Combined single-step evaluation of functional longevity of dairy cows including correlated traits
Abstract
Background. For years, multiple trait genetic evaluations have been used to increase the accuracy of estimated breeding values (EBV) using information from correlated traits. In France, accurate approximations of multiple trait evaluations were implemented for traits that are described by different models by combining the results of univariate best linear unbiased prediction (BLUP) evaluations. Functional longevity (FL) is the trait that has most benefited from this approach. Currently, with many single-step (SS) evaluations, only univariate FL evaluations can be run. The aim of this study was to implement a "combined" SS (CSS) evaluation that extends the "combined" BLUP evaluation to obtain more accurate genomic (G) EBV for FL when information from five correlated traits (somatic cell score, clinical mastitis, conception rate for heifers and cows, and udder depth) is added.
Results. GEBV obtained from univariate SS (USS) evaluations and from a CSS evaluation were compared. The correlations between these GEBV showed the benefits of including information from correlated traits. Indeed, a CSS evaluation run without any performances on FL showed that the indirect information from correlated traits to evaluate FL was substantial. USS and CSS evaluations that mimic SS evaluations with data available in 2016 were compared. For each evaluation separately, the GEBV were sorted and then split into 10 consecutive groups (deciles). Survival curves were calculated for each group, based on the observed productive life of these cows as known in 2021. Regardless of their genotyping status, the worst group of heifers based on their GEBV in 2016 was well identified in the CSS evaluation and they had a substantially shorter herd life, while those in the best heifer group had a longer herd life. The gaps between groups were more important for the genotyped than the ungenotyped heifers, which indicates better prediction of future survival.
Conclusions. A CSS evaluation is an efficient tool to improve FL. It allows a proper combination of information
on functional traits that influence culling. In contrast, because of the strong selection intensity on young bulls
for functional traits, the benefit of such a “combined” evaluation of functional traits is more modest for these males.
Domains
Animal geneticsOrigin | Publisher files allowed on an open archive |
---|---|
Licence |