

Remote sensing of soils : a tool for digital soil mapping. Challenges and limitations

Gomez C., Vaudour E., Richer-de-Forges A.C.

"e THEIA netwo

Webinaire 2024-02-02

LISAH

• Introduction

• The Center of Scientific Expertise "Digital Soil Mapping" Theia

• Remote sensing to map soils

- Historical retrospective & general principles
- Existing programs: Copernicus, Theia
- Examples of achievements
- Disturbing factors
- Towards the integration of remote sensing data into digital soil mapping approaches
 - Historical retrospective & general principles
 - Existing programs: *GlobalSoilMap*
 - Examples of achievements

• Conclusion

Introduction

Services provided by soils

EJP SOI

To protect them and perpetuate the services they provide us ⇒ need to map soils and their properties

Soil descriptions:

A soil profile taken from the soil calendar. Source: Gabriela Brändle, Urs Zihlmann, Andreas Chevet.

\rightarrow Soil point data

Soil data

National soil mapping programs:

https://www.afes.fr/ressources/le-programmeinventaire-gestion-conservation-des-sols-defrance-volet-referentiel-regional-pedologique/ https://www.afes.fr/ressources/la-cartographie-des-sols-amoyennes-echelles-en-france-metropolitaine/

→ Static maps without uncertainty quantification

The Center of Scientific Expertise "Digital Soil Mapping" Theia

CES Digital Soil Mapping

Pôle Thématique Surfaces Continentales

The Center of Scientific Expertise "Digital Soil Mapping" Theia

https://www.theia-land.fr/ceslist/ces-cartographie-numerique-des-sols/

aital Soil Mapo

THEIA netwo

The Center of Scientific Expertise "Digital Soil Mapping" Theia

Objective 1 : Produce spatial estimates of soil properties

Available water capacity (AWC) of soils in mainland France (in mm of water)

after Roman Dobarco et al., 2021 https://doi.org/10.15454/9IRARJ Available water capacity (AWC) of soils in Languedoc-Roussillon

https://ckan.openig.org/dataset/cartesnumeriques-de-proprietes-des-sols-enlanguedoc-roussillon

Interactive mapping of soil properties in Brittany

https://geosas.fr/solsdebretagne/

The Center of Scientific Expertise "Digital Soil Mapping" Theia

Objective 2 : Federate and capitalize on efforts in methodologies and algorithms

 \rightarrow advance digital mapping methods, from sampling, choice of covariates (including those from remote sensing), modeling, and up to validation methods.

Objective 3 : Transfer know-how to operations

Popularization site:

https://cartograph-e.hub.inrae.fr/

French-speaking training planned for 2025

Remote sensing to map soils

Historical retrospective & general principles

Figure 1 – Courbes de réflectance de sols peu ou pas organiques

Girard, 1978. Emploi de la télédétection pour l'étude de l'humidité des Sols. *Houille Blanche*, *64*, 533–539, doi:10.1051/lhb/1978044

Notion of soil surface condition

"composition and organization of soil surface at a given time"

R. ESCADAFAL, 1989

©UMR EGC-Equipe Sol, March 2012

VAUDOUR E., GIRARD MC., 2010, *Pédologie*, chapitre 23. In Girard MC et Girard CM, Traitement des images de télédétection, Dunod, Paris.

Spectral behaviour and indices of soils

noir : végétation - blanc : eau

Figure IX - Index de brillance sur sols nus

SAINT et al., symp int Avignon 1981

Spectral behaviour and indices of soils

noir : végétation - blanc : eau

Figure IX - Index de brillance sur sols nus

SAINT et al., symp int Avignon 1981

14

Figure 3. Regression line for organic carbon with TM 5/4. Error bars are standard error of the mean of soil samples.

Frazier and Cheng, 1989 Remote Sensing of Environment https://doi.org/10.1016/0034-4257(89)90123-5

Spectral behaviour and indices of soils

General principles

European Joint Programm

COPERNICUS

Accueil

IP

iropean Joint Proaran

19

Ø View image information & credits

Cooperation between: UE members States ESA EUMETSAT ECMWF Spatial agencies States

Accès aux données

http://www.copernicus.eu

Families of satellites dedicated to Copernicus "The Sentinels"

Contributing missions from National, European or International organisations

Achievements : soil types

Bayesian Maximum likelihood classification of viticultural soils over the Rhone Valley

Vaudour, 2008 https://doi.org/10.1080/10106040701207555

Achievements : homogeneous soil management zones

example of digital viticultural zoning from regression trees

Vaudour et al., 2010 https://doi.org/10.1016/j.rse.2010.08.001

Achievements : identification of soil roughness in order to map soil tillage operations

https://doi.org/10.1016/S0034-4257(02)00060-3

EJP SOIL 24

Richter et al., 2007 https://doi.org/10.2136/sssaj2008.0025

Achievements : soil properties from single-date multispectral imagery

clay minerals

Bourguignon et al., 2007 https://doi.org/10.1144/SP283.10

Achievements : bare soil reflectance Time scale : temporal mosaic of bare soil

Demattê et al., 2018 https://doi.org/10.1016/j.rse.2018.04.047

strategies:

-indices thresholding/masking -per pixel or per date

Vaudour et al., 2021 https://doi.org/10.1016/j.jag.2020.102277

Castaldi et al., 2023 https://doi.org/10.1016/j.isprsjprs.2018.11.026

Time scale : temporal mosaic of bare soil

Castaldi et al., 2023 https://doi.org/10.1016/j.isprsjprs.2018.11.026

EJP SOIL 28

Performances depend on instrumental and environmental characteristics

Performances depend on instrumental and environmental characteristics

Impact of the spectral resolution on clay prediction

Performances depend on instrumental and environmental characteristics

Impact of the atmospheric correction model on clay prediction

		S2 acquis	S2 acquisition date (DD-MM-YYYY)				
		03-02- 2017	16-02- 2017	23-02- 2017	26-02- 2017		
MAJA	R_{cv}^2	0.62	0.63	0.62	0.61		
Sen2Cor	R_{cv}^2	0.62	0.63	0.62	0.60		
LaSRC	R_{cv}^2	0.63	0.62	0.62	0.59		

Performances depend on instrumental and environmental characteristics

Impact of the surface conditions on clay prediction

			S2 acquis	ition date (D	D-MM-YYYY	0							
			03-02- 2017	16-02- 2017	23-02- 2017	26-02- 2017	08-03- 2017	25-03- 2017	28-03- 2017	04-04- 2017	24-04- 2017	27-04- 2017	07-05- 2017
	MAJA	R_{cv}^2	0.62	0.63	0.62	0.61	0.52	0.74	0.71	0.62	0.80	0.73	0.72
	Sen2Cor	R_{cv}^2	0.62	0.63	0.62	0.60	0.50	0.76	0.72	0.62	0.80	0.74	0.72
	LaSRC	R_{cv}^2	0.63	0.62	0.62	0.59	0.50	0.75	0.72	0.63	0.77	0.72	0.68
Gomez et al., 2021 https://doi.org/10.1016/j.geoderm	na.2022.1159	959			10								
EJP SOIL 32			San State	K G S	102					7/43EV			A.

Performances depend on instrumental and environmental characteristics

Impact of the vegetation on SOC prediction

Performances depend on instrumental and environmental characteristics

Impact of the vegetation on SOC prediction

Towards the integration of remote sensing data into digital soil mapping approaches

EJP SOIL 37

GlobalSoilMap

Deliver a digital database of soil properties around the world, measuring 90x90m, along with their uncertainties, freely downloadable

- Fitted to the SRTM -90-m grid
- 5 15 cm W
- 15 30 cm

0 - 5 cm

- 30 60 cm
- 60-100 cm
- 100-200 cm
- Effective depth

- Whole world
- 18 billion points and blocks (66.5 M in France)
- Point and cell prediction
- Quantified properties
 - Essential for modeling in space and time

- Scalable with the integration of new data or new methods
- Easier to harmonize than conventional cards
- Easy to cross-reference with other sources of spatial information

GlobalSoilMap global program specifications

Table 3

Summary, in chronological order, of previous quantitative scorpan-like studies in which soil classes and/or attributes were spatially predicted

Soil		Predictive	Predict	tive	fac	tors		Study	No. of	Grid distanc	e (m)	Location	Authors	
Sclass	Sattribute	model (f)	s c	0	r	р	a n	area spatial extent	observations	Soil sample Image		•		
Soil drainage classes		Linear regression			×			D3				USA	Troeh (1964)	
	Soil horizon thickness, subsoil mottle, depth to mottle	Linear regression			×			D1	90		10	USA	Walker et al. (1968)	
Soil classes		Discriminant analysis	×					D3	30	1000		USA	Pavlik and Hole (1977)	
Soil classes	Degree of podzolisation	Modified principal component analysis (Escoufier, 1970)			×	×		D4	38		500	France	Legros and Bonneric (1979)	
	Thickness of A horizon, depth to CaCO ₃	Discriminant analysis, linear regression			×			D2	522	10, 50	10, 50	Canada	Pennock et al. (1987)	
Soil classes		Clustering	×		×			D2				USA	Lee et al. (1988)	
	Organic C, Fe/C	Clustering and regression		×				D2	32			USA	Frazier and Cheng (1989)	
	Organic C, P	Regression, kriging		×			×	D2	172	15	15	USA	Bhatti et al. (1991)	
	Soil morphological, physical and chemical properties	Ordination techniques	×		×			D2	194	2, 8	10	Australia	Odeh et al. (1991)	
Soil classes	properties		×		×			D2	194	2, 8	10	Australia	Odeh et al. (1992)	
Soil drainage classes		Discriminant analysis			×	×		D3	305			USA	Bell et al. (1992, 1994)	
	Clay content, CEC, EC, pH, bulk density, COLE, θ	Ordination, GLM			×	×		D3	224	300	100	Lower Macquarie Valley, Australia	McKenzie and Austin (1993)	
	at -10 and -1500 kPa			L	L	J							McB	

McBratney et al., 2003 https://doi.org/10.1016/S0016-7061(03)00223-4

- "Classic" covariates:
 - Derivatives of digital elevation model (DEM)
 - Normalized Difference Vegetation Index (NDVI)
 - Enhanced vegetation index (EVI)
- + all bands of Landsat-8 imagery (11 bands)

- "Classic" covariates: derivatives of DEM, NDVI, Land use map, and climate, geology, topography, and soil information...
- + 11 spectral indices calculated from Sentinel-2 mosaics, based on images close to sowing periods (Mars & Dec) in 2016-2017.

Soil organic carbon content mapping

RS models	R ²
Test_1	0.18
Test_2	0.19
Test_3	0.11

- "Classic" covariates: derivatives of DEM, position and parent material.
- + Bare Soil Temporal Mosaic based on:
 - Test_1 : all S2 images (2016 2021)
 - Test_2 : S2 images between February and May (2016-2021)
 - Test_3 : S2 images between July and November (2016-2021)

Soil organic carbon content mapping

Node	covariates:

- "Classic" covariates: derivatives of DEM, position and parent material.
- + Bare Soil Temporal Mosaic based on:
 - Test_1 : all S2 images (2016 2021)
 - Test_2 : S2 images between February and May (2016-2021)
 - Test_3 : S2 images between July and November (2016-2021)

RS models	R ²	DSM Models	R ²
Test_1	0.18	+ "Classic" covariates :	0.26
Test_2	0.19	derivatives of DEM, position and	0.33
Test_3	0.11	parent material	0.27

Soil organic carbon content mapping

Model covariates:

- "Classic" covariates: derivatives of DEM, position and parent material.
- + Bare Soil Temporal Mosaic based on:

45

- Test_1 : all S2 images (2016 -2021)
- Test_2 : S2 images between February and May (2016-2021)
- Test_3 : S2 images between July and November (2016-2021)

Urbina-Salazar et al., 2023 https://doi.org/10.3390/rs15092410

Mapping soil clay content by training Digital Soil Mapping models with surrogate measurements obtained from Sentinel-2 data

Soil clay content mapping

- "Classic" covariates: derivatives of DEM & NDVI.
- + all bands of Sentinel-2 imagery (10 bands)

Mapping soil clay content by training Digital Soil Mapping models with surrogate measurements obtained from Sentinel-2 data

Soil clay content mapping

- "Classic" covariates: derivatives of DEM & NDVI.
- + all bands of Sentinel-2 imagery (10 bands)

Conclusion

Thank you for your attention

cecile.gomez@ird.fr

emmanuelle.vaudour@inrae.fr

anne.richer-de-forges@inrae.fr

More information:

Richer-de-Forges A.C., Chen Q., Baghdadi N., Chen S., Gomez C., Jacquemoud S., Martelet G., Mulder V.L., Urbina-Salazar D., Vaudour E., Weiss M., Wigneron J.-P., Arrouays D. (2023). **Remote Sensing Data for Digital Soil Mapping in French Research** - **A review.** Remote Sensing. 15, 3070. Special Issue Remote Sensing for Soil Mapping and Monitoring https://doi.org/10.3390/rs15123070

