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ABSTRACT

The productivity of smallholder dairy farms is very 
low in developing countries. Important genetic gains 
could be realized using genomic selection but genetic 
evaluations need to be tailored for lack of pedigree in-
formation and very small farm sizes. To accommodate 
this situation, we propose a flexible Bayesian model for 
the genetic evaluation of milk yield which allows us to 
simultaneously account for non-genetic random effects 
for farms and varying SNP variance (BayesR model). 
First, we use simulations based on real genotype data 
from Indian crossbred dairy cattle to demonstrate 
that the proposed model can separate the true genetic 
and non-genetic parameters even for small farm sizes 
(2 cows on average) although with high standard er-
rors in scenarios with low heritability. The accuracy 
of genomic genetic evaluation increases until farm size 
is approximately 5. We then apply the model to real 
data from 4,655 crossbred cows with 106,109 monthly 
test day milk records and 689,750 autosomal SNPs. We 
estimate a heritability of 0.16 (0.04) for milk yield and 
using cross-validation, a genomic estimated breeding 
value (GEBV) accuracy of 0.45 and bias (regression of 
phenotype on GEBV) of 1.04 (0.26). Estimated genetic 
parameters are very similar using BayesR, BayesC and 
genomic BLUP approaches. Candidate genes nearby 
the top variants, IMMP2L and ARHGEF2, have been 
previously associated with milk protein composition, 
mastitis resistance and milk cholesterol content. The es-
timated heritability and GEBV accuracy for milk yield 
are much lower than those from intensive or pasture-
based systems in many countries. Further increases in 
the number of phenotyped and genotyped animals in 
farms with at least 2 cows (preferably 3–5 to allow for 

dropout of cows) are needed to improve the estimation 
of genetic effects in these smallholder dairy farms.
Keywords: Milk yield, developing countries, BayesR, 
QTL, GWAS

INTRODUCTION

The productivity of smallholder dairy farms is very 
low in developing countries due to several reasons 
including genetics, environmental conditions, manage-
ment, and government regulations. For instance, in 
India despite being the world’s largest milk producer, 
the milk yield per cow is only one-eighth of the levels 
achieved in the United States and Canada (OECD 
et al., 2019) with predominantly low-input/low-yield 
dairy production systems (Hemme & Deeken, 2007; 
Morgan, 2009).

In principle, substantial genetic gains could be real-
ized using new breeding technologies such as genomic 
selection (GS), especially in smallholder systems (Bur-
row et al., 2021). Recent experiences for crossbred 
dairy cattle in Africa (Brown et al., 2016; Mrode et al., 
2021; Ojango et al., 2019) and India (Al Kalaldeh et 
al., 2021), show that genetic progress is possible with 
genomic selection even in these challenging conditions.

Appropriate modeling for genetic evaluations in 
smallholder systems is also challenging, as these sys-
tems typically have no pedigree information, weak 
genetic connectedness, and very small farm sizes. An 
important question is then, how well can we separate 
genetic from management effects in smallholder farms? 
Current efforts that use genomic BLUP (GBLUP) ap-
proaches in these contexts (Al Kalaldeh et al., 2021; 
Mrode et al., 2021; Ojango et al., 2019) might not be 
the most accurate approaches if there are some quanti-
tative trait loci (QTL) of moderate to large effect (eg 
DGAT1 for fat%, Grisart et al. (2004)). For instance, 
the BayesR model has provided more accurate predic-
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tions for several traits for dairy and tropically adapted 
beef cattle (Hayes et al., 2019; Kemper et al., 2015).

The question of whether such models can disentangle 
genetic effects from farm effects when farm sizes are 
very small has been investigated using simulation 
(Powell et al., 2021). The authors found that model-
ing farm effects as random had higher accuracies than 
modeling them as fixed at small farm sizes (< = 4 
cows). However, the simulation approach of Powell et 
al. (2021) assumes known genetic parameters and can 
only approximate admixture levels in real crossbred 
populations.

Here we propose a flexible Bayesian model that al-
lows us to simultaneously account for non-genetic 
random effects for farms and varying SNP variance, a 
modest extension of the previously described BayesR 
model (Erbe et al., 2012; Kemper et al., 2015; Moser 
et al., 2015). Additionally, BayesR directly produces 
a prediction equation that can be applied to any new 
animal as soon as it is genotyped, speeding up selection 
decisions from DNA sampling to breeding values.

To answer our research question, “how well can we 
separate genetic from management effects in smallhold-
er farms”?, we use simulations based on real genotype 
data from crossbred dairy cows from India. We are par-
ticularly interested to examine whether the proposed 
model can separate the true genetic and non-genetic 
effects despite the small sample sizes in these contexts. 
Lastly, we apply the BayesR model to existing monthly 
test day milk records from Indian cows, compare it 
with the GBLUP and BayesC (Habier et al., 2011) 
approaches, and use cross-validation to calculate the 
accuracy and bias for the genomic estimated breeding 
values (GEBV).

Methods and Materials

Phenotypic and genotypic records.

The phenotypic and genotypic data was collected by 
the BAIF Development Research Foundation (BAIF 
-https: / / baif .org .in). BAIF is a non-government orga-
nization established in 1967 with a mission to enhance 
livelihoods of Indian rural families, using smallholder 
dairy production as one of the tools to achieve this 
objective. We used monthly test day (TD) milk records 
(liters/day) collected from Indian smallholder dairy 
farms. Existing records from 4,655 cows with 106,109 
monthly test day milk records and 689,750 autosomal 
imputed SNPs (Al Kalaldeh et al., 2021) were used 
here for our analyses. Cows were crossbreds between 
local indigenous Bos indicus cattle and exotic dairy 
breeds, mainly Holstein/Friesian and Jersey (Strucken 
et al., 2021). The average breed composition of these 

animals was estimated to be 0.48 Holstein/Friesian, 
0.15 Jersey and 0.37 Indigenous (Al Kalaldeh et al., 
2021). Milk yield records came from 6 Indian states: 
Bihar, Jharkhand, Maharashtra, Odisha, Punjab, and 
Uttar Pradesh between 2016 and 2020.

TD records were collected from crossbred cows raised 
in smallholder farms, ranging in size from 1 to 43 cows, 
with an average size of 1.7 animals per farm. TD re-
cords were corrected for fixed effects, including cattle 
development center (CDC), season, the interaction of 
CDC by season, parity, the lactation curves for parities 
with a 3rd order Legendre polynomial, and the lacta-
tion curves for CDC modeled with a 3rd order Legen-
dre polynomial. Fixed effects for breed were obtained 
as the regressions on breed proportion. An estimate of 
the production environment that each cow experiences 
was obtained as the sum of the estimated fixed CDC 
effect and random farm effect of that cow. The environ-
mental estimates were then ordered and classified into 
bottom, middle, and top thirds, creating a fixed effect 
of production environment with 3 levels, low, medium, 
and high environments. Further details about the trait 
collection, construction of corrected phenotypes, breed 
percentage and production environment can be found 
in Al Kalaldeh et al. (2021). Adjusted TD records 
are averaged by cow and used as a phenotype for the 
BayesR genetic model.

Simulations.

We performed simulations using real genotype data 
from BAIF from smallholder farms in India. For the 
genotypes, we randomly chose 50,000 genome-wide 
markers from the imputed HD genotypes for all avail-
able 4,655 crossbred cows (Al Kalaldeh et al., 2021). The 
phenotypes were generated using a model with 5,000 
causal markers with varying SNP variance, farm sizes 
and heritabilities. QTL effects for the causal markers 
were sampled from a mixture of normal distributions:

 0.80 × N(0,10−4) + 0.15 × N(0,10−3) + 0.04 × 
N(0,10−2) + 0.01 × (0,10−1). 

The simulated phenotypes were generated using GCTA 
(Yang et al., 2011).

The mixture distribution for the SNP effects allows 
the estimation of QTL of varying effects, i.e. few mark-
ers with large effects and many markers with very small 
effect. Farm sizes were sampled from a truncated Pois-
son distribution with means equal to 1, 2, 5, 20 (aver-
age farm size). Farm effects followed a normal distribu-
tion with zero mean and a farm variance equal to three 
times the additive genetic variance. We set σ σf g

2 23=  
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based on the estimates obtained by Al Kalaldeh et al. 
(2021) and other studies in smallholder contexts where 
the farm/environmental variance is much larger than 
the additive genetic variance. We used three values for 
the heritabilities (h2 = 10%, 20%, 50%) for a total of 
twelve scenarios. For each scenario, we generated 50 
simulated datasets, giving a total of 600 simulated da-
tasets. Breed effects were not incorporated in the simu-
lations.

Model estimation for the simulated data used 
MCMC chains of 5,000 iterations, 2,000 burn-in and 10 
thinning. For each scenario, we present the estimated 
genetic parameters, additive genetic variance and heri-
tabilities. Models also included weights for the residuals 
based on the real number of phenotypic records per 
animal (equation 2).

Validation for the simulations.

In addition to the estimation of genetic param-
eters, GEBVs from simulations were validated using 
prediction accuracies and bias from cross-validation 
(five-fold). Prediction accuracy was calculated as the 
Pearson linear correlation (r) between the simulated 
phenotype and GEBVs, and bias as the regression of 
the simulated phenotype on the GEBVs.

Real data application.

For the real data application, we fitted a BayesR 
model with random farm effects (model 1, equation 
1), plus another one which adds production environ-
ment (Low, Medium, High) as fixed effect (model 2). 
Model parameters for the real data application, were 
estimated using 3 MCMC chains each with 25,000 it-
erations, 5,000 burn-in and 10 thinning. This means 
that (25,000–5,000)/10 = 2,000 iterations per MCMC 
chain were used for inference. MCMC convergence was 
assessed using the multivariate version of the Gelman- 
Rubin diagnostic (Gelman & Rubin, 1992). Chains 
were combined and visualized using the R-package 
coda (Plummer et al., 2006).

Functional annotation of markers with the highest 
posterior inclusion probability (PIP) in the BayesR 
model was carried using the Variant Effect Predictor 
tool from Ensembl, release 107 (Ensembl, 2022). We 
annotated the top 10 variants with the highest PIP. 
Candidate genes were also mapped in Ensembl using a 
100 kb window from markers.

Validation for the real data application.

Validation for the real data application was carried 
out using cross-validation of multi-breed groups. The 

validation was performed across cattle development 
centres (CDC), which are made up of geographically 
close villages within Indian districts and states, with all 
animals within a CDC either within the reference set or 
validation set. This validation strategy was a ten-fold 
random cross validation where all 87 CDCs across India 
were partitioned in ten random groups (9 groups of 9 
CDCs and 1 group of 6 CDCs). In turn, each group of 
CDCs was then taken as a validation set, the remaining 
as the reference set. SNP effects were calculated from 
the reference set and GEBV were calculated. Predic-
tion accuracy was calculated as the Pearson linear cor-
relation (r) of the GEBV and the phenotype adjusted 
for fixed effects. Bias was calculated as the regression of 
GEBV on adjusted phenotype. To compare with selec-
tion based on phenotypes only, we calculated the pre-
diction accuracy of mass selection for repeated records 
using the equation rh r t2 1 1/ ( ,+ −( )  where r is the 
number of records per animal, and h2 and t are the trait 
heritability and repeatability, respectively (Mrode, 
2014). We used r = 18 (average number of records per 
animal in the Indian real data application), and t = 
0.60, h2 = 0.19 based on previous estimates for India 
(Al Kalaldeh et al. (2021), Table 3).

Estimation model.

Both for the simulations and real data application we 
used the same genetic model, a BayesR model (Erbe et 
al., 2012) with random farm effects,

 y Vf Zg en= + + +1' ,m

Where y is a vector of n adjusted phenotypes, ln is a 
vector of ones, m is an overall mean, f is a vector of p 
farm effects with distribution f ~ , ,N f0 2σ( )  g is a vector 

of m SNP effects with distribution g ~ , .N i0
2σ( )  The 

variance for each SNP was assumed to be from one of 
four normal distributions σ σi g

2 4 3 2 20 10 10 10= { }×− − −, , ,   . 
This specification implies that the BayesR model as-
signs a mixture prior of normal distributions for the 
SNP effects so that every SNP can belong to any of 
these distributions. Being a generalization of BayesC 
(Habier et al., 2011), the first distribution is point-mass 
at zero to account for SNPs with no effect in the phe-
notype. V and Z are design matrices of farm effects (n 
× p) and standardized genotypes (n × m), respectively. 
Finally, e is a vector of random residuals with a distri-
bution e ~ , ,N E e0 2σ( )  where E is a diagonal matrix (l/
wi) and wi is a weight for each animal. Weights were 
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calculated following the formula derived by Garrick et 
al. (2009) for cows,

 w
r h

r t r hi
i

i i

=
−( )

+ −( ) −

1

1 1

2

2
,

Where ri is the number of records for animal i, h2 is 
the heritability of the trait (single records), and t the 
trait repeatability. Again, we set t = 0.60 and h2 = 
0.19 based on estimates for these genetic parameters in 
India (Al Kalaldeh et al. (2021), Table 3).

The BayesR model simultaneously provides estimates 
for the m SNP effects (g), and the additive genetic ( ),Ãg

2  
farm Ãf

2( ), and residual variances Ãe
2( ). Note that it can 

also accommodate fixed effects other than the overall 
mean m. The model was fitted using the open-source 
software GCTB (Zeng et al 2018) available at https: / / 
cnsgenomics .com/ software/ gctb. To compare the per-
formance of the proposed Bayesian model, we also esti-
mated GBLUP and BayesC models in Julia v1.6.2 
(Bezanson et al., 2017) using the package JWAS (Cheng 
et al., 2018). All models were run in a Linux server 
(Intel Xeon 6130, 2.10GHz, and 314GB of RAM).

RESULTS

Simulations

The estimated genetic parameters for the simulations 
based on real genotypes are shown as Figure 1. The 
true values for these parameters are shown in dashed 
lines and the estimated values across simulations as 
boxplots. Estimates for the additive genetic variance 
σ̂g
2( ) are in Figure 1A and estimates for the heritability 

ĥ2( ) in Figure 1B. Estimates for the additive genetic 
variances are very close to their true values (dash line) 
across most scenarios (Figure 1A), e.g., across all simu-
lations the true values for the additive genetic vari-
ances are within the first and third quartiles (25th and 
75th percentiles) of the distribution of estimated values. 
However, estimated additive genetic variances have 
lower accuracy for the scenarios with lower true herita-
bility and smaller farm sizes. For instance, with an av-
erage farm size of one animal per farm and h2 = 10%, 
the values for σ̂g

2 are extremely noisy, sometimes includ-
ing zero. The values for σ̂g

2  become more accurate with 
larger farm sizes and true heritabilities. For the sce-
nario with 20 animals per farm on average, σ̂g

2  is very 
close to the true value, even for the lowest heritability 
scenario h2 10=( )% .

Similarly, the estimated values for the heritabilities 
are very close to their true values (dash line) across all 
scenarios (Figure 1B). The accuracy of the estimates is 
lowest with small farm sizes and lower true heritability, 
with the extreme being the scenario with the lowest 
heritability and farm size (h2 = 10%, and one animal 
per farm). The values for ĥ2 become more accurate with 
increasing average farm size and true heritability, with 
a greater impact of farm size. Importantly, an average 
farm size of 2 animals and a true heritability of 20% 
seems to be sufficient for an accurate estimation of the 
heritability. This is important because this scenario 
with very small number of animals per farm is typical 
in many smallholder systems.

Validation for the simulations

Prediction accuracy and bias for the simulations 
based on real genotypes are shown in Figure 2. The 
prediction accuracy of the GEBV increases with farm 
size and true heritability across all scenarios. However, 
this increase in accuracy is not linear and seems to 
plateau after an average farm size of five animals. For 
instance, prediction accuracies plateau around 0.18, 
0.29 and 0.40 for true heritabilities of h2 = 10%, 20%, 
50%, respectively. Given the sample size used for this 
simulation (4,655 cows) these relatively small values for 
the accuracies are not unexpected. For typical values 
of smallholder farms in the real data, a heritability of 
about 20% and an average farm size of around 2 ani-
mals, the expected prediction accuracy is close to 0.22 
(Figure 2A).

The prediction bias is also smaller with increasing 
farm size and heritability, although the trend is less 
clear when h2 = 10% (Figure 2B). That is, the higher 
the heritability and the number of cows in the farm, 
the closer the predicted values are to the simulated 
phenotypes. For the extreme scenario with the lowest 
heritability and farm size, h2 = 10% and average farm 
size = 1, the GEBVs are deflated on average.

Real data application

The parameters estimated with all models, BayesR, 
BayesC and GBLUP, are shown in Table 1. For the 
baseline model, we estimate very similar additive ge-
netic, farm and residual variances with all 3 models 
which result in heritabilities of 0.16 (0.03) for BayesR, 
0.15 (0.02) for BayesC and 0.16 (0.02) for GBLUP.

For all models, including production environment 
(model 2) barely changes the estimates for the addi-
tive genetic and residual variances, and thus the heri-
tabilities, but greatly reduces the farm variance. For 
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instance for the BayesR model, it reduces from 1.94 
(0.07) to 1.25 (0.07). As expected, the effect of produc-
tion environment (“low,” “medium,” “high”) in the milk 
yield phenotype is statistically significant and increases 
monotonically. This effect is negative for animals in 
“low” environments and positive in animals in “me-
dium” and “high” environments with the latter being 
the highest. Using the BayesR model, we estimate a 

heritability of 0.16 (0.04) in a model that also includes 
production environment (Table 1).

The parameters of the BayesR model showed MCMC 
convergence and good mixing for all chains (Figure 3). 
The multivariate Gelman-Rubin diagnostic had a value 
of 1.02. Running times were about 11 h for the BayesR 
models, 13 h for the BayesC models, and 25 min for the 
GBLUP models. In terms of RAM memory, the BayesR 

Costilla et al.: DEVELOPING FLEXIBLE MODELS

Figure 1. Estimated genetic parameters for simulated phenotypes based on real genotype data. Estimated additive genetic variance σ̂g
2 (A) 

and heritability ĥ2 (B). True values are shown by dashed lines and estimated values as boxplots.
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models in GCTB needed 13GB while the GBLUP and 
BayesC models used around 64GB.

We also tested breed effects in the genetic models but 
they were not significant after accounting for produc-
tion environment and therefore not presented here. In 
what follows, we use the model with production en-
vironment (model 2) for QTL mapping and genomic 
prediction.

The variant with highest PIP, posterior inclusion 
probability, is located in chromosome 4 (rs109218186, 
minor allele frequency = 0.07) within 100 kb of the 
Mitochondrial Inner Membrane Protease Subunit 2 
(IMMP2L) gene (Figure 4). This gene has been previ-
ously associated with milk protein composition (Dadou-
sis et al., 2017) and mastitis resistance (Cai et al., 
2018) in dairy cattle. The top variant in chromosome 1 
(rs42222474, minor allele frequency = 0.15) is an intron 

Costilla et al.: DEVELOPING FLEXIBLE MODELS

Figure 2. Prediction Accuracy (A) and bias (B) from 5-fold cross-validation for genomic prediction for simulated phenotypes based on real 
genotyped data. Accuracy is defined as the Pearson coefficient (r) and bias as the slope of the regression between the simulated phenotypes and 
GEBVs. Dashed line at 1, corresponds to unbiased GEBVs.
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for Rho GTPase Activating Protein 26 (ARHGEF26) 
gene previously associated with milk cholesterol con-
tent (Do et al., 2018). This variant is the only intronic 
variant from all top 10 examined here.

Validation for the real data application

The results for the GEBV cross-validation for the 
real data application using random cattle development 
centres (CDCs), including the number of animals in 
each subset, prediction accuracy and bias, are presented 
in Table 2. The number of animals in these random 
groups varies from 316 to 842 with a mean of 466. On 
average, for the BayesR model with random farm ef-
fects, GEBV accuracy is 0.26 with a bias of 1.13 (0.19). 
When production environment (model 2) is incorpo-
rated, this prediction accuracy reduces to 0.18. Ad-
justed by heritability, we estimate a GEBV prediction 
accuracy of 0.45 ( . / . )0 18 0 16  for the model with pro-
duction environment as a fixed effect using this cross-
validation across CDCs. By comparison, the prediction 
accuracy of mass selection was 0.55. In addition, pre-
diction bias is the lowest for the model with environ-
ment 1.04 (0.26). On average across all CDCs, the 
confidence interval for the bias estimate includes 1, 
showing evidence that the GEBVs are unbiased on av-
erage.

DISCUSSION

We demonstrate by simulations that it is possible to 
separate genetic effects in smallholder farms using a 
flexible Bayesian model that simultaneously accounts 
for non-genetic random effects for farms and varying 
SNP variance. The model also provides a good way to 
produce interim GEBV for candidates or newly geno-
typed animals directly using estimated SNP effects, 
which provide a prediction equation. The proposed 
BayesR model is implemented in GCTB, a very effi-
cient, freely available software.

The application to monthly test day milk records of 
4,655 crossbred cows in India, with 106,109 records, 
689,750 autosomal SNPs, and an average farm size of 
1.7 animals per farm, yields an estimated heritability 
of 0.16 (0.04) in a model that also includes production 
environment. Using cross-validation, we estimated a 
GEBV prediction accuracy of 0.45, and a bias of 1.04 
(0.26). These estimates are consistent with those ob-
tained using a GBLUP approach, 0.42 in Al Kalaldeh 
et al. (2021), as well as the accuracy of mass selection 
(0.55). Genetic gains using genomics can therefore be 
substantial if GEBVs are used to shorten generation in-
tervals. For instance, if the generation interval reduces 
by half when using GEBVs, and the other parameters 
are constant in the breeder’s equation, the genetic gain 
will increase by 64%. When comparing our estimates 
with those found in other smallholder systems, we 
found that these accuracies are very similar to those 
obtained for milk yield in Kenya 0.32 to 0.41 (Brown 
et al., 2016) and Tanzania 0.53 to 0.59 (Mrode et al., 
2021). These studies in Africa used smaller reference 
populations and milk yield records but also obtained 
smaller estimated heritabilities for this trait.

Our study has some limitations. First, we did not fit 
breed of origin (BOA) models (Vandenplas et al., 2016) 
since they only show small improvements in accuracy 
of estimates compared with models that ignore BOA 
(Eiriksson et al., 2022; Sevillano et al., 2017; VanRaden 
et al., 2020). In smallholder settings, crossbreeding is 
more complex than in intensive or pasture-based pro-
duction systems. For example under Indian smallholder 
production, the crossbreeding program involves cross-
ing of large numbers of indigenous cattle population, 
which are not categorized into specific breeds, with 
Indian dairy breeds (Sahiwal, Gir, Red Sindhi, Thar-
parkar, and Deoni) as well as with exotic dairy breeds, 
predominantly Holstein/Friesian and Jersey resulting 
in different levels of admixture in the crossbred animals 
(Strucken et al., 2021).

Costilla et al.: DEVELOPING FLEXIBLE MODELS

Table 1. Genetic, farm, and environment effects (SD) for the BayesR models for milk yield

Parameter

Baseline (model 1)

 

+ Environment (model 2)

BayesR BayesC GBLUP BayesR BayesC GBLUP

Additive Genetic Variance σg
2 0.49 (0.08) 0.46 (0.06) 0.49 (0.07) 0.48 (0.10) 0.43 (0.06) 0.51 (0.07)

Residual Variance σe
2 2.66 (0.14) 2.68 (0.12) 2.64 (0.12) 2.55 (0.15) 2.60 (0.12) 2.52 (0.12)

Farm Variance σf
2 1.94 (0.07) 1.75 (0.09) 1.74 (0.09) 1.25 (0.07) 1.17 (0.07) 1.15 (0.07)

Heritability h g g e
2 2 2 2= +( )σ σ σ/ 0.16 (0.03) 0.15 (0.02) 0.16 (0.02) 0.16 (0.04) 0.14 (0.02) 0.17 (0.02)

Environment Low    −0.76 (0.05) −0.75 (0.05) −0.77 (0.05)
Environment Medium    0.84 (0.07) 0.84 (0.07) 0.84 (0.07)
Environment High    2.01 (0.08) 1.16 (0.08) 1.19 (0.08)
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Crossbreeding also increases the need for bigger 
reference populations since the inclusion of genetically 
divergent breeds can reduce prediction accuracy in ge-
nomic evaluations (Calus et al., 2014; Makgahlela et 
al., 2013) likely due to differences in causal variants and 
linkage disequilibrium patterns between markers and 
QTL across breeds. Furthermore, the results’ similarity 

between the different approaches taken here, GBLUP, 
BayesC and BayesR also suggests that a much larger 
training population might be required for an accurate 
genetic evaluation in the presence of large environ-
mental effects and crossbreeding and to exploit all the 
information provided by the high-density genotyping. 
One related limitation, and the reason why a forward-
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Figure 3. - MCMC convergence for all chains for the genetic parameters of the BayesR model with farm random effects and production 
environment (model 2).
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validation was not carried out, is that there were no 
new animals genotyped in 2020. In addition, there were 
only 402 animals genotyped in 2019 but they were 
from different geographical locations (farms, CDCs and 
States). We thus opted for the CDC cross-validation 
strategy presented here. As sample size grows, in terms 
of number of animals and records, this limitation will 
be alleviated.

Another potential limitation of BayesR, and other ge-
netic models that rely on animals with both genotypic 
and phenotypic information, is that farmers with phe-
notypic records and (historical) pedigree information 
will have no GEBV. The problem is complex because 
single-step GBLUP (ssGBLUP) (Misztal et al., 2009) 
relies on accurate pedigree recording for several genera-
tions, which is not the case for smallholder systems and 
further parameter calibration to make both pedigree 
and genomic relationships compatible. Additionally, 

SSGBLUP models have provided similar results to 
GBLUP in other smallholders’ contexts (Mrode et al., 
2021). There is therefore not perfect solution and we 
believe in continue the research efforts to develop ge-
netic models that although imperfect could provide the 
best performance for a given context.

Typically, Bayesian models also require longer run-
ning times than the conventional GBLUP. For the 
Indian data set at hand (4655 animals and 689,750 
SNPs), although the proposed BayesR model was 1.2x 
times faster than BayesC (11 vs 13 h), it was also 26.4x 
times slower than the conventional GBLUP (11 h vs 
25 min). In terms of computer memory, the proposed 
BayesR model only needed about 20% of the RAM 
memory (13GB) required by the BayesC and GBLUP 
models (64GB). However, this lower RAM consumption 
might just reflect an efficient software implementation 
of BayesR in GCTB, when compared with a general-
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Figure 4. - Posterior inclusion probability (PIP) in the BayesR model with farm random effects and production environment (model 2). 
Marker in chromosome 1 is an intron for ARHGEF26 and marker in chromosome 4 is within 100 kb of IMMP2L.

Table 2. Cross-validation results by cattle development center (CDC) for the BayesR models

CDC group Animals

Baseline (model 1)

 

+Environment (model 2)

Accuracy (r) Bias SE* Accuracy (r) Bias SE*

1 399 0.14 0.51 0.18 0.07 0.36 0.24
2 427 0.18 0.58 0.15 0.10 0.46 0.21
3 412 0.23 1.08 0.23 0.21 1.64 0.37
4 465 0.30 1.31 0.19 0.19 0.98 0.23
5 566 0.22 0.84 0.16 0.12 0.62 0.21
6 533 0.37 1.74 0.19 0.34 1.79 0.21
7 316 0.33 1.44 0.24 0.22 1.28 0.32
8 842 0.37 2.13 0.19 0.30 2.10 0.23
9 324 0.29 1.08 0.20 0.16 0.77 0.26
10 371 0.17 0.60 0.18 0.08 0.45 0.29
Average 466 0.26 1.13 0.19 0.18 1.04 0.26

* Standard error for the bias.
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purpose package like JWAS in Julia, rather than intrin-
sic differences between these genetic models.

Lastly, we might not be capturing environmental and 
management effects adequately for milk yield, overcor-
recting in the model by using both farm and production 
environment and reducing the estimated heritability. 
However, we have identified 2 candidate genes, IMMP2L 
and ARHGEF2, and observed a prediction accuracy of 
0.45 for this trait. These results are also consistent with 
those from a previous study using a GBLUP approach 
for the same data.

Taking these results together, BayesR provided simi-
lar genetic parameters and prediction accuracies but 
was computationally slower than GBLUP for the given 
Indian dairy smallholder data. Despite smaller accuracy 
of prediction than mass selection, both genetic models 
could provide higher genetic gain due to shorter gen-
eration intervals. In research settings, where running 
time and computational resources are not necessarily 
binding constraints, both models are good alternatives. 
However, in routine genetic evaluations time and com-
putational resources could be important factors to con-
sider when comparing the adoption of a genetic model. 
Currently, we are actively exploring alternative ways of 
incorporating environmental and breed effects in the 
genetic models for these smallholder dairy systems.

CONCLUSIONS

We demonstrate by simulations based on real geno-
types that using the proposed Bayesian model it is pos-
sible to separate genetic effects in smallholder farms, 
even when farm sizes are small (2 cows on average). 
For the case study of milk yield from Indian small-
holder farms, all 3 genetic models BayesR, BayesC 
and GBLUP provided similar genetic parameters. The 
heritability and GEBV accuracies for milk yield are 
much lower than those usually obtained in intensive or 
pasture-based systems. Further increases in the number 
of phenotype and genotyped animals in farm with at 
least 2 animals (preferably 3–5 to allow for dropout of 
cows) are needed to improve the accuracy of estimated 
genetic and farm effects in these smallholder dairy 
farms.
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