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The Marcinkiewicz-Zygmund law of large numbers for

exchangeable arrays

Laurent Davezies∗ Xavier D’Haultfœuille† Yannick Guyonvarch‡

Abstract

We show a Marcinkiewicz-Zygmund law of large numbers for jointly, dissociated ex-

changeable arrays, in Lr (r ∈ (0, 2)) and almost surely. Then, we obtain a law of iterated

logarithm for such arrays under a weaker moment condition than the existing one.

Keywords: exchangeable arrays, Marcinkiewicz-Zygmund law of large numbers, law

of iterated logarithm.

1 Introduction

Random variables with multidimensional indexes are useful to model interactions between

several units of a population. An example is international trade, where each observation

corresponds to a pair of countries, one exporting and the other importing. Another example

is network formation, where binary variables between pairs of units (e.g., individuals) measure

whether they share a link or not. Multi-indexed random variables are also useful in case of

multiway clustering. For instance, wages of individuals may be indexed by geographical areas

and sectors of activity, reflecting potential dependence in wages within the same area or

sector.

There are two important properties for such arrays of random variables. The first, dissocia-

tion, was introduced by McGinley and Sibson (1975). It generalizes mutual independence, by

allowing for dependence when elements of the array share at least one common component

in their respective indexes. The second, joint exchangeability, was introduced by Silverman

(1976), and is very similar to exchangeability for sequences. Taken together, these two condi-

tions turn out to be sufficient to establish strong laws of large numbers, central limit theorems

and weak convergence of empirical processes under the exact same moment conditions as in

the i.i.d. case. We refer respectively to Eagleson and Weber (1978), Silverman (1976) and

Davezies et al. (2021) for proofs of these statements.
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The aim of this note is to show that we can also extend the Marcinkiewicz-Zygmund law

of large numbers to dissociated, jointly exchangeable arrays. Recall that this law extends

the usual law of large numbers by relating the convergence rate of partial sums to moment

conditions on the variables. As with i.i.d. data, our result holds both in Lr (r ∈ (0, 2))

and almost surely. The proof in Lr for the more difficult case (r > 1) is based on a sym-

metrization lemma established in Davezies et al. (2021). Almost-sure convergence follows

using the so-called Aldous-Hoover-Kallenberg (AHK) representation (Aldous, 1981; Hoover,

1979; Kallenberg, 1989) and a similar strategy as that used for U-statistics (Giné and Zinn,

1992). As a consequence of our result, we obtain a law of iterated logarithm for disso-

ciated, jointly exchangeable arrays with a finite second moment. We thus improve upon

Scott and Huggins (1985), who obtain the same result under the existence of a moment of

order 2 + δ for some δ > 0.

We first present in Section 2 the set-up and the main results. Section 3 is devoted to the

proof of the main theorem in the difficult case (r > 1). The supplementary material includes

in particular the proofs of the easier part (0 < r < 1) and of the law of iterated logarithm.

2 The set-up and results

We first define formally dissociated and jointly exchangeable arrays. Let N+ = N\{0}, k ∈ N
+,

card(A) denote the cardinal of a set A and for any A ⊂ N
k,

A = {(a1, ..., ak) ∈ A : card({a1, ..., ak}) = k} .

Then, we denote by Ik = N+k the set of k-tuples of N+ without repetition. Similarly, for any

n ∈ N
+, we let In,k = {1, ..., n}k . For any A ⊂ N

+, we use S(A) to denote the set of permu-

tations on A. For any i = (i1, ..., ik) ∈ N
+k and π ∈ S(N+), we let π(i) = (π(i1), ..., π(ik)).

Finally, we let k = (1, ..., k).

Definition 1 (Dissociated and exchangeable arrays)

X := (Xi)i∈Ik
is a dissociated array if for any A, B disjoint subsets of N+ with min(card(A),

card(B)) ≥ k, (Xi)i∈Ak is independent of (Xi)i∈Bk .

X is a jointly exchangeable array if for any π ∈ S(N+), X
d
= (Xπ(i))i∈Ik

.

For k = 1, a jointly exchangeable array is an exchangeable sequence of random variables

whereas a dissociated jointly exchangeable array is a sequence of i.i.d. random variables.

Otherwise (k > 1), jointly exchangeable arrays may exhibit more complex forms of depen-

dence: with k = 2, X(i1,i2) and X(i1,j2), but also X(i1,i2) and X(j2,i1) may be dependent,

for instance. In the international trade example, exports from China to the USA may be

correlated with exports from the USA to France, simply because the USA are a large country.

Note that with multiway clustering, the different components of the index (e.g., areas and

sectors in the wage example above) do not belong to the same population. Separate exchange-

ability, where the permutation used may differ for all components of the index, is then better
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suited to such data than joint exchangeability. However, joint exchangeability is more general

so the result below also applies to separately exchangeable arrays.

Theorem 1 Let X be a jointly exchangeable array. Then:

1. If E(|Xk|r) < ∞ for 1 ≤ r < 2 and X is dissociated,

1

nk−1+1/r

∑

i∈In,k

(Xi − E(Xk)) → 0 in Lr and almost surely (a.s.).

2. If E(|Xk|r) < ∞ for 0 < r < 1, n−k/r ∑

i∈In,k
Xi → 0 in Lr and a.s.

The case 0 < r < 1 follows by simply noting that existing proofs (see Gut, 2013; Giné and Zinn,

1992) in fact only rely on the variables being identically distributed. The case r = 1 is

Theorem 3 in Eagleson and Weber (1978). The case r > 1 is not as straightforward how-

ever. The key ingredients for convergence in Lr are a symmetrization lemma established in

Davezies et al. (2021), see Lemma 1 below, and the Khintchine inequality. Almost-sure con-

vergence follows using a similar strategy as for U-statistics. To understand the similarities and

differences with U-statistics, let us consider the case k = 3. By the AHK representation of dis-

sociated and jointly exchangeable arrays, there exists a function τ and i.i.d. and uniform [0, 1]

variables (U{i})i≥1, (U{i,i2})(i,i2)∈I2
and (U{i,i2,i3})(i,i2,i3)∈I3

such that for all i = (i1, i2, i3) ∈ I3,

Xi = τ
(

U{i1}, U{i2}, U{i3}, U{i1,i2}, U{i1,i3}, U{i2,i3}, U{i1,i2,i3}

)

.

This result shows that Xi is close to, but distinct from, a U-statistic, where the last four

variables would not appear. Accordingly, we use a decomposition akin to but different from

the Hoeffding decomposition in the proof. Specifically, let us define

H0(X)i =E(Xi),

H1(X)i =E

(

Xi|U{i1}

)

+ E

(

Xi|U{i2}

)

+ E

(

Xi|U{i3}

)

− 3E(Xi),

H2(X)i =Q(1,1,0)(X)i + Q(1,0,1)(X)i + Q(0,1,1)(X)i,

H3(X)i =Xi − E

(

Xi|U{i1}, U{i2}, U{i1,i2}

)

− E

(

Xi|U{i1}, U{i3}, U{i1,i3}

)

− E

(

Xi|U{i2}, U{i3}, U{i2,i3}

)

+ E

(

Xi|U{i1}

)

+ E

(

Xi|U{i2}

)

+ E

(

Xi|U{i3}

)

− E (Xi) ,

where Q(1,1,0)(X)i = E

(

Xi|U{i1}, U{i2}, U{i1,i2}

)

− E

(

Xi|U{i1}

)

− E

(

Xi|U{i2}

)

+ E(Xi) and

Q(1,0,1)(X)i and Q(0,1,1)(X)i are defined similarly. Then,

Xi = H0(X)i + H1(X)i + H2(X)i + H3(X)i, (1)

where the four terms can be shown to be orthogonal in L2. Decomposition (1) allows us to

extend Giné and Zinn (1992)’s approach to our set-up.
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Remark 1 The proof shows that a result similar to Point 1 holds without dissociation. The

only difference, then, is that one should replace E(Xk) by E(Xk|U∅) in the statement of the

theorem, where U∅ is an additional argument in the AHK decomposition.

Remark 2 For k ≥ 2, the function r 7→ (k − 1 + 1/r)1 {r < 1} + k/r1 {r ≥ 1} is continuous

but not differentiable at r = 1. There is therefore a kink at r = 1 in the rate of convergence.

Remark 3 The result is sharp in the following sense: there exist exchangeable arrays (Xi)i∈Ik

such that almost-sure convergence fails to hold, even though E(|Xk|r′

) < ∞ for all r′ ∈ (0, r).

To see this, consider Xi = Vi1
, where the (Vi)i≥1 are i.i.d. α-stable variables, with stability

parameter r ∈ (0, 2) (and mean 0 when r > 1). Then E[|Xk|r′

] < ∞ for all r′ ∈ (0, r). On

the other hand, considering here the case r > 1 (the case r ≤ 1 can be treated similarly),

1

nk−1+1/r

∑

i∈In,k

(Xi − E(Xk)) =
(n − 1)!

(n − k)!nk−1

1

n1/r

n
∑

i=1

Vi.

Then, because n−1/r ∑n
i=1 Vi

d
= Vi, n−(k−1+1/r)∑

i∈In,k
Xi−E[Xk] does not converge to 0. Still,

weaker moment conditions involving projections were shown to be sufficient for U-statistics

(Teicher, 1998). Similar conditions involving expectations conditional on unobserved terms

(U{i})i≥1 are likely to be sufficient here as well.

Theorem 1, or rather a slight extension of it, implies the following law of iterated logarithm.

Theorem 2 Let X be a dissociated, jointly exchangeable array such that E(X2
k) < ∞ and let

V :=
1

[(k − 1)!]2

∑

π∈S({1,...,k})
π′∈S({1,k+1,...,2k−1})

Cov
(

Xπ(k), Xπ(1,k+1,...,2k−1)

)

.

Then, V ≥ 0 and

lim sup
n→∞

±
∑

i∈In,k
(Xi − E(Xk))

√

2n2k−1 log log n
=

√
V a.s.

The result improves upon that of Scott and Huggins (1985) by only requiring E(X2
k) < ∞,

exactly as with i.i.d. variables. Its proof can be summarized as follows (here again with

k = 3). First, we use Decomposition (1). The term
∑

i∈In,k
H1(X)i corresponds to a sum

over i.i.d. terms, on which we apply the usual law of iterated logarithm. Next, it turns out

that when k ≥ 2, the proof of Theorem 1 extends to r = 2 for the terms
∑

i∈In,k
H2(X)i and

∑

i∈In,k
H3(X)i. As a result, these (properly normalized) terms are asymptotically negligible.

3 Proof of Theorem 1 for r > 1

We recall that the proofs of Theorem 1 for r < 1 and Theorem 2 are deferred to the supplemen-

tary material. We focus hereafter on k ≥ 2 as the case k = 1 is the usual result for i.i.d. data.
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Let us first introduce additional notation. Let 0 = (0, ..., 0) ∈ N
k and 1 = (1, ..., 1) ∈ N

k. For

any i = (i1, ..., ik) and j = (j1, ..., jk) in N
k, i⊙j stands for (i1j1, ..., ikjk). With a slight abuse

of notation, {i} denotes for any i = (i1, ..., ik) ∈ N
k the set of distinct elements of (i1, ...ik)

and {i}+ = {i} ∩ N
+. For any σ ∈ S({1, ..., k}) and i ∈ Ik, we let iσ = (iσ(1), ..., iσ(k)). We

say that X is symmetric if for all i ∈ Ik and σ ∈ S({1, ..., k}), Xiσ = Xi.

Next, for any j ∈ {0, ..., k}, we let

Ej =

{

(e1, ..., ek) ∈ {0, 1}k :
k
∑

ℓ=1

eℓ = j

}

, E = ∪k
j=0Ej.

For any (e, e′) ∈ E2, we let e ≤ e′ (resp. e ≥ e′) when eℓ ≤ e′
ℓ (resp. eℓ ≥ e′

ℓ) for ℓ ∈ {1, ..., k}.

For any i ∈ In,j and e ∈ Ej , we let ie be the k-dimensional vector with i1 at the first non-null

entry of e, i2 at the second non-null entry of e etc. and 0 elsewhere. For instance, if k = 4,

j = 2, e = (0, 1, 0, 1) and i = (5, 3), we have ie = (0, 5, 0, 3). Finally, for any q ∈ N
+ and

A ⊂ N
q, we let

−→
A = {i ∈ A : i1 < ... < iq}. We also use d as a shortcut for k − 1 + 1/r.

In the following, we assume without loss of generality that E(Xk) = 0.

3.1 Preliminary results

The convergence in Lr for r > 1 relies on the following result, proved in Davezies et al. (2021).

Lemma 1 (Symmetrization lemma) Let r > 1 and X be an exchangeable and dissoci-

ated array such that E (|Xk|r) < ∞ and E (Xk) = 0. Let (εA)A⊂N a family of independent

Rademacher variables independent of X. There exists Dr,k a constant depending only on r

and k and k jointly exchangeable arrays (Xj
i )i∈Ik

(for j ∈ {1, ..., k}) such that Xj
k

d
= Xk and

E





∣

∣

∣

∣

∣

∣

∑

i∈In,k

Xi

∣

∣

∣

∣

∣

∣

r

 ≤ Dr,k

k
∑

j=1

∑

e∈Ej

E





∣

∣

∣

∣

∣

∣

∑

i∈In,k

ε{i⊙e}+Xj
i

∣

∣

∣

∣

∣

∣

r

 .

Almost-sure convergence relies on the AHK representation for the dissociated and jointly

exchangeable array (Xi)i∈Ik
. It states that there exists a function τ and i.i.d. uniform [0, 1]

variables (UA)A⊂∪k
r=1Ik

(and U∅ = 1 a.s.) such that Xi = τ

(

(

U{e⊙i}+

)

e∈E

)

. In the definition

of τ , the arguments are implicitly ordered by choosing a specific ordering on E . We can now

derive decompositions similar to the Hoeffding decomposition of U-statistics. Specifically,

consider Zi = fi(Xi) for any measurable maps (fi)i∈Ik
. As soon as E|Zi| < ∞ for all i ∈ Ik,

we define, for all e ∈ E , Pe(Z)i = E

(

Zi|(U{i⊙e′}+)e′≤e

)

. We then let H0(Z)i = Q0(Z)i =

P0(Z)i = E(Zi)i for any i ∈ In,k. For ℓ = 1, ..., k, let

Qe(Z)i =
∑

e′≤e

(−1)
∑k

j=1
ej−
∑k

j=1
e′

j Pe′(Z)i

and Hℓ(Z)i =
∑

e∈Eℓ
Qe(Z)i. The following lemma gives three key properties on Pe(Z)i, Qe(Z)i

and Hℓ(Z)i. In particular, Equality (2) may be seen as a Hoeffding decomposition of Zi, as
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the components can be shown to be orthogonal in L2. The proof of this lemma is given in

the supplementary material.

Lemma 2 (Three properties of Pe(Z)i, Qe(Z)i and Hℓ(Z)i) We have

Zi =
k
∑

ℓ=0

Hℓ(Z)i, (2)

Hℓ =
ℓ
∑

j=0

(−1)ℓ−j

(

k − j

ℓ − j

)

∑

e∈Ej

Pe. (3)

Moreover, for any symmetric array X, e ∈ Eℓ (with ℓ ∈ {0, ..., k}), σ ∈ S{k} such that

eσ = e and i ∈ Ik, we have Qe(X)iσ = Qe(X)i.

3.2 Convergence in L
r

Using Lemma 1 and the Khintchine inequality conditional on the (Xj
i )i∈Ik

, we obtain

E





∣

∣

∣

∣

∣

∣

∑

i∈In,k

Xi

∣

∣

∣

∣

∣

∣

r

 ≤ Dr,k

k
∑

j=1

∑

e∈Ej

E





∣

∣

∣

∣

∣

∣

∑

i∈In,k

ε{i⊙e}+Xj
i

∣

∣

∣

∣

∣

∣

r



= Dr,k

k
∑

j=1

∑

e∈Ej

E







∣

∣

∣

∣

∣

∣

∣

∑

i∈In,j

ε{i}

∑

i′∈({1,...,n}\{i})k−j

Xj
ie+i′1−e

∣

∣

∣

∣

∣

∣

∣

r





≤ Dr,kBr

k
∑

j=1

∑

e∈Ej

E









∣

∣

∣

∣

∣

∣

∣

∑

i∈In,j







∑

i′∈({1,...,n}\{i})k−j

Xj
ie+i′1−e







2∣
∣

∣

∣

∣

∣

∣

r/2







,

where we recall that ie is defined at the beginning of the section and Br is a constant depending

only on r. For each j = 1, ..., k and e ∈ Ej, use (a+b)2 ≤ 2a2+2b2 and |a+b|r/2 ≤ |a|r/2+|b|r/2

to deduce:

E









∣

∣

∣

∣

∣

∣

∣

∑

i∈In,j







∑

i′∈({1,...,n}\{i})k−j

Xj
ie+i′1−e







2∣
∣

∣

∣

∣

∣

∣

r/2







≤ 2r/2
E









∣

∣

∣

∣

∣

∣

∣

∑

i∈In,j







∑

i′∈({1,...,n}\{i})k−j

Xj
ie+i′1−e1{|Xj

ie+i′1−e | ≤ M}







2∣
∣

∣

∣

∣

∣

∣

r/2







+ 2r/2
E









∣

∣

∣

∣

∣

∣

∣

∑

i∈In,j







∑

i′∈({1,...,n}\{i})k−j

Xj
ie+i′1−e1{|Xj

ie+i′1−e | > M}







2∣
∣

∣

∣

∣

∣

∣

r/2







.

By Jensen’s inequality E(|V |r/2) ≤ E(|V |)r/2, the first term can be bounded by 2r/2n(k−j/2)rM r.

Using |a+b|r/2 ≤ |a|r/2+|b|r/2, Jensen’s inequality (
∑

a∈A |Va|)r ≤ card(A)−1∑

a∈A card(A)r|Va|r

6



and E

(

|Xj
ie+i′1−e|r1{|Xj

ie+i′1−e | > M}
)

= E (|Xk|r1{|Xk| > M}), the second term can be

bounded by 2r/2njn(k−j)r
E(|Xk|r1{|Xk| > M}). As a result,

1

n(k−1)r+1
E





∣

∣

∣

∣

∣

∣

∑

i∈In,k

Xi

∣

∣

∣

∣

∣

∣

r



≤ Dr,kBr2r/2
k
∑

j=1

(

k

j

)

(

nr(1−j/2)−1M r + n(j−1)(1−r)
E (|Xk|r1{|Xk| > M})

)

≤ Dr,kBr2r/2(2k − 1)
(

nr/2−1M r + E (|Xk|r1{|Xk| > M})
)

.

Considering M sufficiently large to ensure that E (|Xk|r1{|Xk| > M}) is arbitrarily small, we

deduce that lim supn E

[∣

∣

∣n−d∑

i∈In,k
Xi

∣

∣

∣

r]

= 0.

3.3 Almost-sure convergence

Up to considering Zi =
∑

σ∈S({k})[Xiσ −E(Xk)]/k! instead of Xi, we can assume without loss

of generality that E(Xk) = 0 and that X is symmetric. Then:

∑

i∈In,k

Xi = k!
∑

i∈
−−→
In,k

Xi = k!
k
∑

ℓ=1

∑

i∈
−−→
In,k

Hℓ(X)i,

where we recall the notation
−→
A = {i ∈ A : i1 < ... < iq}. Following the U-statistic’s

terminology, we say that X is degenerate of order ℓ − 1 if Hℓ(X)i is not constant whereas for

all ℓ′ ∈ {1, ..., ℓ − 1}, Hℓ′(X)i is constant (and then equal to 0 as we assumed E(X1,...k) = 0).

Degenerate arrays of order k − 1. We first assume that X is degenerate of order k − 1,

that is Xi = Hk(X)i. By Kronecker’s lemma, it is sufficient to show that

n
∑

j=k

1

jd

∑

i∈
−−−−−−→
Ij−1,k−1

Xi,j → 0 a.s.

Let Tj = j−d∑

i∈
−−−−−−→
Ij−1,k−1

Xi,j and Fj = σ (UA; A ⊂ {1, ..., j}, card(A) ≤ k). Since X is degen-

erate of order k − 1, we have E

(

Xk| (UA)A⊂{1,...,k−1}

)

= 0. Then, E (Tj |Fj−1) = 0, meaning

that (Tj , Fj) is a martingale difference. Hence,
(

∑n
j=ℓ Tj , Fn

)

is a martingale. We then just

have to prove that supn E

∣

∣

∣

∑n
j=k Tj

∣

∣

∣ < ∞ (see for instance Chapter 10, Theorem 12.2 in Gut,

2013). To this end, we use E

∣

∣

∣

∑n
j=k Tj

∣

∣

∣ ≤ An + Bn, with An = E

∣

∣

∣

∣

∑n
j=k j−d∑

i∈
−−−−−−→
Ij−1,k−1

Xi,j

1{|Xi,j | ≤ jd}
∣

∣

∣ and Bn = E

∣

∣

∣

∣

∑n
j=k j−d∑

i∈
−−−−−−→
Ij−1,k−1

Xi,j1{|Xi,j | > jd}
∣

∣

∣

∣

. We show that the
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suprema of both terms are finite. First,

Bn ≤
n
∑

j=k

j−d (j − 1)!

(j − k)!
E

(

|Xk|1{|Xk| > jd}
)

(4)

≤ E



|Xk|
n
∑

j=k

j−1/r
1{|Xk| > jd}





≤ E

(

|Xk|1{|Xk| > (k − 1)d}
∫ |Xk|1/d

k−1
t−1/rdt

)

≤ E



|Xk|1{|Xk| > (k − 1)d}
[

t1−1/r

1 − 1/r

]|Xk|1/d

k−1





≤ r

r − 1
E

(

|Xk|1+
1−1/r

d

)

≤ r

r − 1
E (|Xk|r) , (5)

where the last inequality follows using 1 + (1 − 1/r)/d ≤ r. Hence, supn Bn < ∞.

Now let us turn to An. First, applying Decomposition (2) to Xi,j1{|Xi,j| ≤ jd} for a fixed j

and using the fact that Hℓ(X) = 0 for ℓ = 0, ..., k − 1, we get, for any i ∈ Ij−1,k−1,

Xi,j1{|Xi,j | ≤ jd} = Hk(X1{|X| ≤ jd})i,j + H0(X1{X ≤ jd})i,j +
k−1
∑

ℓ=1

Hℓ(X1{|X| ≤ jd})i,j

= Hk(X1{|X| ≤ jd})i,j + H0(X1{X > jd})i,j +
k−1
∑

ℓ=1

Hℓ(X1{|X| > jd})i,j .

Let An = A1n + A2n + A3n be the decomposition of An corresponding to the first, second and

third terms in the previous display. We have

A2n ≤
n
∑

j=k

j−d (j − 1)!

(j − k)!
E

(

|Xk|1{|Xk| > jd}
)

≤ r

r − 1
E (|Xk|r) , (6)

where (6) uses the inequalities from (4) to (5). Thus, supn A2n < ∞. Let us turn to A3n.

First, for any e ∈ E , we have

E

∣

∣

∣

∣

∣

∣

∣

n
∑

j=k

j−d
∑

i∈
−−−−−−→
Ij−1,k−1

Pe(X1{X > jd})i,j

∣

∣

∣

∣

∣

∣

∣

≤
n
∑

j=k

j−d
∑

i∈
−−−−−−→
Ij−1,k−1

E

(

E

(

|Xi,j |1{X > jd})i,j |U{(i,j)⊙e}+

))

≤
n
∑

j=k

j−d (j − 1)!

(j − k)!
E

(

|Xk|1{|Xk| > jd}
)

≤ r

r − 1
E (|Xk|r) . (7)

8



Then, in view of (3), we have supn A3n < ∞. Finally, let us consider A1n. We can write

A2
1n = E







n
∑

j=k

j−d
∑

i∈
−−−−−−→
Ij−1,k−1

Hk(X1{|X| ≤ jd})i,j







2

≤ E













n
∑

j=k

j−d
∑

i∈
−−−−−−→
Ij−1,k−1

Hk(X1{|X| ≤ jd})i,j







2





=
n
∑

j=k

j−2d
∑

i∈
−−−−−−→
Ij−1,k−1

E

(

Hk(X1{|X| ≤ jd})2
i,j

)

≤
n
∑

j=k

j−2d+k−1
E

(

X2
k1{|Xk| ≤ jd}

)

≤ E

[

X2
k

(

1

{

k > |Xk|1/d
}

∫ ∞

k−1
t−k+1−2/rdt + 1

{

k ≤ |Xk|1/d
}

∫ ∞

|Xk|1/d−1
t−k+1−2/rdt

)]

≤ 1

k − 2 + 2/r

{

k2d + E

[

X2
k

(

|Xk|1/d − 1
)−k+2−2/r

1

{

|Xk|1/d ≥ k
}

]}

, (8)

where the second equality follows since the variables (Hk(X1{|X| ≤ jd})i,j) are uncorrelated.

Now, note that for all x ≥ 0,

x2
(

x1/d − 1
)−k+2−2/r

1

{

x1/d ≥ k
}

≤ (1 − 1/k)k−2d xk/d ≤ (1 − 1/k)k−2d xr.

Therefore,

E

[

X2
k

(

|Xk|1/d − 1
)−k+2−2/r

1

{

|Xk|1/d ≥ k
}

]

≤ (1 − 1/k)k−2d
E [Xr

k] < ∞.

Hence, supn A1n < ∞, which completes the proof when X is degenerate of order k − 1.

Other cases. In view of (2), it suffices to prove that for all ℓ ∈ {0, ..., k}, we have

1

nd

∑

i∈
−−→
In,k

Hℓ(X)i → 0 a.s. (9)

First, note that
∑

i∈
−−→
In,k

Hℓ(X)i = 1
k!

∑

i∈In,k
Hℓ(X)i =

∑

e∈Eℓ

1
k!

∑

i∈In,k
Qe(X)i. By Lemma 2,

Qe(X)iσ = Qe(X)i for all σ such that eσ = e. Moreover, for each e ∈ Eℓ, Qe(X)i only depends

on i ⊙ e rather than all components of i. It follows that
∑

i∈In,k
Qe(X)i = (n−ℓ)!

(n−k)!

∑

i∈In,ℓ
Re

i ,

where (Re
i )i∈In,ℓ

is a symmetric ℓ-dimensional jointly exchangeable array degenerate of order

ℓ − 1 such that E

(∣

∣

∣Re
1,...,ℓ

∣

∣

∣

r)

< ∞. It follows from the previous paragraph that

1

nℓ−1+1/r

∑

i∈
−−→
In,ℓ

Re
i =

1

nℓ−1+1/r × ℓ!

∑

i∈In,ℓ

Re
i → 0 a.s.

Because (n − ℓ)!/(n − k)! ∼ nk−ℓ, we finally obtain (9).
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Supplementary material

A Proof of Lemma 2

First,

k
∑

ℓ=0

Hℓ(Z)i =
∑

e∈E

∑

e′≤e

(−1)
∑k

j=1
ej−
∑k

j=1
e′

j Pe′(Z)i

=
∑

e′∈E

∑

e′≤e

(−1)
∑k

j=1
ej−
∑k

j=1
e′

j Pe′(Z)i

=
∑

e′∈E







k−
∑

j′
e′

j′

∑

j=0

(−1)j

(

k −∑

j′ ej′

j

)






Pe′(Z)i

=
∑

e′∈E

(1 − 1)
k−
∑

j′
e′

j′ Pe′(Z)i

= P1(Z)i = Zi.

Next,

Hℓ =
∑

e∈Eℓ

∑

e′≤e

(−1)ℓ−
∑

m
e′

mPe′

=
ℓ
∑

j=0

∑

e′∈Ej

(−1)ℓ−j

(

k − j

ℓ − j

)

Pe′

=
ℓ
∑

j=0

(−1)ℓ−j

(

k − j

ℓ − j

)

∑

e∈Ej

Pe.

To prove the last claim, note that if X is symmetric, we have for all i ∈ Ik,

Qe(X)iσ =
∑

e′≤e

(−1)ℓ−
∑k

m=1
e′

m E (Xiσ |(Uiσ⊙e′′)e′′≤e′)

=
∑

e′≤e

(−1)ℓ−
∑k

m=1
e′

m E (Xi|(Uiσ⊙e′′)e′′≤e′)

=
∑

e′≤e

(−1)ℓ−
∑k

m=1
e′

m E

(

Xi|(Ui⊙e′′

σ−1
)e′′≤e′

)

=
∑

e′≤e

(−1)ℓ−
∑k

m=1
e′

m E

(

Xi|(Ui⊙e′′

σ−1
)e′′≤e′

σ

)

=
∑

e′≤e

(−1)ℓ−
∑k

m=1
e′

m E

(

Xi|(Ui⊙e′′

σ−1
)e′′

σ−1
≤e′

)

=
∑

e′≤e

(−1)ℓ−
∑k

m=1
e′

m E (Xi|(Ui⊙e′′)e′′≤e′)

= Qe(X)i.

1



B Proof of Theorem 1 for r < 1

B.1 Convergence in L
r

An inspection of the proof of Theorem 10.3 in (Gut, 2013, p. 311) shows that it does not

rely on the independence of the variables but only on their identical distribution. Hence, it

directly applies here.

B.2 Almost-sure convergence

An inspection of the proof of Theorem 1 in Giné and Zinn (1992) shows that it only exploits

the fact that the individual variables are identically distributed. Hence, it also applies here.

C Proof of Theorem 2

Again, we focus on k ≥ 2 as the case k = 1 is the usual result for i.i.d. data. We also assume

without loss of generality that E (Xk) = 0. Let us first prove the result when X is symmetric.

The inequalities (5), (6) and (7) actually hold for r = 2. Also, Inequality (8) is valid for

r = 2. It follows that n−(k−1/2)∑

i∈In,k
Hℓ(X)i converges almost surely to 0 for ℓ ≥ 2. Then,

by Decomposition (2),

1

nk−1/2

∑

i∈In,k

Xi =
1

nk−1/2

∑

i∈In,k

H1(X)i + oa.s.(1)

=
1

nk−1/2

(n − 1)!

(n − k)!
k

n
∑

i=1

E

(

X(i,n+1,...,n+k−1)|U{i}

)

=

(

k

n1/2

n
∑

i=1

E

(

X(i,n+1,...,n+k−1)|U{i}

)

)

(1 + o(1)) .

The usual law of iterated logarithm ensures that

lim sup
n

±
∑

i∈In,k
Xi

√

2n2k−1 log log(n)
= k

√

V(E
(

Xk|U{1}

)

. (10)

From the AHK decomposition, we have Cov
(

Xk, X(1,k+1,...,2k−1)|U{1}

)

= 0. Next, symmetry

of X and the law of total covariance yield:

V = k2
Cov

(

Xk, X(1,k+1,...,2k−1)

)

= k2
Cov

(

E

(

Xk|U{1}

)

,E
(

X(1,k+1,...,2k−1)|U{1}

))

= k2
V

(

E

(

Xk|U{1}

))

(≥ 0). (11)

When X is not symmetric, we just replace Xi by
∑

π∈S({i}) Xπ(i)/k! in (10) and (11).
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