pnf − Pf |

]
≤2E

[
F (Y1)1{F (Y1)>M}

]
+ 2

∑

e∈∪kr=1Er
E


sup
f∈F

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

εi�ef (Yi)1{F (Yi)≤M}

∣∣∣∣∣∣


 .

For every e ∈ ∪kj=1Ej , let

||f ||e,M,1 = 1
Πn

∑

e≤c≤n�e

∣∣∣∣∣∣
∑

1−e≤c′≤n�(1−e)
f (Yi)1{F (Yc+c′ )≤M}

∣∣∣∣∣∣
.

Using the same steps as in Part 1 of the proof of Theorem 2.1, we get for every e ∈ ∪kj=1Ej , every
M > 0 and every possibly random η1 ≥ 0,

E


sup
f∈F

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

εi�ef (Yi)1{F (Yi)≤M}

∣∣∣∣∣∣


 ≤E



√

2 log 2N (η1,F , || · ||e,M,1)M 1√∏
j:ej=1 nj

+ η1


 .

Observe that ||f ||e,M,1 ≤ ||f ||Qn,1 := 1
Πn

∑
1≤i≤n |f(Yi)|. Letting η1 = η||F ||Qn,1, we can follow the

proof of Point 1 in Theorem S1 to conclude that E [supF |Pnf − Pf |] tends to 0 as m→∞.

We now turn to proving almost-sure convergence. Let Σn be the σ-algebra generated by Hn the
set of functions g from DN+k to R that are invariant by the action of any (π1, ..., πk), with πr any
permutation on N+ such that πr(j) = j if j ≥ nr for r = 1, ..., k :

g
(
(Yi)i∈N+k

)
= g

((
Yπ1(i1),...,πk(ik)

)
i∈N+k

)
.

For every n′ ≥ n, n′ 6= n, let Jn,n′ = In′1,n′1−n1×...×In′k,n′k−nk . Then, for every q = (q1, ..., qk) ∈ Jn,n′ ,
let

Pqn,n′f = 1
Πn

∑

1≤i≤n′
f(Yi)1{i1 /∈{q1},...,ik /∈{qk}}.
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We observe that for every n,n′, q,

E
(

sup
f∈F

∣∣∣Pqn,n′f − Pf
∣∣∣
∣∣Σn′

)
= E

(
sup
f∈F
|Pnf − Pf |

∣∣Σn′

)
.

Moreover,
∑

q∈Jn,n′

Pqn,n′f = 1
Πn

∑

1≤i≤n′
f(Yi)

∑

q∈Jn,n′

1{i1 /∈{q1},...,ik /∈{qk}}

=
k∏

j=1

(n′j − 1)!
nj !

∑

1≤i≤n′
f(Yi).

and next, Pn′f =
(∏k

j=1
nj !
n′j !

)∑
q∈Jn,n′

Pqn,n′f = 1
|Jn,n′ |

∑
q∈Jn,n′

Pqn,n′f . Furthermore,

sup
f∈F
|Pn′f − Pf | = E

(
sup
f∈F
|Pn′f − Pf |

∣∣Σn′

)
.

This last equality, combined with those just above and the triangle inequality give

sup
f∈F
|Pn′f − Pf | ≤

1∣∣Jn,n′
∣∣
∑

q∈Jn,n′

E
(

sup
f∈F

∣∣∣Pqn,n′f − Pf
∣∣∣
∣∣Σn′

)

= E
(

sup
f∈F
|Pnf − Pf |

∣∣Σn′

)
.

Then considering n = (n1(m), ..., nk(m)) and n′ = (n1(m+ 1), ..., nk(m+ 1)), we deduce from the
almost-sure convergence of backwards submartingales that supf∈F |Pn′f − Pf | converges almost
surely to 0 when m tends to infinity.

4.4.2 Uniform central limit theorem

First step: pointwise weak convergence To prove the pointwise weak convergence, the line
of reasoning is the same as what we resorted to in the first step of the proof of Theorem 2.1.2:
for every f ∈ F , we need to find a suitable L2-approximation of Gnf , denoted H1f , i.e. as
m → ∞ H1f must satisfy E

[
|Gnf −H1f |2

]
= o(1) and H1f

d−→ N (0,K(f, f)). We pick
H1f = ∑

e∈E1

∑
1≤i≤n E

[
Gnf

∣∣|Ui�e

]
, where (Ui�e)1≤i≤n,e∈E1 are i.i.d terms that appear in the

AHK representation of (Yi)1≤i≤n. Let ir be a vector with all its entries equal to one except the r-th
one, which is equal to ir. The AHK representation ensures

H1(f) =
∑

e∈E1

∑

1≤i≤n

E
[
Gnf

∣∣Ui�e

]

=
k∑

r=1

√
n

nr

nr∑

ir=1

(
E
[
f (Yir)

∣∣Uir
]− E [f(Y1)]

)

d−→N (0,K(f, f)).

The convergence in distribution comes from the standard central limit theorem applied for each
e ∈ E1 separately, the mutual independence of terms across e ∈ E1 in the previous expression and
the fact that

√
n/nr →

√
λr.
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To conclude that Gnf
d−→ N (0,K(f, f)) as m → ∞, we rely on the weak convergence of H1f

and Section C.2.1 in Davezies et al. (2018). The main step there amounts to showing that
limm→∞V(H1f)/V(Gnf) = 1.

Second step: asymptotic equicontinuity Following the same reasoning as in the proof of Part
2 of Theorem 2.1, with the symmetrization lemma S2 instead of Lemma A.1, we have

E
[

sup
f∈Fδ

|Gnf |
]

= E
[

sup
f∈Fδ

|Gnf |
]
. E

(∫ σn

0

√
log 2N (ε,Fδ, || · ||µn,2)dε

)
,

where µn = 1
Πn

∑
1≤i≤n δYi

. ||f ||2µn,2 and σ2
n are defined in the same way as in the proof of Part 2 of

Theorem 2.1 (with µn instead of µn). Still following this proof, we obtain

E
[

sup
f∈Fδ

|Gnf |
]
. E

(
σ2

n

)1/2
+ E

(
F 2(Y1)

)1/2
JF

(
E
(
σ2

n

)1/2

4E (F 2(Y1))1/2

)
.

Recalling that E
(
σ2

n

) ≤ E
[
supf∈F∞

∣∣Pnf
2 − Pf2∣∣

]
+ δ2, we can follow the end of the asymptotic

equicontinuity proof of Part 2 of Theorem 2.1 with obvious minor changes to conclude.

Third step: total boundedness We refer to the proof of Theorem 2.1.

4.4.3 Convergence of the bootstrap process

As previously, we only have to prove the pointwise convergence and the asymptotic equicontinuity.

First step: pointwise convergence Let i∗ = (i∗1, ..., i∗k) denote the cell obtained by sampling i∗j
with replacement in 1, ..., nj for every j = 1, ..., k.
We have the almost-sure representation

i∗ = (F−1
n1 [U∗(i1,0,...,0)], ..., F−1

nk
[U∗(0,...,0,ik)]),

with (U∗A)A∈Nk a family of i.i.d. uniform random variables and F−1
nj the quantile function of

the discrete uniform distribution on {1, ..., nj}. Conditional on the data (Yi)i∈N+k , we can thus
follow an approach similar to the one we used in the jointly exchangeable case. Let H∗1f =
∑

e∈E1

∑
1≤i≤n E

[
G∗nf |(Yi)i∈N+k , U∗i�e

]
and h(i) = f(Yi). H∗1f can also be written

√
n

k∑

r=1


 1

Πn

∑

1≤i≤n

h(i1, ..., ir−1, i
∗
r , ir+1, ..., ik)− Pnf


 .

We first show that E
[
(G∗nf −H∗1f)2 ∣∣(Yi)i∈N+k

]
= oa.s.(1). Expanding the square in the previous
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formula gives

E
[
(G∗nf −H∗1f)2 |(Yi)i∈N+k

]

=n
{
E
[( k∑

r=1

1
Πn

∑

1≤i≤n

h(i1, ..., ir−1, i
∗
r , ir+1, ..., ik)

)2∣∣(Yi)i∈N+k

]

− 2E






k∑

r=1

1
Πn

∑

1≤i≤n

h(i1, ..., ir−1, i
∗
r , ir+1, ..., ik)


P∗nf

∣∣(Yi)i∈N+k




+ E
[
(P∗nf)2 ∣∣(Yi)i∈N+k

]
− (k − 1)2 (Pnf)2

}
.

Let An = ∑k
r=1

1
Π2

n

∑
1≤i,i′≤n
ir=i′r

h(i)h(i′). We can show

E







k∑

r=1

1
Πn

∑

1≤i≤n

h(i1, ..., ir−1, i
∗
r , ir+1, ..., ik)




2
∣∣(Yi)i∈N+k




= (Pnf)2
(

k∑

r=1

(nr − 1)
nr

+ k(k − 1)
)

+An,

E






k∑

r=1

1
Πn

∑

1≤i≤n

h(i1, ..., ir−1, i
∗
r , ir+1, ..., ik)


P∗nf

∣∣(Yi)i∈N+k




= (Pnf)2
k∑

r=1

(nr − 1)
nr

+An,

and E
[
(P∗nf)2 ∣∣(Yi)i∈N+k

]
=
∏k

j=1(nj−1)
Πn

(Pnf)2 +Bn, where

Bn = 1
Πn

k∑

r=1

∑

e∈Er

∏
1≤j≤k:ej=0(nj − 1)

∏
1≤j≤k:ej=1 nj

(∏
1≤j≤k:ej=0 nj

)2
∑

1≤i,i′≤n
ij=i′j∀j:ej=1

h(i)h(i′).

For every e ∈ ∪kr=2Er, we can write the following decomposition
∑

1≤i,i′≤n
ij=i′j∀j:ej=1

h(i)h(i′) =
∑

e′∈∪kr=1Er
e′j=1 if ej=1

∑

(i,i′)∈In,e′

h(i)h(i′),

with In,e′ = {(i, i′) : 1 ≤ i, i′ ≤ n, ir = i′r if e′r = 1 and ir 6= i′r otherwise}. Applying Lemma S8,
we conclude that for every e ∈ ∪kr=2Er,

∑

1≤i,i′≤n
ij=i′j∀j:ej=1

h(i)h(i′) = Oa.s.


Πn

∏

1≤j≤k:ej=0
(nj − 1)


 ,

Bn =
k∑

r=1

nr
∏

1≤j≤k:j 6=r(nj − 1)
Πn

1
Π2

n

∑

1≤i,i′≤n
ir=i′r

h(i)h(i′) +Oa.s.(n−2).
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By combining all those elements, we obtain

E
[
(G∗nf −H∗1f)2 |(Yi)i∈N+k

]
=n
{ 1

Π2
n

k∑

r=1

(
nr
∏

1≤j≤k:j 6=r(nj − 1)
Πn

− 1
) ∑

1≤i≤n
1≤i′≤n
ir=i′r

h(i)h(i′)

+ (Pnf)2
(∏

1≤j≤k:j 6=r(nj − 1)
Πn

− 1 +
k∑

r=1

1
nr

)
+Oa.s.

(
n−2

)}
.

Noting that
nr
∏

1≤j≤k:j 6=r(nj−1)
Πn

− 1 = o(1),
∏

1≤j≤k:j 6=r(nj−1)
Πn

− 1 +∑k
r=1

1
nr

= O
(
n−2) and

1
Π2

n

∑
1≤i≤n
1≤i′≤n
ir=i′r

h(i)h(i′) = Oa.s.(n−1), again by Lemma S8, we conclude that

E
[
(G∗nf −H∗1f)2 |(Yi)i∈N+k

]
= oa.s.(1).

To prove the asymptotic normality of H1f conditional on (Yi)i∈N+k , we remark that

H1f =
k∑

r=1

√
n

nr

nr∑

ir=1

z∗m,r,ir√
nr

,

where z∗m,r,ir = 1∏
1≤j≤k:j 6=r nj

∑
ij=1,...,nj ,∀j 6=r (h(i1, ..., ir−1, i∗r , ir+1, ..., ik)− Pnf). , For every r =

1, ..., k,
(
z∗m,r,ir

)
ir=1...nr

is an i.i.d. sequence of centered random variables conditional on (Yi)i∈N+k

with a distribution that depends on m. Since

V
(
z∗m,r,1

∣∣(Yi)i∈N+k

)
= 1
nr
∏

1≤j≤k:j 6=r n
2
j

∑

1≤i,i′≤n
ir=i′r

h(i)h(i′)− (Pnf)2 ,

we can conclude thanks to Point 1 of this theorem and Lemma S8 that V
(
z∗m,r,1

∣∣(Yi)i∈N+k

) a.s.−→
E [h(1)h(2r)]− E [h(1)]2 = Cov (h(1), h(2r)) = Vr. It is not difficult to see that arguments similar
to those of substeps 2 and 3 of Section 3.7 apply. Then, for every r = 1, ..., k and every t ∈ R,

E


exp


it

nr∑

ir=1

z∗m,r,ir√
nr


 ∣∣(Yi)i∈N+k


 a.s.−→ exp

(
− t

2Vr
2

)
.

The continuous mapping theorem, the fact that n
nr
→ λr and the mutual independence between the

k sequences
(
z∗m,r,ir

)
ir=1...nr

(r = 1, ..., k) conditional on the data imply that

E
[
exp (itH1f)

∣∣(Yi)i∈N+k
]

=
k∏

r=1
E


exp


i
√
n

nr
t
nr∑

ir=1

z∗m,r,ir√
nr


 ∣∣(Yi)i∈N+k




a.s.−→ exp
(
− t

2∑k
r=1 λrVr

2

)
.

The result follows.
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Second step: asymptotic equicontinuity First, we have

(i∗)1≤i≤n =
(
F−1
n1 [U∗(i1,0,...,0)], ..., F−1

nk
[U∗(0,...,0,ik)]

)
1≤i≤n

.

This representation ensures that the symmetrization Lemma S2 for the class Fδ and Φ=Id is valid.
We notice that the representation is simplified as only terms associated with e ∈ E1 appear. This
implies that the telescoping argument in the proof of Lemma S2 only has to be undertaken over E1.
The following symmetrization inequality thus holds:

E
[

sup
f∈Fδ

|G∗nf |
∣∣ (Yi′)i′≥1

]
≤ 2

∑

e∈E1

E


 sup
f∈Fδ

∣∣∣∣∣∣
1√
Πn

∑

1≤i≤n

εi�ef (Yi∗)

∣∣∣∣∣∣
∣∣ (Yi′)i′≥1


 .

For every e ∈ E1, let re be the position of the unique non-null element of e. This allows us to define

||f ||∗e,2 = 1
nre

nre∑

ire=1


 1∏

j 6=re
nj

∑

(i1,...,ire−1,ire+1,...,ik:1≤i≤n)
f(Yi∗)




2

,

and σ∗n,e = supf∈Fδ ||f ||∗e,2. Then, by Theorem 2.3.6 in Giné and Nickl (2015), we obtain

E
[

sup
f∈Fδ

|G∗nf |
∣∣ (Yi′)i′≥1

]

≤8
√

2
∑

e∈E1

1√
nre

E
[
√

log 2σ∗n,e +
∫ σ∗n,e

0

√
logN

(
ε,Fδ, || · ||∗e,2

)
dε
∣∣ (Yi′)i′≥1

]
.

By a convexity argument, we have, for every e ∈ E1 ||f ||∗e,2 ≤ ||f ||∗Q∗n,2, with ||f ||
∗2
Q∗n,2 = 1

Πn

∑
1≤i≤n f(Yi∗)2.

We also have σ∗2n,e ≤ σ∗2n , with σ∗2n = supf∈Fδ
1

Πn

∑
1≤i≤n (f(Yi∗))2. Then, using Points 1-4 of

Lemma S12 and reasoning as in Theorem 2.2, we get

E
[

sup
f∈Fδ

|G∗nf |
∣∣ (Yi′)i′≥1

]
≤8
√

2k
{
√

log 2
√
E
[
σ∗2n

∣∣ (Yi′)i′≥1

]

+4
√√√√ 1

Πn

∑

1≤i≤n

F 2(Yi)JF




√
E
[
σ∗2n

∣∣ (Yi′)i′≥1

]

4
√

1
Πn

∑
1≤i≤n F

2(Yi)







.

We have 1
Πn

∑
1≤i≤n F

2(Yi)
a.s.−→ E

(
F 2(Y1)

)
> 0 and

σ∗2n = sup
f∈Fδ

|P∗nf2| ≤ sup
f∈F∞

∣∣∣P∗nf2 − Pnf
2
∣∣∣+ sup

f∈F∞

∣∣∣Pnf
2 − Pf2

∣∣∣+ δ2.

Moreover, we have shown in the proof of Point 2 that supf∈F∞ |Pnf
2 −Pf2| a.s.−→ 0. Thus, it suffices

to show
E
(

sup
f∈F∞

∣∣∣P∗nf2 − Pnf
2
∣∣∣
∣∣(Yi)i≥1

)
a.s.−→ 0.

The symmetrization argument we used to control E
[
supf∈Fδ |G∗nf |

∣∣ (Yi′)i′≥1

]
still applies and gives

E
[

sup
f∈F∞

∣∣∣P∗nf2 − Pnf
2
∣∣∣
∣∣(Yi)i≥1

]
≤4 1

Πn

∑

1≤i∈n

(F (Yi))2
1{(F (Yi))2>M}

+2
∑

e∈E1

E


 sup
f∈F∞

∣∣∣∣∣∣
1

Πn

∑

1≤i∈n

εi�e (f(Yi∗))2
1{(F (Yi∗ ))2≤M}

∣∣∣∣∣∣

∣∣∣∣(Yi)i≥1


 .
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Using the seminorm

||g||∗e,M,1 = 1
Πn

∑

e≤c≤n�e

∣∣∣∣∣∣
∑

1−e≤c′≤n�(1−e)
g(Y(c+c′)∗)

∣∣∣∣∣∣

and reasoning as in Theorem 2.2, we obtain

∑

e∈E1

E


 sup
f∈F∞

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

εi�e (f(Yi∗))2
1{(F (Yi∗ ))2≤M}

∣∣∣∣∣∣

∣∣∣∣(Yi)i≥1




≤4k
√

2 log 2 sup
Q
N2 (η||F ||Q,2,F , || · ||Q,2)M 1√

n
+ 8kη 1

Πn

∑

1≤i≤n

F 2(Yi).

This is enough to conclude that E
(
supf∈F∞

∣∣P∗nf2 − Pnf
2∣∣ ∣∣(Yi)i≥1

) a.s.−→ 0. The result follows.

4.5 Theorem S1

4.5.1 Uniform law of large numbers

We remark that supf∈F |P̃nf − P̃ f | = sup
f̃∈F̃ |Pnf̃ − P f̃ |. Following the same reasoning as in the

proof of Theorem 2.1, for every positive M and η1 (with η1 possibly random) and some constants
Kr,k, there exists a jointly exchangeable and dissociated array (Ỹ r

i )i∈Ik = (N r
i , (Y r

i,`)`≥1)i∈Ik such
that Ỹ r

i
d= (Ni, (Yi,`)`≥1) for all i ∈ In,k and

E


sup
f̃∈F̃
|Pnf̃ − P f̃ |




≤E
[
F̃ (Ỹ1)1{

F̃ (Ỹ1)>M
}
]

+
k∑

r=1

∑

e∈Er
Kr,kE


sup
F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i�e}+ f̃(Ỹ r

i )1{F̃ (Ỹ r
i

)≤M}

∣∣∣∣∣∣

∣∣∣∣∣N
r
1 > 0


P

(
N r

1 > 0
)

≤E
[
F̃ (Ỹ1)1{

F̃ (Ỹ1)>M
}
]

+
k∑

r=1

∑

e∈Er
Kr,kE

[√
2 log 2N(η1, F̃ , || · ||e,M,1)M

√
(n− r)!r!√

n!
+ η1

∣∣∣∣∣N
r
1 > 0

]
P
(
N r

1 > 0
)
,

where N r
p = (n−k)!

n!
∑

i∈In,k(N r
i )p. Moreover, ||f̃ ||e,M,1 ≤ N r

1 ||f ||Qrn,1 with

Qr
n = 1∑

i∈In,k N
r
i

∑

i∈In,k

Nr
i∑

`=1
δY r

i,`
.

Letting η1 = ηN r
1 ||F ||Qrn,1 for an arbitrary η > 0, we have N(η1, F̃ , || · ||e,M,1) ≤ N(η1,F , N r

1 || ·
||Qrn,1) = N(N r

1
−1
η1,F , || · ||Qrn,1) whenever N r

1 > 0. Combining this insight with the fact that
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E
[
||F̃ ||Qrn,1

∣∣N r
1 > 0

]
= E

[
F̃ (Ỹ1)

]
/P
(
N r

1 > 0
)
, we get

E
[
sup
F̃

∣∣∣Pnf̃ − P f̃
∣∣∣
]

≤E
[
F̃ (Ỹ1)1{

F̃ (Ỹ1)>M
}
]

+
k∑

r=1

∑

e∈Er
Kr,k

√
2 log 2 sup

Q
N(η||F ||Q,1,F , || · ||Q,1)M

√
(n− r)!r!√

n!

+ η
k∑

r=1

∑

e∈Er
Kr,kE

[
F̃ (Ỹ1)

]
.

Considering M sufficiently large and η sufficiently small and next n tending to ∞ we deduce that
E
[
supF̃ |Pnf̃ − P f̃ |

]
tends to 0 as n→∞.

Let Σn be the σ-algebra generated by Hn the set of functions g from DIk to R that are invariant by
the action of any permutation π on N+ such that π(j) = j for j ≥ n:

g
(
(Ỹi)i∈Ik

)
= g

(
(Ỹπ(i))i∈Ik

)
.

Following the same reasoning as in the proof of Theorem 2.1, we conclude that
(
supF̃ |Pnf̃ − P f̃ |,Σn

)
n≥1

is a backwards submartingale ensuring the almost-sure convergence of supF̃ |Pnf̃ − P f̃ |.

4.5.2 Uniform central limit theorem

The pointwise weak convergence is ensured by the first step of the proof of Theorem 2.1.2 applied to
the class F̃ because for every f ∈ F we have E

[(∑N1
`=1 f(Y1,`)

)2
]
<∞. We just have to show the

asymptotic equicontinuity and total boundedness of F̃ .

Reasoning as in the proof of Theorem 2.1, we get

E
[

sup
f∈Fδ

∣∣∣G̃nf
∣∣∣
]

= E


 sup
f̃∈F̃δ

∣∣∣Gnf̃
∣∣∣


 .

k∑

r=1
E
(∫ σ̃rn

0

√
log 2N

(
ε, F̃δ, || · ||µrn,2

)
dε

)
,

with µrn = (n−k)!
n!

∑
i∈In,k δ{(Nr

i
,(Y r

i,`
)Nr

i
≥`≥1)} and (σ̃rn)2 = supF̃δ ||f̃ ||

2
µrn,2. If N r

2 = 0, we remark that
∫ σ̃rn

0

√
log 2N

(
ε, F̃δ, || · ||µrn,2

)
dε = 0. As a result, we can write

E
[

sup
f∈Fδ

∣∣∣G̃nf
∣∣∣
]
.

k∑

r=1
E
(∫ σ̃rn

0

√
log 2N

(
ε, F̃δ, || · ||µrn,2

)
dε

∣∣∣∣∣N
r
2 > 0

)
P
(
N r

2 > 0
)
.

Reasoning conditional on N r
2 > 0, we let Qr

n = 1∑
i∈In,k

(Nr
i

)2
∑

i∈In,k N
r
i

∑Nr
i

`=1 δ{Y ri,`}. For every

f ∈ Fδ and f̃ the corresponding element in F̃δ, we have by the Cauchy-Schwarz inequality

||f̃ ||2µrn,2 ≤ N r
2 ||f ||2Qrn,2, (4.22)

and next N(ε, F̃δ, || · ||µrn,2) ≤ N(ε,Fδ, N r
2

1/2|| · ||Qrn,2). Moreover, Points 1, 3 and 4 of Lemma S12
ensure that N(ε, F̃δ, || · ||µrn,2) ≤ N2(ε/4N r

2
1/2
,F , || · ||Qrn,2). The inequality

√
a+ b ≤ √a +

√
b,
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Lemma S11, the fact that E
[
σ̃rn
∣∣N r

2 > 0
]

= E [σ̃rn] /P
(
N r

2 > 0
)
, E

[
N r

1
∑Nr

1
`=1 F

2(Y r
1,`)
∣∣N r

2 > 0
]

=
E
[
N1

∑N1
`=1 F

2(Y1,`)
]
/P
(
N r

2 > 0
)
and Jensen’s inequality imply

E
[

sup
f∈Fδ

∣∣∣G̃nf
∣∣∣
]
.

k∑

r=1
E
[
(σ̃rn)2

]1/2
+ E


N1

N1∑

`=1
F 2(Y1,`)




1/2

JF




E
[
(σ̃rn)2]1/2

4E
(
N1

∑N1
`=1 F

2(Y1,`)
)1/2


 .

To prove asymptotic equicontinuity, we now follow the end of the second step of the proof of
Theorem 2.1.2, starting at (3.20). We can thus claim that it is sufficient to show for every r = 1, ..., k

lim
n→∞E


 sup
f∈F̃∞

∣∣∣µrnf2 − Pf2
∣∣∣


 = 0.

To prove this, we replace Theorem 2.1.1 with Theorem S1.1 and adapt the “change of measure” step
in the proof of the latter in the spirit of (4.22). For every positive M and η, we arrive at

E


sup
F̃∞

∣∣∣µrnf2 − Pf2
∣∣∣


 .E



(
F̃ (Ỹ1)

)2
1{(

F̃ (Ỹ1)
)2
>M

}



+

√
log 2 supQN2(η||F ||Q,2,F , || · ||Q,2)

n
M + ηE


N1

N1∑

`=1
F 2(Y1,`)


 .

Then, by choosing M large enough, η small enough and letting n tend to infinity, we deduce that
E
[
supF̃∞

∣∣µrnf2 − Pf2∣∣
]
→ 0 for every r = 1, ..., k.

To conclude the proof of weak convergence, we have to verify total boundedness. By the Markov
inequality, we have just shown supF̃∞

∣∣µrnf2 − Pf2∣∣ = op(1) for r = 1, ..., k. Fixing r, this entails
that for every ε > 0 there exists Rε = op(1) such that for every pair (f1, f2) ∈ F × F

E
[(
f̃1(Ỹ1)− f̃2(Ỹ1)

)2
]
≤ ||f̃1 − f̃2||2µrn,2 +Rε.

For every c > 1, by definition of covering numbers

N(cε, F̃ , || · ||P,2) ≤ N
(
ε, F̃ , || · ||µrn,2

)
+ op(1).

If N r
2 ||F ||2Qrn,2 > 0, let U = ε/(2N r

2
1/2||F ||Qrn,2). We have N r

2 ||F ||2Qrn,2
a.s.−→ E

(
N1

∑N1
`=1 F

2(Y1,`)
)
> 0.

Starting from the last inequality, we obtain, for every ε > 0,

N(ε, F̃ , || · ||P,2) ≤ N
(
ε

2 , F̃ , || · ||µrn,2
)

+ op(1)

≤ N
(
ε

2 ,F , N
r
2

1/2|| · ||Qrn,2
)

+ op(1)

= N
(
U ||F ||Qrn,2,F , || · ||Qrn,2

)
1{Nr

2 ||F ||2Qrn,2>0} + 1{Nr
2 ||F ||2Qrn,2=0} + op(1)

≤ sup
Q
N (U ||F ||Q,2,F , || · ||Q,2)1{Nr

2 ||F ||2Qrn,2>0} + op(1)

<∞,

where the second inequality is a consequence of the Cauchy-Schwarz inequality and the equality on
the third line is a consequence of Point 1 of Lemma S12. Hence, total boundedness holds.
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4.5.3 Convergence of the bootstrap process

The triangle inequality ensures that for every f ∈ F , we have E
[
f̃(Ỹ1)2

]
≤ E

[
F̃ (Ỹ1)2

]
<∞. The

pointwise weak convergence thus follows from Theorem 2.2 applied to a finite class. The total
boundedness of (F̃ , || · ||P,2) has already been proved (see the proof of Theorem S1.2). As a result,
there only remains to show asymptotic equicontinuity.
The proof follows closely that of Theorem 2.2. Under the moment condition on the envelope given
in the statement of Theorem S1.2, it is sufficient to prove

lim
δ→0

lim sup
n→∞

√
nE
[

sup
f∈Fδ

∣∣∣P̃∗nf − P̃′nf
∣∣∣
∣∣(Ỹi)i∈Ik

]
a.s.= 0,

where P̃′nf = 1
nk
∑

i∈In,k
∑Ni
`=1 f(Yi,`).

Let N∗2 = (n−k)!
n!

∑
i∈In,k N

2
i∗1{i∗∈In,k}. Following the start of the asmptotic equicontinuity proof of

Theorem 2.2, we have

√
nE
[

sup
f∈Fδ

∣∣∣P̃∗nf − P̃′nf
∣∣∣
∣∣(Ỹi)i∈Ik

]
. E

[∫ σ∗1,2

0

√
log 2N(ε, F̃δ, || · ||∗1,2)dε1{N∗2>0}

∣∣∣∣(Ỹi)i∈Ik

]
,

for ||f̃ ||∗21,2 = 1
n

∑n
i1=1

(
(n−k)!
(n−1)!

∑
(i2,...,ik):i∈In,k f̃(Ỹi∗)1{i∗∈In,k}

)2
and σ∗21,2 = supF̃δ ||f̃ ||

∗2
1,2. The Cauchy-

Schwarz inequality ensures that for every f ∈ Fδ, ||f̃ ||∗21,2 ≤ N∗2 ||f ||∗2Q∗n,2, with

||f ||∗2Q∗n,2 = 1∑
i∈In,k N

2
i∗

∑

i∈In,k
Ni∗

Ni∗∑

`=1
f2(Yi∗,`)1{i∗∈In,k}.

It follows from Point 1 of Lemma S12 that

N(ε, F̃δ, || · ||1,2) ≤ N(ε,Fδ, N∗2
1/2|| · ||∗Q∗n,2) ≤ N(εN∗2

−1/2
,Fδ, || · ||∗Q∗n,2).

The Cauchy-Schwarz inequality also implies

σ∗21,2 ≤ σ̃∗2n = sup
f̃∈F̃δ

(n− k)!
n!

∑

i∈In,k

(
f̃(Ỹi∗)

)2
1{i∗∈In,k} = sup

f̃∈F̃δ
|P∗nf̃2|.

Following again the proof of Theorem 2.2, we can write

E
[

sup
f∈Fδ

∣∣∣G̃∗nf
∣∣∣
∣∣∣∣(Ỹi)i∈Ik

]
.E

(
σ̃∗2n |(Ỹi)i∈Ik

)1/2

+


 1
nk

∑

i∈In,k
Ni

Ni∑

`=1
F 2(Yi,`)




1/2

JF




E
(
σ̃∗2n |(Ỹi)i∈Ik

)1/2

4
(

1
nk
∑

i∈In,k Ni
∑Ni
`=1 F

2(Yi,`)
)1/2



√
An,

where An = P
(
N∗2 > 0

∣∣(Ỹi)i∈Ik
)
.

Since 1
nk
∑

i∈In,k Ni
∑Ni
`=1 F

2(Yi,`)
a.s.−→ E

(
N1

∑N1
`=1 F

2(Y1,`)
)
> 0 and An ≤ 1, we only have to show

that
lim
δ→0

lim sup
n→∞

E
(
σ̃∗2n |(Ỹi)i∈Ik

) a.s.−→ 0
∣∣.
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We have:

σ̃∗2n = sup
f̃∈F̃δ

|P∗nf̃2|

≤ sup
f̃∈F̃δ

∣∣∣∣P
∗
nf̃

2 − n!
nk(n− k)!Pnf̃

2
∣∣∣∣+

n!
nk(n− k)!


 sup
f̃∈F̃δ

∣∣∣Pnf̃2 − P f̃2
∣∣∣+ δ2




≤ sup
f̃∈F̃∞

∣∣∣∣P
∗
nf̃

2 − n!
nk(n− k)!Pnf̃

2
∣∣∣∣+ sup

f̃∈F̃∞

∣∣∣Pnf̃2 − P f̃2
∣∣∣+ δ2

In the proof of Theorem S1.2, we have shown that sup
f̃∈F̃∞ |µ

r
nf̃

2 − P f̃2| converges in L1 to 0 for
every r = 1, ..., k. A similar proof can be used to claim that sup

f̃∈F̃∞ |Pnf̃
2 − P f̃2| converges in L1

to 0. A backward submartingale argument used in the proof of Theorem 2.1.1 ensures that this
convergence is almost sure. Because n!

nk(n−k)! tends to 1, it is sufficient to show that

E


 sup
f̃∈F̃∞

∣∣∣∣P
∗
nf̃

2 − n!
nk(n− k)!Pnf̃

2
∣∣∣∣
∣∣(Ỹi)i∈Ik


 a.s.−→ 0.

To do so, one simply has to mimic the proof of Lemma S5 with just one change: we need to upper
bound covering numbers over the class F̃2

∞ for some random L1 pseudometric using Assumption 4-(i)
(which is an assumption on F). This can be achieved thanks to Points 1, 2 and 4 of Lemma S12.
The rest of the proof of Lemma S5 is left unchanged, up to notational change.

4.6 Proof of Proposition S1

First part.

Let Ŝ`ni1 = ∑n−1
i2=i1+1

∑n
i3=i2+1 Ẑ

`
i1,i2Ẑ

`
i1,i3 , S

`
ni1 = ∑n−1

i2=i1+1
∑n
i3=i2+1 Z

`
i1,i2Z

`
i1,i3 ,

N̂ `
n =

( 6
n(n− 1)(n− 2)

)1/2


n−2∑

i1=1
Ŝ`ni1


 , N `

n =
( 6
n(n− 1)(n− 2)

)1/2


n−2∑

i1=1
S`ni1


 ,

N̂n = (N̂1
n, ..., N̂

d
n) and Nn = (N1

n, ..., N
d
n). Then Tn = ∑d

`=1 max(0, N̂ `
n)2.

First, we show that
Nn

d−→ N (0, Idd). (4.23)

By the Cramer-Wold device, it suffices to show that for any t ∈ Rd, t′Nn
d−→ N (0, t′t). We have

t′Nn =
( 6
n(n− 1)(n− 2)

)1/2


n−2∑

i1=1
t′Sni1


 ,

with Sni1 = (S1
ni1 , ..., S

d
ni1). Moreover, using V(Zi1,i2) = Idd and independence of the (Zi1,i2)(i1,i2)∈I2,i1<i2
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under the the null hypothesis, we get

V(t′Sni1) =V




d∑

`=1
t`

n−1∑

i2=i1+1

n∑

i3=i2+1
Z`i1,i2Z

`
i1,i3




=
n−1∑

i2=i1+1

n∑

i3=i2+1

d∑

`=1
t`

d∑

`′=1
t`′Cov

(
Z`i1,i2Z

`
i1,i3 , Z

`′
i1,i2Z

`′
i1,i3

)

=(n− i1)(n− i1 − 1)
2 t′t.

Hence,
6

n(n− 1)(n− 2)

n−2∑

i1=1
V(t′Sni1)→ t′t. (4.24)

Moreover, under the null hypothesis, the (Sni1)i1=1...n are independent. Then, by Lyapunov’s CLT,
t′Nn

d−→ N (0, t′t) provided that ∑n−2
i1=1 E

[
(t′Sni1)4]

(∑n−2
i1=1 V(t′Sni1)

)2 → 0. (4.25)

We have
n−2∑

i1=1
E
[
(t′Sni1)4

]

=
n−2∑

i1=1
E







d∑

`=1
t`

n−1∑

i2=i1+1

n∑

i3=i2+1
Z`i1,i2Z

`
i1,i3




4



≤d3
d∑

`=1
|t`|4

n−2∑

i1=1
E







n−1∑

i2=i1+1

n∑

i3=i2+1
Z`i1,i2Z

`
i1,i3




4



≤d4 sup
`=1,...d

|t`|4
n−2∑

i1=1

∑

i1<i
(1)
2 <i

(1)
3 ≤n

∑

i1<i
(2)
2 <i

(2)
3 ≤n

∑

i1<i
(3)
2 <i

(3)
3 ≤n

∑

i1<i
(4)
2 <i

(4)
3 ≤n

E




4∏

j=1
Z`
i1,i

(j)
2
Z`
i1,i

(j)
3




=O(n5),

where the last equality holds because for any ` = 1, ..., d, E
[∏4

j=1 Z
`

i1,i
(j)
2
Z`
i1,i

(j)
3

]
= 0 if {i(j)2 , i

(j)
3 } 6⊂

{i(j
′)

2 , i
(j′)
3 : j′ 6= j} for at least one j ∈ {1, ..., 4}. Combined with (4.24), this implies (4.25). Hence,

(4.23) holds.

Next, we prove that
N̂ `
n −N `

n = op(1) ∀ ` ∈ {1, ..., d}. (4.26)

Let δ`i1,i2 = Ẑ`i1,i2 − Z`i1,i2 . We have

N̂ `
n −N `

n =
( 6
n(n− 1)(n− 2)

)1/2


n−2∑

i1=1

n−1∑

i2=i1+1

n∑

i3=i2+1
δ`i1,i2

(
δ`i1,i3 + Z`i1,i3

)
+ Z`i1,i2δ

`
i1,i3


 . (4.27)
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Moreover, with ŝij (resp. sij) denoting the (i, j)-th term of Σ̂−1/2 (resp. V(Y1,2)−1/2),

δ`i1,i2 =
d∑

j=1
ŝ`j2

(
E(Y j

1,2)− Y j
)

+ (ŝ`j − s`j)
(
Y j
i1,i2 + Y j

i2,i1 − 2E(Y j
1,2)
)

:=
d∑

j=1
δ`j,i1,i2 .

In the first term of (4.27), we then have a double sum over (j, j′) ∈ {1, ..., d}2. We prove that each
of these terms is an op(1). We have

∑

i1<i2<i3

δ`j,i1,i2δ
`
j′,i1,i3

=n(n− 1)(n− 2)
6 R`1njR

`
1nj′ +R`1nj′R

`
2nj

∑

i1<i2<i3

(
Y j
i1,i2 + Y j

i2,i1 − 2E(Y j
1,2)
)

+R`1njR
`
2nj′

∑

i1<i2<i3

(
Y j′
i1,i3 + Y j′

i3,i1 − 2E(Y j′
1,2)
)

+R`2njR
`
2nj′

∑

i1<i2<i3

(
Y j
i1,i2 + Y j

i2,i1 − 2E(Y j
1,2)
) (
Y j′
i1,i3 + Y j′

i3,i1 − 2E(Y j′
1,2)
)

=n(n− 1)(n− 2)
6 R`1njR

`
1nj′ +R`1nj′R

`
2nj

∑

i1<i2

(n− i2)
(
Y j
i1,i2 + Y j

i2,i1 − 2E(Y j
1,2)
)

+R`1njR
`
2nj′

∑

1≤i1≤n−2
i1+1≤i3≤n

(i3 − i1 − 1)
(
Y j′
i1,i3 + Y j′

i3,i1 − 2E(Y j′
1,2)
)

+R`2njR
`
2nj′

∑

i1<i2<i3

(
Y j
i1,i2 + Y j

i2,i1 − 2E(Y j
1,2)
) (
Y j′
i1,i3 + Y j′

i3,i1 − 2E(Y j′
1,2)
)
, (4.28)

with R`1nj = ŝ`j2
(
E(Y j

1,2)− Y j
)
and R`2nj = ŝ`j − s`j . Under the null hypothesis, the (Y j

i1,i2 +
Y j
i2,i1)(i1,i2)∈I2,i1<i2 are i.i.d. Then, by the usual LLN and CLT, R`1nj = Op(n−1) and the first term

on the right-hand side is an Op(n). Also, R`2nj = op(1). The second moments of the first and second
sum in (4.28) are O(n4). Then the second and third terms of (4.28) are op(n). Moreover, the fourth
term T4n of (4.28) satisfies

T4n = R`2njR
`
2nj′

n−2∑

i1=1




n−1∑

i2=i1+1

n∑

i3=i2+1

(
Y j
i1,i2 + Y j

i2,i1 − 2E(Y j
1,2)
) (
Y j′
i1,i3 + Y j′

i3,i1 − 2E(Y j′
1,2)
)

 ,

where the n − 2 terms indexed by i1 are independent with variance of order n2 uniformly in
i1 ∈ {1, ..., n− 2}. Thus, T4n = R`2njR

`
2nj′Op(n3/2) = op(n3/2) and finally,

( 6
n(n− 1)(n− 2)

)1/2 ∑

i1<i2<i3

δ`j,i1,i2δ
`
j′,i1,i3 = op(1).

Using a similar reasoning, we get
( 6
n(n− 1)(n− 2)

)1/2 ∑

i1<i2<i3

δ`j,i1,i2Z
`
i1,i3 = op(1),

( 6
n(n− 1)(n− 2)

)1/2 ∑

i1<i2<i3

Z`i1,i2δ
`
j,i1,i3 = op(1).

Then, in view of (4.27), (4.26) follows.
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Now, by (4.23), (4.26) and the continuous mapping theorem,

Tn
d−→

d∑

`=1
max(0, V`)2, (4.29)

where (V1, ..., Vd) ∼ N (0, Idd). Let D` = 1V`>0 and E` = V 2
` . Then max(0, V`)2 = D`E` and

(D1E1, ..., DdEd) are mutually independent with D` ∼Bernoulli(1/2) and E` ∼ χ2(1). Moreover,
d∑

`=1
max(0, V`)2|D1, ..., Dn ∼ χ2

(
d∑

`=1
D`

)
.

Because ∑d
`=1D` ∼Binomial(n, 1/2), the cumulative distribution function of ∑d

`=1 max(0, V`)2 is
equal to F , as defined in the proposition. Finally, observe that α < 1/2, F (0) ≤ 1/2 and F is
continuous and strictly increasing on (0,∞). Thus, F is continuous at q(1−α) and F (q(1−α)) = 1−α.
The result follows by definition of Wα and (4.29).

Second part.

let ` be such that E(Z`i1,i2Z
`
i1,i3) > 0. We have Tn ≥ max(0, N̂ `

n)2 so it suffices to prove that
N̂ `
n

P−→∞. First, we show that for some C > 0,

P
(
n−3/2N `

n > C
)
→ 1. (4.30)

For that purpose, we introduce the 3−dimensional array (Ai)i∈I3 by Ai1,i2,i3 = Z`i1,i2Z
`
i1,i3 if i1 <

i2 < i3, and Aπ(i) = Ai for all π ∈ S({i}). Then (Ai)i∈I3 satisfies Assumption 1. Therefore, by the
LLN for jointly exchangeable and dissociated arrays,

6
n(n− 1)(n− 2)

∑

i1<i2<i3

Z`i1,i2Z
`
i1,i3 = 1

n(n− 1)(n− 2)
∑

i∈In,3
Ai

P−→ E(Z`i1,i2Z
`
i1,i3) > 0.

Hence, (4.30) holds. Now, we consider the remainder term N̂ `
n −N `

n. We follow the same strategy
as above. We first use (4.27) and then (4.28). By the LLN and CLT for jointly exchangeable,
dissociated arrays, R`1nj = Op(n−1/2) and R`2nj = op(1). By the same CLT, the first two sums are
Op(n5/2), whereas by the LLN again, the third sum is an Op(n3). So at the end,

∑

i1<i2<i3

δ`j,i1,i2δ
`
j′,i1,i3 = Op(n2) + 2Op(n−1/2)op(1)Op(n5/2) + op(1)Op(n3) = op(n3).

We obtain a similar result for ∑i1<i2<i3 δ
`
j,i1,i2Z

`
i1,i3 and ∑i1<i2<i3 Z

`
i1,i2δ

`
j,i1,i3 . So at the end, we get

N̂ `
n −N `

n = op(n3/2).

Combined with (4.30), this proves that N̂ `
n

P−→∞. The result follows.

5 Technical lemmas

5.1 Results related to the symmetrization lemma

Below, Φ denotes a non-decreasing convex function from R+ to R.
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Lemma S1 (A useful inequality). Let m ∈ N+ and (X1, ..., Xm) be any random variables with
values in X and H be a pointwise measurable class of functions from X to R. Then

EΦ


sup
h∈H

∣∣∣∣∣∣

m∑

j=1
h(Xj)

∣∣∣∣∣∣


 ≤ 1

m

m∑

j=1
EΦ

[
m sup

h∈H
|h(Xj)|

]
.

Lemma S2 (Symmetrization, separately exchangeable, unbalanced and dissociated arrays).
Let k ∈ N+, n = (n1, ..., nk) ∈ N+k and (Yi)1≤i≤n a family of random variables with values in a
Polish space, such that

(Yi)1≤i≤n
a.s.=

(
τ
(
(Ui�e)e∈∪kr=1Er

))
1≤i≤n

for (UA)A∈Nk a family of i.i.d. real random variables and some measurable function τ . Let G a
pointwise measurable class of integrable functions of Y1. We have

E


Φ


sup
g∈G

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

g (Yi)− E [g (Y1)]

∣∣∣∣∣∣






≤ 1
2k − 1

∑

e∈∪kr=1Er
E


Φ


2(2k − 1) sup

g∈G

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

εi�eg (Yi)

∣∣∣∣∣∣




 ,

where (εA)A∈Nk are i.i.d. Rademacher variables, independent of (Yi)i∈N+k .

Lemma S3 (Symmetrization in degenerate cases, jointly exchangeable, balanced and dissociated
arrays).
Suppose that k = 2, Assumptions 1-2 and 4-(i) hold and Gf = 0 for all f ∈ F . Then there exists
(Y 1

i )i∈I2, a jointly exchangeable and dissociated array with Y 1
1

d= Y1, satisfying

E


sup
f∈F

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
f(Yi)− E[f(Y1)]

∣∣∣∣∣∣




.E


sup
f∈F

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε{i}f(Yi)

∣∣∣∣∣∣


+ E


sup
f∈F

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε1
i1ε

2
i2f(Y 1

i )

∣∣∣∣∣∣


 ,

with (εA)A∈N2 , (εji )i≥1,j∈{1,2} mutually independent arrays of i.i.d. Rademacher variables, also
independent of (Yi)i∈I2

and (Y 1
i )i∈I2 .

Lemma S4 (Partial extension of Prop. 2.2 in Giné and Zinn, 1990).
Let n ≥ 2, (ε{i,j})1≤i<j≤n be Rademacher independent variables and 1∗, ..., n∗ be i.i.d. variables,
uniformly distributed on {1, ..., n} and independent of (ε{i,j})1≤i<j≤n. Let (x{i,j})1≤i<j≤n be a non-
random array of size n × n with components in a Banach space of norm || · ||B and such that
x{i,i} = x{i} = 0. Then

E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i,j≤n
ε{i,j}x{i∗,j∗}

∣∣∣∣∣∣

∣∣∣∣∣∣
B


 ≥ (1− e−1)(1− e−1/2)√

2
E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i,j≤n
ε{i,j}x{i,j}

∣∣∣∣∣∣

∣∣∣∣∣∣
B


 .
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5.1.1 Proof of Lemma S1

By the triangle inequality and properties of the supremum,

sup
h∈H

∣∣∣∣∣∣

m∑

j=1
h(Xj)

∣∣∣∣∣∣
≤ 1
m

m∑

j=1
m sup

h∈H
|h(Xj)| .

The result follows by monotonicity and convexity of Φ.

5.1.2 Proof of Lemma S2

The proof is much simpler than that of Lemma A.1 because there is much more invariance in
separately exchangeable arrays than in jointly exchangeable ones. Consequently the decoupling and
recoupling steps used in the proof of Lemma A.1 are not necessary.

To get the result, we introduce
(
U

(1)
A

)
A∈Nk

which is an independent copy of (UA)A∈Nk . We assume
without loss of generality that the last argument of τ is Ui�1 = Ui. On the set ∪kl=1El, ≺ is the
strict total order used (implicitly) to enumerate the arguments of τ in the statement of the Lemma.
We extend this order to ∪kl=0El considering that 0 ≺ e � 1 for every e ∈ ∪kl=1El. For every (e, e′) ∈(
∪kl=0El

)2
, we write e � e′ if e ≺ e′ or e = e′. We also let Y (e)

i = τ

((
U

(1)
i�e

)
0≺e′�e

, (Ui�e′)e≺e′�1

)

for every e ∈ ∪kl=1El (hence Yi = Y
(0)

i ). Convexity of Φ then implies

E


Φ


sup
g∈G

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

g (Yi)− E [g (Y1)]

∣∣∣∣∣∣






≤E

Φ


sup
g∈G

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

g
(
Y

(0)
i

)
− g

(
Y

(1)
i

)
∣∣∣∣∣∣






=E


Φ


sup
g∈G

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

∑

0≺e�1
g
(
Y

(eprec)
i

)
− g

(
Y

(e)
i

)
∣∣∣∣∣∣






≤ 1
2k − 1

∑

0≺e�1
E


Φ


(2k − 1) sup

g∈G

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

g
(
Y

(eprec)
i

)
− g

(
Y

(e)
i

)
∣∣∣∣∣∣






= 1
2k − 1

∑

e∈∪k
l=1El

E


Φ


(2k − 1) sup

g∈G

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

g
(
Y

(eprec)
i

)
− g

(
Y

(e)
i

)
∣∣∣∣∣∣




 ,

with eprec the element that precedes e for the strict total order ≺. For every e ∈ ∪kl=1El, note that
∑

1≤i≤n

g
(
Y

(eprec)
i

)
− g

(
Y

(e)
i

)

=
∑

e≤c≤n�e

∑

1−e≤c′≤n�(1−e)
g
(
Y

(eprec)
c+c′

)
− g

(
Y

(e)
c+c′

)
.

Furthermore, 
 ∑

1−e≤c′≤n�(1−e)
g
(
Y

(eprec)
c+c′

)
− g

(
Y

(e)
c+c′

)



e≤c≤n�e
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is an array of independent and symmetric random variables conditional on
((
U

(1)
i�e

)
0≺e′≺e

, (Ui�e)e≺e′�1

)
.

Standard symmetrization arguments (see for instance van der Vaart and Wellner, 1996, Lemma 2.3.1
in the i.i.d. case) entail

E


Φ


(2k − 1) sup

g∈G

∣∣∣∣∣∣
1

Πn

∑

e≤c≤n�e

∑

1−e≤c′≤n�(1−e)
g
(
Y

(eprec)
c+c′

)
− g

(
Y

(e)
c+c′

)
∣∣∣∣∣∣






≤E

Φ


2(2k − 1) sup

g∈G

∣∣∣∣∣∣
1

Πn

∑

e≤c≤n�e

εc

∑

1−e≤c′≤n�(1−e)
g (Yc+c′)

∣∣∣∣∣∣






=E


Φ


2(2k − 1) sup

g∈G

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

εi�eg (Yi)

∣∣∣∣∣∣




 .

5.1.3 Proof of Lemma S3

Recall that under Assumption 1, (Yi)i∈I2 = (τ(Ui1 , Ui2 , U{i}))i∈I2 for some τ and i.i.d random
variables (UA)A⊂N+,1≤|A|≤2. Let (Vi)i≥1, (U ji )i≥1,j∈{1,2} and (V j

i )i≥1,j∈{1,2} be independent copies of
(Ui)i≥1, also independent from (U{i})i∈I2 . Let also Y 1

i = τ(Vi1 , Vi2 , U{i}). By the triangle inequality
used twice, Jensen’s inequality and a standard symmetrization argument for sums of independent
variables,

E


sup
f∈F

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
f(Yi)− E[f(Y1)]

∣∣∣∣∣∣




≤E

sup
f∈F

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2

(
f(τ(Vi1 , Vi2 , V{i}))− f(τ(Vi1 , Vi2 , U{i}))

)
∣∣∣∣∣∣




+ E


sup
f∈F

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2

(
f(τ(Ui1 , Ui2 , U{i}))− f(τ(Vi1 , Vi2 , U{i}))

)
∣∣∣∣∣∣




≤2E


sup
f∈F

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε{i}f(Yi)

∣∣∣∣∣∣


+ E


 sup
f∈Fs

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2

(
f(Y{i})− f(Y 1

{i})
)
∣∣∣∣∣∣


 . (5.1)

We now bound the second term on the right-hand side. We apply Theorem 3.5.3 and Remark 3.5.4
in de la Peña and Giné (1999), with r = 1 and conditionally on (U{i})i∈I2 . After re-integrating, this
yields

E


 sup
f∈Fs

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2

(
f(Y{i})− f(Y 1

{i})
)
∣∣∣∣∣∣




.E


 sup
f∈Fs

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε1
i1

(
f(Y 2

{i})− f(Y 3
{i})

)
∣∣∣∣∣∣




.E


 sup
f∈Fs

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε1
i1

(
f(Y 2

{i})− E[f(Y1)]
)
∣∣∣∣∣∣


 , (5.2)
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where
(
Y 2

i , Y
3

i

)
i∈I2

=
(
τ(U1

i1 , U
2
i2 , U{i}), τ(V 1

i1 , V
2
i2 , U{i})

)
i∈I2

. The triangle inequality was used on
the last line. Next, let Y 4

i = τ(U1
i1 , V

2
i2 , V{i}). Since Gf = 0 for all f ∈ F , we have, for all f ∈ Fs,

E
[
f
(
Y 4
{i})

) ∣∣U1
i1

]
= E

[
f
(
τ(U1

i1 , U
1
i2 , U{i})

) ∣∣U1
i1

]
= E [f (Y1)] .

As a result, by Jensen’s inequality

E


 sup
f∈Fs

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε1
i1

(
f(Y 2

{i})− E[f(Y1)]
)
∣∣∣∣∣∣




=E


 sup
f∈Fs

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
E
[
ε1
i1

(
f(Y 2

{i})− f(Y 4
i )
) ∣∣(εi1)i1 , (U1

i1)i1 , (U2
i2)i2 , (U{i})i∈In2

]
∣∣∣∣∣∣




≤E

 sup
f∈Fs

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε1
i1

(
f(Y 2

{i})− f(Y 4
{i})

)
∣∣∣∣∣∣




=2E


 sup
f∈Fs

∣∣∣∣∣∣∣

1
n(n− 1)

∑

i∈−−→In,2

ε1
i1

(
f(Y 2

{i})− f(Y 4
{i})

)
∣∣∣∣∣∣∣


 . (5.3)

Conditional on
(
U1
i1 , ε

1
i1

)n
i1=1

, the variables ∑i2+1≤i1≤n ε
1
i1

(
f(Y 2

{i})− f(Y 4
{i})

)
/(n(n− 1)) indexed

by i2 are mutually independent and centered, for every f ∈ Fs. Then, by the symmetrization lemma
for independent variables and the triangle inequality, we have

E


 sup
f∈Fs

∣∣∣∣∣∣∣

1
n(n− 1)

∑

i∈−−→In,2

ε1
i1

(
f(Y 2

{i})− f(Y 4
{i})

)
∣∣∣∣∣∣∣


 ≤E


 sup
f∈Fs

∣∣∣∣∣∣∣

1
n(n− 1)

∑

i∈−−→In,2

ε1
i1ε

2
i2

(
f(Y 2

{i})− f(Y 4
{i})

)
∣∣∣∣∣∣∣




≤2E


 sup
f∈Fs

∣∣∣∣∣∣∣

1
n(n− 1)

∑

i∈−−→In,2

ε1
i1ε

2
i2f(Y 2

{i})

∣∣∣∣∣∣∣




=E


sup
f∈F

∣∣∣∣∣∣
1

n(n− 1)
∑

i∈In,2
ε1
i1ε

2
i2f(Y 2

i )

∣∣∣∣∣∣


 . (5.4)

The result follows by combining (5.1)-(5.4).

5.1.4 Proof of Lemma S4

Let (ε′{i,j},{i′,j′})1≤i,i′,j,j′≤n be independent Rademacher variables, independent of the variables
defined in the lemma. Conditionally on (1∗, ..., n∗), and next unconditionally, we have:

(
ε{i,j}x{i∗,j∗}

)
i,j=1,...,n

d=
(
ε′{i,j},{i∗,j∗}x{i∗,j∗}

)
i,j=1,...,n

.

Let (e{i,j})1≤i,j≤n ∈ {−1, 1}n(n+1)/2. Conditionally on 1∗, ..., n∗ and next unconditionally,

e{i,j}

∑

1≤i′,j′≤n
ε′{i,j},{i′,j′}1{{i∗,j∗}={i′,j′}}




1≤i,j≤n

d=


 ∑

1≤i′,j′≤n
ε′{i,j},{i′,j′}1{{i∗,j∗}={i′,j′}}




1≤i,j≤n

.
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Let (ε′′{i,j})1≤i,j≤n denote independent Rademacher variables, independent of all other variables.
Using the previous equalities in distribution and Jensen’s inequality, we obtain:

E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i,j≤n
ε{i,j}x{i∗,j∗}

∣∣∣∣∣∣

∣∣∣∣∣∣
B




=E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{i∗,j∗}x{i∗,j∗}

∣∣∣∣∣∣

∣∣∣∣∣∣
B




=E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i,j≤n

∑

1≤i′,j′≤n
ε′{i,j},{i′,j′}x{i′,j′}1{{i∗,j∗}={i′,j′}}

∣∣∣∣∣∣

∣∣∣∣∣∣
B




=E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i′,j′≤n
x{i′,j′}

∑

1≤i,j≤n
ε′{i,j},{i′,j′}1{{i∗,j∗}={i′,j′}}1{i′ 6=j′}

∣∣∣∣∣∣

∣∣∣∣∣∣
B




=E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i′,j′≤n
ε′′{i′,j′}x{i′,j′}

∑

1≤i,j≤n
ε′{i,j},{i′,j′}1{{i∗,j∗}={i′,j′}}1{i′ 6=j′}

∣∣∣∣∣∣

∣∣∣∣∣∣
B




=E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i′,j′≤n
ε′′{i′,j′}x{i′,j′}

∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{i′,j′}1{{i∗,j∗}={i′,j′}}1{i′ 6=j′}

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
B




E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i,j≤n
ε{i,j}x{i∗,j∗}

∣∣∣∣∣∣

∣∣∣∣∣∣
B




≥E


∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i′,j′≤n
ε′′{i′,j′}x{i′,j′}E



∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{i′,j′}1{{i∗,j∗}={i′,j′}}

∣∣∣∣∣∣

∣∣∣∣ε
′′



∣∣∣∣∣∣

∣∣∣∣∣∣
B




=E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i′,j′≤n
ε′′{i′,j′}x{i′,j′}E



∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{i′,j′}1{{i∗,j∗}={i′,j′}}1{i′ 6=j′}

∣∣∣∣∣∣



∣∣∣∣∣∣

∣∣∣∣∣∣
B




=E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i′,j′≤n
ε′′{i′,j′}x{i′,j′}E



∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{1,2}1{{i∗,j∗}={1,2}}

∣∣∣∣∣∣



∣∣∣∣∣∣

∣∣∣∣∣∣
B




=E



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

1≤i′,j′≤n
ε′′{i′,j′}x{i′,j′}

∣∣∣∣∣∣

∣∣∣∣∣∣
B


E



∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{1,2}1{{i∗,j∗}={1,2}}

∣∣∣∣∣∣


 . (5.5)

Next, the Khintchine and Markov inequalities yield:

E



∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{1,2}1{{i∗,j∗}={1,2}}

∣∣∣∣∣∣


 ≥ 1√

2
E





 ∑

1≤i,j≤n
1{{i∗,j∗}={1,2}}




1/2



≥ 1√
2
P


 ∑

1≤i<j≤n
1{{i∗,j∗}={1,2}} ≥ 1




= 1√
2
P


 ⋃

1≤i<j≤n
{{i∗, j∗} = {1, 2}}




= 1√
2
P (∃i ≤ n : i∗ = 1)P (∃j ≤ n : j∗ = 2|∃i ≤ n : i∗ = 1)
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Hence,

E



∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{1,2}1{{i∗,j∗}={1,2}}

∣∣∣∣∣∣


 ≥ 1√

2

(
1−

(
1− 1

n

)n)(
1−

(
1− 1

n

)n−1
)
.

Then, because 1− x ≤ e−x and n ≥ 2,

E



∣∣∣∣∣∣
∑

1≤i,j≤n
ε′{i,j},{1,2}1{{i∗,j∗}={1,2}}

∣∣∣∣∣∣


 ≥ 1√

2

(
1− e−1

) (
1− e−1/2

)
.

The result follows from this and (5.5).

5.2 Results related to laws of large numbers

Lemma S5. Under Assumptions 1-3, E
(
supF |P∗nf − Pnf |

∣∣(Yi)i∈Ik
) a.s.−→ 0.

Lemma S6. Suppose that Assumptions 2, 3 and 6 hold and n = (n1(m), ..., nk(m)) satisfies
nj(m)→∞ as m→∞ for j = 1, ..., k. Then E

(
supF |P∗nf − Pnf |

∣∣(Yi)1≤i≤n

) a.s.−→ 0 as m→∞.

Lemma S7 (Control of sums of quadratic terms).
Let h(i) = 1{i∈In,k}

∑
π∈Sk Yiπ . If Assumption 1 holds and E

[
Y 2

1
]
<∞, then, for every j = 0, ..., k,

∑

i∈{1,...,n}2k−j
h(i1, ..., ik)h(i1, ..., il, ik+1, ..., i2k−j)

=
k−j∑

c=0

(
k − j
c

)2 (
n2k−j−cE [h(1, ..., k)h(1, ..., j + c, k + 1, ..., 2k − c− j)] + oa.s.(n2k−j−c)

)
.

Lemma S8 (Control of sums of quadratic terms under separate exchangeability).
Suppose Assumption 6 holds, E

[
Y 2

1
]
<∞ and n = (n1(m), ..., nk(m)) ∈ N+k satisfies nj(m)→∞

when m→∞ for every j = 1, ..., k. Then for every e ∈ ∪kr=1Er
1

∏k
r=1 nr(nr − 1)1−er

∑

(i,i′)∈In,e

YiYi′
a.s.−→ E [Y1Ybe ] ,

where be is a k-dimensional vector such that its j-th entry is equal to 1 if ej = 1 and 2 otherwise
and In,e =

{
(i, i′) : 1 ≤ i, i′ ≤ n, ij = i′j if ej = 1, ij 6= i′j otherwise

}
.

5.2.1 Proof of Lemma S5

Let i∗ the ith index sampled with replacement in {1, ..., n}. The i∗s are distributed as i∗ i.i.d∼ U{1,...,n}.
For every i = (i1, ..., ik) ∈ In,k, i∗ stands for (i∗1, ..., i∗k). Conditional on the data and for every
f ∈ F , P∗nf = (n−k)!

n!
∑

i∈In,k f (Yi∗)1{i∗∈In,k}. We remark E
(
f (Yi∗)1{i∗∈In,k}

∣∣(Yi)i∈Ik
)

= P′nf =
E
[
P∗nf

∣∣(Yi)i∈Ik
]
.

Conditional on (Yi)i∈Ik ,
(n−k)!
n!

∑
i∈In,k f(Yi∗)1{i∗∈In,k} is a U-statistics since f(Yi∗)1{i∗∈In,k} ad-

mits a representation f(τ(Ui1 , ..., Uik))1{(Ui1 ,...,Uik )∈In,k} for i.i.d. Ui = i∗. We also have that
(n−k)!
n!

∑
i∈In,k f(Yi∗)1{i∗∈In,k} = (n−k)!

n!
∑

i∈In,k h(i∗) with h : i 7→ 1
k!
∑
π∈Sk f(Yiπ)1{iπ∈In,k}. As a
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result, the inequality proved on page 1508 in Arcones and Giné (1993) is valid with their f replaced
with h (in particular, the sixth inequality on the latter page is true as h is symmetric in its arguments
and h(·) does not depend on i). Then, for some Ck > 0 depending on k only,

E
[

sup
f∈Fδ

∣∣P∗nf − P′nf
∣∣
∣∣∣∣(Yi)i∈Ik

]
≤ kCkE


 sup
f∈Fδ

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i1}f (Yi∗)1{i∗∈In,k}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik


 .

Let N∗ = (n−k)!
n!

∑
i∈In,k 1{i∗∈In,k}. If N

∗ = 0, we sample fewer than k different units in the bootstrap.
In that case, the supremum of the Rademacher process is always equal to 0. As a result,

E


sup
f∈F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i1}f (Yi∗)1{F (Yi∗ )≤M}1{i∗∈In,k}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik




=E


sup
f∈F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i1}f (Yi∗)1{F (Yi∗ )≤M}1{i∗∈In,k}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik , N
∗ > 0


P (N∗ > 0) .

We now adapt the steps of the proof of Theorem 2.1. Conditional on
(
(Yi)i∈Ik , (i∗)i∈In,k

)
and

N∗ > 0, we can consider for every η1 > 0 and every e ∈ E1 a minimal η1-covering of F for the
seminorm

||g||∗M,1 = (n− k)!
n!

n∑

i1=1

∣∣∣∣∣∣
∑

(i2,...,ik):i∈In,k
g (Yi∗)1{F (Yi∗ )≤M}1{i∗∈In,k}

∣∣∣∣∣∣

with balls centered in F . This implies

E


sup
F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i�e}+f (Yi∗)1{F (Yi∗ )≤M}1{i∗∈In,k}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik , (i∗)i∈In,k , N
∗ > 0




≤
√

2 log 2N
(
η1,F , || · ||∗M,1

)
M

1√
n

+ η1.

Remark that ||g||∗M,1 ≤ N∗||g||∗Qn,1 where ||g||∗Qn,1 = N∗−1 (n−k)!
n!

∑
i∈In,k |g(Yi∗)|1{i∗∈In,k}, for

Qn = N∗−1 (n−k)!
n!

∑
i∈In,k δ{Yi∗}1{i∗∈In,k} a (random) probability measure with finite support on Y

that is well-defined when N∗ > 0. Then, for every η > 0, letting η1 = ηN∗||F ||∗Qn,1 and using Point
2 of Lemma S12 and Point 1 of Lemma S12,

E


sup
F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i1}f (Yi∗)1{F (Yi∗ )≤M}1{i∗∈In,k}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik , (i∗)i∈In,k , N
∗ > 0




≤
√

2 log 2 sup
Q
N (η||F ||Q,1,F , || · ||Q,1)M 1√

n
+ ηN∗||F ||∗Qn,1.

Integration with respect to (i∗)i∈In,k |(Yi)i∈Ik , N
∗ > 0 combined with the fact that
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E
[
N∗||F ||∗Qn,1

∣∣(Yi)i∈Ik , N
∗ > 0

]
= E

[
N∗||F ||∗Qn,1

∣∣(Yi)i∈Ik
]
/P (N∗ > 0) leads to

E


sup
F

∣∣∣∣∣∣
(n− k)!
n!

∑

i∈In,k
ε{i1}f (Yi∗)1{F (Yi∗ )≤M}1{i∗∈In,k}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik




≤
√

2 log 2 sup
Q
N (η||F ||Q,1,F , || · ||Q,1)M 1√

n
+ η

(n− k)!
n!

∑

i∈In,k
E
[
F (Yi∗)1{i∗∈In,k}

∣∣(Yi)i∈Ik
]

=
√

2 log 2 sup
Q
N (η||F ||Q,1,F , || · ||Q,1)M 1√

n
+ η

1
nk

∑

i∈In,k
F (Yi).

By almost-sure convergence of the sample mean of jointly exchangeable, dissociated arrays, we can
choose η such that for n large enough, the right-hand side is arbitrary small. Hence,

E
[

sup
f∈F

∣∣P∗nf − P′nf
∣∣
∣∣∣∣(Yi)i∈Ik

]
a.s.−→ 0. (5.6)

Finally, the triangle inequality enables us to write

E
[

sup
f∈F
|P∗nf − Pnf |

∣∣(Yi)i∈Ik

]

≤E

sup
f∈F

∣∣∣∣∣∣

((n− k)!
n! − 1

nk

) ∑

i∈In,k
f(Yi)

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈Ik


+ E

[
sup
f∈F

∣∣P∗nf − P′nf
∣∣
∣∣∣∣(Yi)i∈Ik

]

≤
(

1− n!
nk(n− k)!

) (n− k)!
n!

∑

i∈In,k
F (Yi) + E

[
sup
f∈F

∣∣P∗nf − P′nf
∣∣
∣∣∣∣(Yi)i∈Ik

]
.

Using (5.6) and n!
nk(n−k)! → 1, we conclude that E

[
supf∈F |P∗nf − Pnf |

∣∣(Yi)i∈Ik
] a.s.−→ 0.

5.2.2 Proof of Lemma S6

For every j = 1, ..., k, let i∗j the ij-th index sampled with replacement in [1;nj ]. The i∗js are
distributed as i∗j

i.i.d∼ U[1;nj ] and the k sequences (i∗1)n1
i1=1, ..., (i∗k)

nk
ik=1 are also mutually independent.

For every 1 ≤ i ≤ n, i∗ denotes (i∗1, ..., i∗k). Conditional on the data and for every f ∈ F , P∗nf =
1

Πn

∑
1≤i≤n h (i∗) with h (i∗) = f (Yi∗). We have: E

[
P∗nf

∣∣(Yi)i∈N+k
]

= Pnf. Note that conditional
on (Yi)i∈N+k , (i∗)i∈In,k is a family of random vectors that admit a representation i∗ = τ((Ui�e)e∈E1)
with (Ui)0≤i≤n i.i.d. random variables (consider τ : (u1, ..., uk) ∈ [0, 1]k 7→ (dn1 × u1e , ..., dnk × uke)
where d·e denotes the ceiling function and Ui ∼ U[0,1]). As a result, conditionally on the data, Lemma
S2 applies to Ỹi = i∗, G = {h : h (i∗) = f (Yi∗) , f ∈ F} and Φ = Id. Moreover, because only terms
involving e ∈ E1 appear in the representation of i∗, a simplification of the proof of Lemma S2 leads
to the following inequality:

E
[

sup
f∈F
|P∗nf − Pnf |

∣∣∣∣(Yi)i∈N+k

]
≤ 2

Πn

n∑

i=1
F (Yi)1{F (Yi)>M}

+2
∑

e∈E1

E


sup
f∈F

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

εi�ef (Yi∗)1{F (Yi∗ )≤M}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈N+k


 .
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The rest of the proof is similar to that of supF |Pnf − Pf | L1
−→ 0: in fact, with ||h||e,M,1 redefined as

||h||e,M,1 = 1
Πn

∑
e≤c≤n�e

∣∣∣
∑

1−e≤c′≤n�(1−e) f (Yi∗)1{F (Yi∗ )≤M}
∣∣∣ , we have for every e ∈ E1, M > 0

and η1 ≥ 0, possibly random,

E


sup
f∈F

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

εi�ef (Yi∗)1{F (Yi∗ )≤M}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈N+k




≤E

sup
f∈F

∣∣∣∣∣∣
1

Πn

∑

1≤i≤n

εi�ef (Yi∗)1{F (Yi∗ )≤M}

∣∣∣∣∣∣

∣∣∣∣(Yi)i∈N+k




≤E
[√

2 log 2N (η1,F , || · ||e,M,1)M 1√
n

+ η1

∣∣∣∣(Yi)i∈N+k

]
.

5.2.3 Proof of Lemma S7

By definition of h(·), we have
∑

i∈{1,...,n}2k−j
h(i1, ..., ik)h(i1, ..., ij , ik+1, ..., i2k−j)

=
∑

i∈{1,...,n}j

∑

i′∈({1,...,n}\{i})k−j

∑

i′′∈({1,...,n}\{i})k−j
h(i, i′)h(i, i′′)

=
k−j∑

c=0

(
k − j
c

)2 ∑

i∈{1,...,n}j+c

∑

i′∈({1,...,n}\{i})k−j−c

∑

i′′∈({1,...,n}\({i}∪{i′}))k−j−c
h(i, i′)h(i, i′′).

Since h is invariant by permutation of its entries, the last equality holds by distinguishing between
cases depending on the number of common values in the vectors (ij+1, ..., ik) and (ik+1, ..., i2k−j).
As (h(i))i∈In,k is a k-dimensional jointly exchangeable array,

(
h(i, i′)h(i, i′′)

)
i∈{1,...,n}j+c,i′∈({1,...,n}\{i})k−j−c,i′′∈({1,...,n}\({i}∪{i′}))k−j−c

is a (2k − j − c)-dimensional jointly exchangeable array. Moreover E(Y 2
1 ) < ∞ ensures that

E (|h(1, ..., k)h(1, ..., j + c, k + 1, ..., 2k − j − c)|) <∞ so that Theorem 2.1 can be applied to a class
F reduced to the identity function. The equivalence n!

(n−(2k−j−c))! ∼ n2k−j−c concludes the proof.

5.2.4 Proof of Lemma S8

Let Σm,e the σ-algebra generated by the set of functions g from DN+k ×DN+k to R such that:

g((Yi, Yi′)(i,i′)∈In,e
) = g((Yπ1(i1),...,πk(ik), Yπ1(i′1),...,πk(i′

k
))(i,i′)∈In,e

),

for every set of permutations π1, ...., πk such that for every r = 1, ..., k, πr(i) = i if i ≥ nr. Let

Wm = 1
∏k
r=1 nr(nr − 1)(1−er)

∑

(i,i′)∈In,e

YiYi′ .

By construction, we have for every n ∈ N+, Wm = E
[
Wm

∣∣Σm,e
]

= E
[
Y1Ybe

∣∣Σm,e
]
. Furthermore,

Σm,e ⊇ Σm+1,e so that

E
[
Wm

∣∣Σm+1,e
]

= E
[
E
[
Y1Ybe

∣∣Σm,e
] ∣∣Σm+1,e

]
= E

[
Y1Ybe

∣∣Σm+1,e
]

= Wm+1.
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As a result, we can conclude that (Wm,Σm,e)m≥1 is a backward martingale. From this follows
that Wm

a.s.−→ E
[
Y1Ybe

∣∣Σ∞,e
]
where Σ∞,e = ∩m≥1Σm,e. By the dissociation assumption, this

sigma-algebra is trivial (see Lemma 7.35 in Kallenberg, 2005), hence Wm
a.s.−→ E [Y1Ybe ].

5.3 Contraction and maximal inequalities in degenerate cases

Lemma S9 (A Kinchine-Kahane inequality).
For every 1 < p < q <∞ and every bounded subset T of Rn(n−1)/2

E


sup
t∈T

∣∣∣∣∣∣∣

1
n(n− 1)

∑

i∈−−→In,2

ε1
i1ε

2
i2ti

∣∣∣∣∣∣∣

q


1/q

≤ q − 1
p− 1E


sup
t∈T

∣∣∣∣∣∣∣

1
n(n− 1)

∑

i∈−−→In,2

ε1
i1ε

2
i2ti

∣∣∣∣∣∣∣

p


1/p

.

Lemma S10 (A maximal inequality).
Let T be a countable subset of Rn(n−1)/2 that contains the null vector and for every t ∈ T, ||t||2T :=
E
[∣∣∣ 1
n−1

∑
i∈−−→In,2 ε

1
i1ε

2
i2ti
∣∣∣
2
]

= 1
(n−1)2

∑
i∈−−→In,2 t

2
i . Let also D := sup(t1,t2)∈T×T ||t1−t2||T be the diameter

of T for || · ||T . There exists a constant K such that

E


sup
t∈T

∣∣∣∣∣∣∣

1
n− 1

∑

i∈−−→In,2

ε1
i1ε

2
i2ti

∣∣∣∣∣∣∣


 ≤ K

∫ D/2

0
logN(η, T, || · ||T )dη.

5.3.1 Proof of Lemma S9

The reasoning is the same as that at the end of the proof of Theorem 3.2.1 in de la Peña and Giné
(1999) and is therefore omitted.

5.3.2 Proof of Lemma S10

Let An(t) := 1
n−1

∑
i∈−−→In,2 ε

1
i1ε

2
i2ti. We first prove that for every m ≥ 1 and every set of elements of T

of cardinality m

E
[

max
1≤j≤m

An(tj)
]
≤e max

1≤j≤m

√
E[An(tj)2] logm+

max1≤j≤m
√
E[An(tj)2]

√
π

+
2 max1≤j≤m

√
E[An(tj)2]

√
π

√√√√
e logm+

max1≤j≤m
√
E[An(tj)2]

√
π

. (5.7)

Using Lemma S9 with T = {tj} for every j ∈ {1, ...,m}, the series expansion of the exponential func-
tion and E[An(tj)] = 0 for every j ∈ {1, ...,m}, we can write for every λ ∈ (0, 1/emax1≤j≤m

√
E[A2

j ])

E
[
eλAn(tj)

]
=
∞∑

`=0

λ`

`! E [An(tj)`] ≤ 1 +
∞∑

`=2

λ`(`− 1)`
`! E[An(tj)2]`/2.
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Using
√

2π`
(
`
e

)`
< `! and 1 + a < ea for a > 0, we have

E
[
eλAn(tj)

]
<1 +

∞∑

`=2

λ`e`

2
√
πe

E[An(tj)2]`/2

≤1 +
∞∑

`=0

λ`e`

2
√
πe

E[An(tj)2]`/2

≤ exp
( ∞∑

`=0

λ`e`

2
√
πe

E[An(tj)2]`/2
)

= exp


 1

2
√
πe(1− λe

√
E[An(tj)2])




≤ exp
((

2
√
πe

(
1− λe max

1≤j≤m

√
E[An(tj)2]

))−1
)
.

The last inequality and standard convexity and monotonicity arguments (see, e.g., the bottom of
page 39 in Giné and Nickl, 2015) yield

E
[

max
1≤j≤m

An(tj)
]
≤ log (m×max1≤j≤m E [exp (λAn(tj))])

λ

≤
log

(
m exp

[(
2
√
πe
(
1− λemax1≤j≤m

√
E[An(tj)2]

))−1])

λ

=logm
λ

+ 1
λ

(
2
√
πe

(
1− λe max

1≤j≤m

√
E[An(tj)2]

))−1

Pick λ = γ/[emax1≤j≤m
√
E[An(tj)2]] and γ ∈ (0, 1). Then, minimizing over γ, we arrive at (5.7).

To bound from above E [max1≤j≤m |An(tj)|] , remark that it is equal to E
[
max1≤j≤2m Ãn(tj)

]
, where

(Ãn(tj))mj=1 = (An(tj))mj=1 and (Ãn(tj))2m
j=m+1 = (−An(tj))mj=1. The previous result thus applies with

log 2m instead of logm. Recalling the definition of || · ||T , we obtain

E
[

max
1≤j≤m

|An(tj)|
]
≤e max

1≤j≤m
||tj ||T log 2m+ max1≤j≤m ||tj ||T√

π

+ 2 max1≤j≤m ||tj ||T√
π

√
e log 2m+ max1≤j≤m ||tj ||T√

π
. (5.8)

Next, we bound from above the right-hand side of (5.8) by K
∫D/2

0 logN(η, T, || · ||T )dη. To do so,
we simply observe that the proof of the first statement of Theorem 2.3.6 in Giné and Nickl (2015)
can be replicated using (5.8) instead of the maximal inequality stemming from their Lemma 2.3.4.
In our case, the stochastic process of interest is An(t), t ∈ T and we choose t0 equal to the null
vector. Then there exists some numerical constant K > 0 such that for every m ≥ 1,

E
[

max
1≤j≤m

|An(tj)|
]
≤ K

∫ D/2

0
logN(η, T, || · ||T )dη.

This inequality extends to the whole set T by monotone convergence, ending the proof of the lemma.
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5.4 Covering and entropic integrals

Lemma S11 (Properties of entropic integrals).
Let F a class of functions with envelope F such that

∫∞
0 ζ(ε)dε <∞, with

ζ(ε) = sup
Q

√
log(N(ε||F ||Q,2,F , || · ||Q,2)).

1. u 7→ JF (u) =
∫ u

0 ζ(ε)dε is positive, non-decreasing, concave, larger than uζ(u) for every u > 0
and supu≥0 JF (u) = JF (2).

2. For every K > 0, (x, y) ∈ [0,∞)× (0,∞) 7→ √yJF
(
K
√
x√
y

)
is concave.

Lemma S12 (Covering numbers inequalities).
For every ε > 0:

1. for every class H, every norm || · || and every λ > 0: N(ε,H, λ|| · ||) = N(ε/λ,H, || · ||).

2. for every class H, every pair of norms || · || ≤ || · ||′: N(ε,H, || · ||) ≤ N(ε,H, || · ||′).

3. for every H ⊂ H′ and every norm || · ||: N(ε,H, || · ||) ≤ N(ε/2,H′, || · ||).

4. for every norm || · ||, every class F and for F∞ = {f : f = f1 − f2, (f1, f2) ∈ F × F}:
N(ε,F∞, || · ||) ≤ N2(ε/2,F , || · ||).

5. for every class F and for F2
∞ = {f : f = (f1 − f2)2, (f1, f2) ∈ F × F}:

supQN(8ε||F 2||Q,1,F2
∞, || · ||Q,1) ≤ supQN2(ε||F ||Q,2,F , || · ||Q,2)

where the supremum is taken over the set of all finite probability measures on the domain of
the functions in F .

5.4.1 Proof of Lemma S11

1. ζ is nonnegative and nonincreasing. It follows that u 7→ JF(u) is positive, non-decreasing
and concave. Furthermore, JF(u) ≥ ∫ u

0 ζ(u)dε = uζ(u) for every u > 0. For ε ≥ 2, we have
N(ε||F ||Q,2,F , || · ||Q,2) = 1 for every probability measure Q. As a result, ζ(ε) = 0.

2. J is concave on [0,∞) which implies for λ ∈ (0; 1), (x, x′) ∈ [0,∞)2, (y, y′) ∈ (0,∞)2

(
λy + (1− λ)y′

)
JF

(
K
λx+ (1− λ)x′
λy + (1− λ)y′

)

=
(
λy + (1− λ)y′

)
JF

(
λy

λy + (1− λ)y′
Kx

y
+ (1− λ)y′
λy + (1− λ)y′

Kx′

y′

)

≥λyJF
(
K
x

y

)
+ (1− λ)y′JF

(
K
x′

y′

)
.

We can therefore claim that f(x, y) = yJF (K x
y ) is concave on [0,∞)× (0,∞). Moreover f(x, y) is

non-decreasing in x as JF is non-decreasing. We also have f(x, y) = y
∫K x

y

0 ζ(ε)dε = x
∫ 1

0 ζ
(
K x

y ε
)
dε.
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Since ζ in nonincreasing, f is non-decreasing in y. Finally, because u 7→ √u is concave, we have

√
λy + (1− λ)y′JF

(
K

√
λx+ (1− λ)x′√
λy + (1− λ)y′

)
=f

(√
λx+ (1− λ)x′,

√
λy + (1− λ)y′

)

≥f
(
λ
√
x+ (1− λ)

√
x′, λ
√
y + (1− λ)

√
y′
)

≥λf (√x,√y)+ (1− λ)f
(√

x′,
√
y′
)

=λ√yJF
(
K

√
x√
y

)
+ (1− λ)

√
y′JF

(
K

√
x′√
y′

)
.

5.4.2 Proof of Lemma S12

1. A ball of radius ε for the norm λ|| · || is a ball of radius ε/λ for the norm || · ||.

2. A minimal ε-covering for || · ||′ is also an ε-covering for || · ||.

3. Consider a minimal ε/2-covering of H′. This is not an ε/2-covering of H in general because the
centers of the covering balls need not be in H. However, in each ball that intersects H, we can select
an element of H as a center of a new ball of radius ε. We thus obtain a new family of balls which
forms an ε-covering of H.

4. Let f1, ..., fN(ε/2,F ,||·||) the centers of balls of a minimal ε/2-covering of F . Consider balls of center
fi − fj and of radius ε for 1 ≤ i, j ≤ N(ε/2,F , || · ||). The latter constitute an ε-covering of F∞
because for (g1, g2) ∈ F × F we have

||(fi − fj)− (g1 − g2)|| ≤ ||fi − g1||+ ||fj − g2||,

which is smaller than ε for at least one pair (i, j).

5. Let f1, ..., fN(ε||F ||Q,2,F ,||·||) the centers of balls of a minimal ε||F ||Q,2-covering of F for || · ||Q,2.
Consider balls of center fi − fj and radius 8ε||F 2||Q,1 for the norm || · ||Q,1. For every pair
(g1, g2) ∈ F × F , the Cauchy-Schwarz inequality implies

||(fi − fj)2 − (g1 − g2)2||Q,1 ≤ ||fi − fj + g1 − g2||Q,2 × ||(fi − fj)− (g1 − g2)||Q,2
≤ 4||F ||Q,2 × (||fi − g1||Q,2 + ||fj − g2||Q,2) ,

which is smaller than 8ε||F ||2Q,2 = 8ε||F 2||Q,1 for at least one pair (i, j).
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