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Abstract

Microorganisms form complex communities known as microbiota, in-
fluencing various aspects of host well-being. The Generalized Lotka-
Volterra (GLV) model is commonly used to understand microorganism
population dynamics, but its application to the microbiota faces challenges
due to limited bacterial data and complex interactions. This preliminary
work focuses on using a Physics Informed Neural Network (PINN) and
synthetic data to simulate bacterial species evolution driven by a GLV
model. The approach is calibrated and tested on several models differing
in size and dynamic behavior.

Introduction
Microorganisms play an essential role as abundant and diverse entities within
ecosystems, exerting a significant influence on biological functioning. They often
come together in complex communities called microbiota, establishing symbi-
otic relationships with their environment to maintain a state of equilibrium.
However, the spatial distribution of microorganisms in the human body is not
homogeneous, varying according to habitat or anatomical site [28]. In the di-
gestive tract, for example, the concentration of microorganisms increases from
the stomach, where the acidity and the presence of digestive enzymes are unfa-
vorable for the development of bacteria, towards the colon where conditions are
optimal for their growth, the temperature is constant (37 °C), the environment
is not very acidic and is rich in water, transit is slow and food is abundant [14].
The gut microbiota found mainly in the human colon is a dynamic ecosystem
whose development is influenced by several factors: genetics, age, geographical
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location, stress, diet, exposure to infectious agents or pollutants, and antibiotic
intake [22, 31]. Numerous studies continue to reveal that the gut microbiota
plays a crucial role in various aspects of our well-being [3], such as digestion,
regulation of the immune system [17], protection against infection, vitamin syn-
thesis, and even influences on cerebral and metabolic functions [7]. Imbalances
or alterations in this ecosystem can be associated with a wide range of health
problems, from digestive disorders and autoimmune diseases to obesity and neu-
rological disorders [8]. Certain disturbances in the composition and functions
of the microbiota resulting in dysbiosis can lead to certain syndromes such as
irritable bowel syndrome [14]. The microbiota can also be used as a medicine
(using fecal transplants) to treat certain illnesses such as antibiotic-resistant
diarrhea caused by Clostridium difficile [14]. In natural ecosystems, the soil
microbiota actively participates in the decomposition of organic matter, releas-
ing essential nutrients for plants, and some bacteria can establish symbiotic
relationships with plant roots, promoting their growth by providing additional
nutrients [11, 25]. A better understanding of the microbiota could have a major
impact on environmental sustainability, improving human health and manag-
ing ecosystems but despite advances in studies of bacterial ecological dynamics,
the question of the nature of bacterial interactions in the intestinal microbiota
remains open.

The Generalized Lotka-Volterra (GLV) model is commonly used to model
and anticipate variations in microorganism populations within an ecosystem
[33, 32, 21]. In the case of the microbiota, it could provide information on how
changes in the composition and abundance of a microorganism population could
influence the ecosystem [15, 6]. Furthermore, by analyzing the model parame-
ters, we can identify the microbial species that have a significant influence on
the dynamics of the microbiota as a whole [29, 10], predict interspecies interac-
tions [30], species coexistence [13], and even community structure and dynamics
[5]. However, it is well known in the literature that GLV model does not always
capture certain complexity of microbial interactions [9, 23]. This limitation
becomes particularly pronounced when modeling multiple species, leading to
computational challenges such as extensive simulation times and the emergence
of numerically unstable behaviors. As a result, there is a pressing need for al-
ternative approaches that can efficiently and accurately handle the intricacies
of microbial interactions without solving explicitly the GLV system, especially
in scenarios involving numerous species exhibiting complex and potentially un-
stable behaviors.

Physics Informed Neural Network (PINN) is a recent and appealing approach
that allows the fast and accurate simulation of large and complex dynamical
systems [27]. A PINN is a machine learning framework that combines neural
networks with physics-based principles to efficiently solve complex physical prob-
lems. PINNs are designed to handle supervised learning tasks while respecting
prescribed physical laws expressed through partial differential equations (PDEs)
or ordinary differential equations (ODEs). They provide a powerful approach
to solving problems based on PDEs and ODEs, but training PINN for certain
ODE models with either sensitivity to initial conditions, or complex behavior,
such as the ones presented above, requires an adequate architecture as well as
a significant amount of synthetic training data and computational effort or an
accurate emulation [2].

In the present work, we will design a PINN method, and apply it to the GLV
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model to simulate the evolution of bacterial species. The paper is organized as
follows: in Section 1, we present the governing equations of the GLV model
and provide some examples applied to the context of bacterial populations.
Section 2 introduces the PINN framework, and presents some preliminary results
about the architecture employed in this study. Finally, Section 3 shows the
results obtained using the PINN to solve the GLV model, applied to synthetic
cases of bacterial populations with and without added noise to the generated
observations.

1 Generalized Lotka-Volterra model
In this section, we introduce the Generalized Lotka-Volterra model [32]. This
model has been developed to mathematically model the coexistence of various
numbers of species in a closed system in a competitive or predator environment.
Section 1.1 is devoted to the introduction of the notation and the description
of such model, while Section 1.2 presents two examples that will be used in the
sequel for numerical applications.

1.1 Description of the model
Assuming large and well-mixed bacteria population, with only bidirectional in-
teractions between bacteria populations, and also assuming that their composi-
tion, diversity, and dynamics are not influenced by external factors or environ-
mental conditions (e.g. physical and chemical parameters such as temperature,
pH, humidity, light intensity, nutrient availability, and oxygen levels, host in-
teractions, ...), then the evolution of Ns different species of bacteria population
over a horizon of time tmax can be described by a Generalized Lotka-Volterra
(GLV) model [33]:

dxi

dt
(t) = µixi(t) +

Ns∑
j=1

aijxi(t)xj(t), ∀t ∈ [0, tmax], 1 ≤ i ≤ Ns (1)

with the initial condition xi(t = 0) = xi0. The scalar xi(t) represents the abun-
dance of the bacterial population of species i at time t, µi represents the intrinsic
growth rate of the bacterial population i, and aij describes the interaction co-
efficient representing the direct effect of one unit of biomass of the bacterial
population of species j on the growth rate of the bacterial population of species
i. For instance, a negative coefficient aij means that the population j has a neg-
ative impact on the growth of the population i, e.g. competition or predation
by population j on population i. On the other hand, a positive coefficient aij
means that the presence of the population j enables the population i to thrive,
e.g. cooperation between the populations i and j or predation by population i
on population j.

However, since aij and µi can take any signs and values, several behaviors
can be observed [16, 19, 12, 18] such as oscillations, stable equilibrium with
coexisting species, extinction of some species or even demographic explosion or
chaos.

The simulation of GLV models can raise numerical issues, to prevent them
and avoid unrealistic negative solutions, we assume positive initial conditions
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and use the logarithmic formulation of the model. For t ∈ [0, tmax], dividing by
xi(t) in Equation (1) leads to the following formulation:

d log(xi(t))

dt
= µi +

Ns∑
j=1

aijxj(t) (2)

Setting µ = [µ1, · · · , µNs ]
T , A = (aij)1≤i,j≤Ns and u = [u1, · · · , uNs ]

T with
ui = log(xi), Equation (2) can be written under the matrix form:

du(t)

dt
= µ+A · exp (u(t)) (3)

with the initial condition u(0) = u0.
In the following, the matrix θ denotes the matrix of the GLV parameters,

which contains the intrinsic growth rate and the interaction coefficients:

θ =

 µ1 a11 . . . a1,Ns

...
...

. . .
...

µNs aNs1 . . . aNsNs


In this study, the classical solver of the GLV model employed as reference is

implemented in Python using the odeint function from the scipy.integrate
library. In the following, we denote by exact solution, or true solution utruth
the trajectories computed with such solver knowing a priori the values of the
parameters θ.

1.2 Illustrative cases for numerical simulation of the GLV
model

As mentioned above, the solution of the GLV model can exhibit very different
behavior. While GLV models with three species or fewer have been extensively
studied [18], there are few theoretical results on GLV models in higher dimen-
sions, except for models with specific structures such as bounded competitive
GLV (negative off-diagonal terms in the interaction matrix), cooperative sys-
tems (positive off-diagonal terms). We refer the reader to [4] for a complete
survey of available theoretical results.

If the parameters (µ,A) are taken randomly, the probability to reach a
situation where only one species outlives while all the others go extinct increases
with the system dimension. Species co-existence through stable oscillations or
steady state is indeed non-generic.

A possible approach to obtain an oscillating model consists of generating a
matrix A that possesses specific properties:

(i) its diagonal elements and the vector µ are set to zero, effectively nullifying
any self-impact of species;

(ii) the matrix A is antisymmetric, guaranteeing that the interaction between
species i and species j is equal in magnitude but opposite in impact to the
interaction from species j to species i (predation interaction);

(iii) the sum of each row in A is precisely zero, thereby guaranteeing a com-
pensatory effect for the impact of one species on another.
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Assumptions (i) and (ii) ensure the total population to be constant over time
(see [4, Chap. 3]), whereas (iii) ensures that vectors with equal, strictly positive
coordinates are fixed points of the system. In the case of systems with even
dimensions, after [4, Chap. 3], such systems are Hamiltonian and a strictly
convex Hamiltonian can be constructed, which guarantees (see e.g. [24]) that
the corresponding GLV model exhibits oscillatory dynamics.

For the general GLV model, [4, Theorem 5] provides a sufficient condition
for the asymptotic convergence towards a stable, coexistence equilibrium, which
refers to a situation where the interactions between the different species reach an
equilibrium point where they coexist sustainably. Indeed, if the model parame-
ters ensure that the growth rates and interactions among different species bal-
ance each other, resulting in a strictly positive equilibrium denoted as −A−1µ,
and if there exists a non-negative diagonal matrix D satisfying AD+DA⊤ be-
ing negative-definite, then the positive equilibrium is both stable and globally
attractive in the positive region of the space. This characterization suggests a
method to generate such parameters:

1. Randomly generate a pair (µ,A) ∈ RNs × RNs×Ns , with µ ≥ 0 and the
diagonal of A < 0, and imposing 20 to 40 % of the extra-diagonal terms
of A to be null.

2. Solve the equation µ + AX = 0. If any element of X is negative, then
try again to step (1), else continue to step (3).

3. Set D := diag(X), if AD + DA⊤ is negative-definite, then keep the
generated parameters, else eliminate it and go back to step (1).

To illustrate the capability of the PINN to accurately capture the expected
outcomes, two illustrative test cases with distinct behaviors will be considered.
In this section, the test cases and the related numerical simulations are pre-
sented.

Example 1.1. We introduce a first example with Ns = 3 bacterial species.
The interaction matrix, the intrinsic growth rate, and the initial population are
chosen as follows:

A3 =

 −2 −5 −0.5
−0.5 −1 −1.2
−1 −0.5 −1

 , µ3 = [7.5, 2.6, 2.5]
T and u0 = [5, 3, 1]

T (4)

The growth of one species triggers a reduction in another, fostering a re-
ciprocal cycle until a state of stationary equilibrium is achieved. The evolution
over time of these three populations for this illustrative example is presented in
Figure 1.

Example 1.2. We consider a bacterial population with Ns = 20 species. Us-
ing the algorithm described previously, we generate a parameter matrix θ20 =
(µ20,A20) such that the system possess at stationary state −A−1

20 µ20. The
obtained matrix is available at https: // forgemia. inra. fr/ lorenzo. sala/
cemracs2023/ -/ blob/ 10fc0e7037c9d4ce042bade5b5dd4a1a6859eea4/ data/
20_ theta. csv . An example of the simulation of the system, using random ini-
tial states is presented in Figure 2. The theoretical limits for the populations are
also shown. For this case, we select a final simulation time tmax = 20 s.

5

https://forgemia.inra.fr/lorenzo.sala/cemracs2023/-/blob/10fc0e7037c9d4ce042bade5b5dd4a1a6859eea4/data/20_theta.csv
https://forgemia.inra.fr/lorenzo.sala/cemracs2023/-/blob/10fc0e7037c9d4ce042bade5b5dd4a1a6859eea4/data/20_theta.csv
https://forgemia.inra.fr/lorenzo.sala/cemracs2023/-/blob/10fc0e7037c9d4ce042bade5b5dd4a1a6859eea4/data/20_theta.csv


0 5 10 15 20

0

1

2

3

4

5

t [s]

P
op

ul
at

io
n

N1
N2
N3

Figure 1: Results of the simulation of the GLV model with three populations of
microbes for an initial population u0 = [5, 3, 1]

T over an interval of time [0, 20] s.
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Figure 2: Solution of the GLV model with a convergent state, where 20 species
are considered, over the time interval [0, 20] s. A random initial condition is
considered. The dashed lines represent the theoretical values of the stationary
stage −A−1

20 µ20.
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2 Physics Informed Neural Network
This section introduces the neural network framework that is used to simulate
the GLV model: Physics-Informed Neural Networks and the discussion about
its architecture.

2.1 PINN framework
Physics-Informed Neural Networks or PINNs have been introduced in [27] as
neural networks designed to address supervised learning tasks while adhering
to specified laws of physics outlined by nonlinear partial differential equations.
It combines both supervised and unsupervised learning. In traditional super-
vised learning, the network learns from a labeled training dataset, where inputs
and outputs are matched: the network aims at minimizing a loss function that
measures the difference between its predictions and the data labels. In unsu-
pervised learning, the network is exposed to unlabeled data, and its objective is
to identify patterns or relationships within the data without explicit guidance
from labeled examples. The PINNs are trained to simultaneously minimize the
gap between the predictions and the training dataset and satisfy the governing
physics equations, thereby incorporating both types of learning to achieve a
comprehensive and physics-informed model.

The goal of the PINN is to construct a neural network approximation ûθ(t)
of the solution u(t) of Equation (3) based on the knowledge of this equation,
where ûθ : [0, tmax] → RNs denotes the function predicted by the network for a
given parameter θ. For t ∈ [0, tmax], we introduce the residual L of the GLV
model (3) with respect to the prediction ûθ at time t defined as

L(ûθ; t) :=
dûθ(t)

dt
−
(
µ+A exp(ûθ(t)

)
. (5)

In the present work, we add second information based on a sample of data U (e)

to improve the accuracy of our predictions given a fixed grid time points. The
data, in this specific contribution, are generated numerically, but eventually
experimental data should be provided. Thus, the loss function should both
satisfy the model (3) and fit the data U (e).

The neural network approach proceeds by using an optimizer to update the
weights and bias by minimizing a loss function. This loss function is defined as
a linear combination of quantities that measures the quality of our prediction.
Specifically in the context of GLV model, we introduce two types of errors for
the development of our PINN:

• MSEdata: the mean squared misfit by the data, also called the data loss,
which is used to assess the extent to which the model can faithfully repro-
duce the data presented

MSEdata(t
(e)) =

1

NsNe
obs

Ns∑
i=1

Ne
obs∑

k=1

(
ûi(t

(e)
k )−U

(e)
i,k

)2

(6)

for an experiment e, t(e) =
(
t
(e)
i

)Ne
obs

i=1
and Ne

obs are respectively the time of
observations and the number of observations, U (e)

i,k represent the quantity

7



0 2000 4000 6000 8000 10000
10−5

10−4

10−3

10−2

10−1

100

101

Epochs

M
ea

n
Sq

ua
re

E
rr

or

MSEdata

MSEL
Loss

Figure 3: Evolution of the data loss MSEdata (6), physical loss MSEL (7) and
loss function Loss (8), over the epochs during the training of the PINN for the
Example 1.2

of bacterial population of species i observed at time t
(e)
k and ûi

θ is the
neural network prediction of the bacterial population of species i: û =(
ûi

)Ns

i=1
;

• MSEL: the mean squared residual, also called the physical loss, which
enforces the structure imposed by (5) at a finite set of collocation point
tr = {tj}

Nf

j=1 ⊂ [0, tmax]

MSEL(tr) =
1

NsNf

Ns∑
i=1

Nf∑
j=1

Li(û; tj)
2, (7)

where L(û; t) = (Li(û; t))
Ns

i=1.

Note that the influence of the initial conditions is included in the model, by
the loss MSEdata. We introduce the loss function to be minimized, involving a
hyperparameter λPINN > 0:

Loss = MSEdata(t
(e)) + λPINNMSEL(tr) (8)

We present in Figure 3 an example of the evolution of the MSEs of the loss,
over the iteration during the learning process of the PINN. The loss, which is
a linear combination of these MSEs is also shown. The results presented are
obtained from the case with 20 bacterial species, introduced in Example 1.2.
We remark that the two MSEs have an adversarial behavior: one decreasing
tends to make the other increase, and vice versa. This process globally results
in a reduction of the target loss.
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2.2 PINN architecture
In this section, we discuss the chosen architecture for the neural network trained
within the PINN framework exposed above. A single neural network will cor-
respond to a single experiment e, and will therefore be trained to predict, for
a time t as input, the population of the Ns species in the given experiment.
By adopting a single neural network, the model is tasked with predicting the
population dynamics of all Ns species at a given time t within the specific exper-
iment. The rationale behind this decision is to streamline the training process
and enhance efficiency instead of considering a different neural network for each
species. This consolidated architecture simplifies the complexity of the overall
framework and promotes a more unified and manageable training procedure.
This strategic choice aimed at achieving a balance between computational effi-
ciency and predictive accuracy, providing a pragmatic solution for the modeling
objectives within the PINN framework. Thus, the proposed architecture, out-
lined in Figure 4, is composed of successive neural layers of various sizes and
utilizes the hyperbolic tangent as activation function. The hyperparameters
governing the number and size of intermediate layers, denoted as Nlayers and
Slayers respectively, are subject to tuning, which is detailed in Section 2.3.

t

α1,1

...
α1,Ns

α·,1
...
...

α·,Slayers

. . .

α·,1
...
...

α·,Slayers

û1(t)
...

ûNs(t)

tanh(·) tanh(·) tanh(·)

Nlayers layers of size Slayers

Figure 4: Proposed architecture for the PINN framework: an input layer t, a
second layer of size Ns, Nlayers of size Slayers, and an output layer of size Ns

to predict the population of the different species evaluated at time t. We use a
hyperbolic tangent activation function for all our layers.

This chosen architecture aims to strike a balance between model complexity
and predictive accuracy, leveraging the interconnectedness of species dynamics
while maintaining computational feasibility.

In the following, we present two different aspects that have been investigated
to increase the performance of the PINN framework, notably the strategy to tune
the architecture hyperparameters and the application of time normalization to
the classical GLV model.

2.3 Selection of hyperparameters
Setting up the PINN described in Section 2.1 requires choosing λPINN as well
as the architecture of the multilayer perceptron (the number of layers Nlayers,
and the size of these layers Slayers) and the size of the training set (Nepochs).
We decided to use Optuna [1], an open-source hyperparameter optimization
framework, to search the hyperparameter space to find the best value for these
hyperparameters with respect to a chosen metric. This metric, EPINN, will be
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the relative error of our prediction concerning the true solution at each colloca-
tion point:

EPINN =
1

Ns

Ns∑
j=1

∥∥∥ûj − uj
truth

∥∥∥2
L2([0,tmax])∥∥∥uj

truth

∥∥∥2
L2([0,tmax])

(9)

We explore the tuning of the hyperparameters Nepochs, Nlayers and Slayers.
The objective value optimized by Optuna, presented in the following results, is
the logarithm of the error EPINN. When selecting the architecture of the PINN,
we also need to keep in mind the computational cost that would be required by
a more complex architecture: the more parameters are involved (that is exactly
(3 + Slayers)Ns + (Ns + 1+ (Nlayers − 2)(Slayers + 1))Slayers), the more time will
be needed to perform the training of the neural network.

We present in Figure 5 various findings of our investigation performed on the
oscillatory test case with Ns = 3. Precisely, Figure 5(a) shows the impact of the
hyperparameters on the prediction error EPINN, while Figure 5(b) illustrates the
error distribution map observed as the size Slayers and number of layers Nlayers
vary. As expected, the results indicate that the error is smaller when these two
parameters are higher. The interesting finding is that the Slayers affects more
the performance than Nlayers, see Figure 5(a). Moreover, when Nlayers ≥ 2 we
do not see such an improvement in the results, this behavior is also notable
for Slayers > 20. In Figure 5(c) we display the evolution of the prediction error
EPINN according to the value of the most influential hyperparameter Slayers. We
recover the fact that the wider the layers are, the more precise the prediction
is and the threshold Slayers > 20 where no appreciable increase of accuracy is
highlighted. In order to understand the operations carried out by Optuna, we
additionally use different colors to illustrate each stage within the trial process.
Finally, we performed the same study, focusing on the computational time to
find a balance in terms of efficiency for the architecture of the PINN, as presented
in Figure 5(d). The impact is measured on two metrics: the prediction error
EPINN and the computational time needed to train the neural network, at a
fixed number of epochs. We recover that the size of the layers impacts the
performance, but less affects the time of simulation: the training of a deeper
neural network will take more time than the training of a wide one.

In light of all these results, we hereafter select the hyperparameters Nepochs =
2000, Nlayer = 2 and Slayer = 7 × Ns, giving the following architecture to the
neural network: [1, Ns, 7×Ns, 7×Ns, Ns]

2.4 Time normalization
To enhance the stability of numerical computations during the training of PINN,
expedite the convergence of PINN learning by mitigating potential issues like
vanishing gradients and gradient explosions as discussed in [20, 34], and facil-
itate the optimization process by improving the handling of diverse scales in
model parameters, we propose a modification to the GLV model introduced in
Section 1.1. Originally defined over a finite time interval [0, tmax], the model is
reformulated by normalizing the time, leading to a formulation defined over a
normalized time interval [0, 1]. Normalization is a widely adopted approach in
machine learning for enhancing neural network performance. In this context,
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specifically, data contain significant variations from one timescale to another,
time normalization would help the model to focus on the underlying patterns
(dynamics of competition, predation, cooperation, or other interactions between
species that persist over significant time scales despite noise or short-term vari-
ations in the data) rather than on variations in amplitude. With this rationale,
to obtain the normalized version of the GLV model, we perform the following
change of variable T := t/tmax. Hence, the GLV model (3) is rewritten as:

du(T )

dT
= tmax

(
µ+A · exp(u(T ))

)
for T ∈ [0, 1] (10)

This change of variable leads to a change also in the loss function (8), specifically
in the physical loss MSEL (7) leading to change of the hyperparameter λPINN:

λPINN
normalized = λPINN(tmax)

2. (11)

On Figure 6, the PINN predictions û obtained with the original GLV model
(3) and with the normalized GLV model (10) using the appropriate scaling of
λPINN are compared for both cases introduced in Section 1.2.

These results suggest that the prediction is better when time normalization
is used, confirming our hypotheses. Specifically, for the oscillatory test-case
presented, see Figure 6(a), the mean relative error on the predicted trajectories
(9) is E

w/o norm
PINN = 0.14 without the normalization and E

w/ norm
PINN = 2.04 · 10−2

with the normalization. For the second test case with Ns = 20 species, see
Figure 6(b), even though it is less striking than in the oscillatory case, the
time normalization enables to improve the prediction performance. The mean
relative error on the predicted trajectories is E

w/o norm
PINN = 0.11 without the

normalization and E
w/ norm
PINN = 7 · 10−2 with the normalization.

We figure that with the time normalization, the error gains one order of
magnitude. Hence, we will consider the normalized version of the PINN for fur-
ther simulations. Hereafter, by abuse of notation, t will refer to the normalized
time variable and λPINN to the normalized hyperparameter λPINN

normalized.

3 Numerical results over the influence of data
This section presents some numerical results obtained with the PINN described
in the previous section. The cases introduced in Examples 1.1 and 1.2 will be
both used in the following to compare û the approximation computed by the
PINN with the reference solution utruth computed by solving the GLV model
introduced in Sec. 1 for the two specific sets of given parameters θ. In the
present study, using the reference solution of the GLV model, we generate syn-
thetic data to train the PINN. Still, the impact of different behavior of the
dataset on û is highlighted in this study in order to test the robustness of the
proposed approach to potential issues that may arise when working with real
data. To do so, the following situations are considered hereafter:

1. generating data on a fixed equidistant grid over the time interval [0, tmax]
or selecting those times randomly from a uniform distribution;

2. intentionally reducing the number of available data, to simulate missing
or few data in actual experiments;
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(b) Ns = 20, only 4 species are presented.

Figure 6: Comparison of the PINN predictions with and without time normal-
ization. The full blue line is the true solution of the model, and the dashed
lines are the predictions of the two PINNs, with time normalization (green) or
without it (red). The appropriate scaling for λPINN

2 is applied.

3. adding noise to the data, to simulate the noise in actual experiments.

In the following we analyze the accuracy and the efficiency of the PINN with
respect to these three situations for the two illustrative examples presented in
Sec. 1.2.

3.1 Impact of data sampling strategy
In this section, we focus on the impact of the data sampling on the performance
of the prediction of the PINN. To begin with, we look at the distribution of the
data over the time interval [0, tmax]. Two data sets are generated. In the first
data set, the data are generated over a uniform grid of the time interval. In the
second dataset, the data are generated at times randomly sampled following a
uniform distribution in the time interval. The predictions of the PINNs trained
with these two datasets and for the two test cases are shown in Figure 7. For
the case with 3 species, see Figure 7(a), the errors are EPINN = 0.17 for random
times and EPINN = 0.13 for equidistant time ones. On the other hand, the case
with 20 species results in EPINN = 3.56 · 10−3 for random times and EPINN =
3.37 · 10−3 with equidistant time ones, see Figure 7(b).

For both cases, the impact of the distribution of the data on the PINN’s
performance is not remarkable: the resulting PINN approximations û are similar
using different strategies. This outcome is interesting from an experimental
point of view, where the sampling strategy can be constrained.
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Figure 7: PINNs predictions trained with data generated on a fixed equidistant
time grid (orange dashed line) and on times randomly selected from a uniform
distribution (blue dashed line) over the time interval [0, tmax].

3.2 Influence of the number of data used in the training
on the network’s prediction

First, we focus on the oscillatory example with Ns = 3 species, described in
Example 1.1. From the model parameters θ3, two sets of data with various
sizes are generated: one with Nobs = 2 and Nobs = 12. The results of the
prediction of the PINN for both sets of data are presented in Figure 8. For
a small number of data, the PINN is not able to properly approximate the
reference solution and the predicted trajectories are not able to capture the
behavior of the true solution. However, as the number of data increases, the
prediction becomes more accurate. It is also highlighted by the mean relative
errors (9) that is E

(2)
PINN = 0.25 for the PINN trained with 2 observation data

and E
(12)
PINN = 7 · 10−2 when 12 observations are provided.

Secondly, we analyze the test case where 20 species are considered, with the
convergence toward a stationary state (Example 1.2). The results are presented
in Figure 9 for two different training sets: one with Nobs = 3 (Figure 9(a)) and
one with Nobs = 11 (Figure 9(b)). Note that only 4 species are presented. We
remark that, with a small number of observations, unlike the oscillatory case,
the PINN tends to approximate fairly well the trajectories and fits perfectly the
theoretical limit. Precisely, the error is E

(3)
PINN = 5.16 · 10−3. Doing the same

with more data (Nobs = 11), see Figure 9(b), we remark that predictions of
the PINN are similar to the previous case with E

(11)
PINN = 5.55 · 10−3. One can

conclude that in this case, the number of observations does not influence the
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(a) With 2 data points in the training set.
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Figure 8: Prediction of the PINN with various numbers of points used for the
training set. The population is composed of three species (Ex. 1.1). The full
blue line is the true solution of the model, the dashed red line is the model’s
prediction. The square points are the data used for the training of the PINN.

15



0 5 10 15 20

3

4

5

6

7

t [s]

P
op

ul
at

io
n

Species 1

True solution
Data points
PINN prediction

0 5 10 15 20

2

2.5

3

3.5

t [s]

Species 2

True solution
Data points
PINN prediction

0 5 10 15 20

1.5

2

2.5

3

t [s]

Species 3

True solution
Data points
PINN prediction

0 5 10 15 20

1.5

2

2.5

3

t [s]

Species 4

True solution
Data points
PINN prediction

(a) Nobs = 3.

0 5 10 15 20

3

4

5

6

7

t [s]

P
op

ul
at

io
n

Species 1

True solution
Data points
PINN prediction

0 5 10 15 20

2

2.5

3

3.5

t [s]

Species 2

True solution
Data points
PINN prediction

0 5 10 15 20

1.5

2

2.5

3

t [s]

Species 3

True solution
Data points
PINN prediction

0 5 10 15 20

1.5

2

2.5

3

t [s]

Species 4

True solution
Data points
PINN prediction

(b) Nobs = 11.

Figure 9: Prediction of the PINN with various numbers of points used for the
training set Nobs, for the test case with Ns = 20 (only 4 species are presented).
The full blue line is the true solution of the model, predictions of the PINN
with and without time-normalization are drawn in dashed lines, green and red
respectively.

PINN approximation and especially the estimation of the stationary state.
In analyzing the results, it is noteworthy that the oscillatory test case ex-

hibits poorer performance compared to the stationary counterpart. This dis-
parity can be attributed to the chosen activation function, which inherently
struggles to replicate periodic behaviors without additional constraints from
more data to guide the predicted trajectories of PINNs. It is worth mention-
ing that alternative activation functions (e.g., cosine) could successfully capture
periodic patterns but might fall short in reproducing stationary behaviors [26].
Given the need to make this activation function choice “offline” before knowing
the specific parameters and the system behavior, we have consciously adhered
to the hyperbolic tangent choice, prioritizing the reproduction of stationary be-
havior. This decision aligns with our focus on biological applications that often
involve steady-state scenarios. In specific circumstances, however, alternative
activation functions can be employed in the proposed approach to better simu-
late oscillating behaviors.

3.3 Adding noise
In order to evaluate the proposed methodology on more realistic data, we con-
ducted some tests with noisy synthetic data.

From deterministic generated data y, we define the following multiplicative
noise ynoisy as:

ynoisy = Log-N
(
µ = ln(y)− 1

2
σ2, σ = ln(1 + ν2)

)
where ν is the desired ratio between the standard deviation and the value (ν =
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Figure 10: Prediction of the PINN with noisy data, for the oscillatory case with
Ns = 3 species.

std
y ). In the context of noisy data for the GLV model, we select a value for ν

between 0.1 and 0.3.
To begin with, we present the results for the oscillatory case with 3 bacterial

species, introduced in Example 1.1, see Figure 10. In the figure, the exact solu-
tion is still plotted, even if the data are noisy, as we don’t expect the predicted
trajectory to be equal to the exact solution. The error resulting from the PINN
approximation is E

(3)
PINN = 3.18 · 10−2.

Now we focus on the second example introduced in Example 1.2 with 20
species, see Figure 11. The error resulting from the PINN approximation is
E

(20)
PINN = 3.74 · 10−2.

For both test cases, the predicted trajectories are quite close to the refer-
ence solutions and the errors between the PINN approximations and reference
solutions are fairly low. This tells that the developed PINN model is robust to
noisy data, which is a positive outcome of the method. Note that such results
are obtained to a fine-tuning of the hyperparameter λPINN.

4 Conclusions and perspectives
In conclusion, our utilization of the GLV model within this study has provided
valuable insights into the dynamics of microorganism populations. Despite its
widespread use, conventional methods may encounter challenges in solving the
GLV model due to the intricate behaviors associated with specific parameter
sets. By employing PINNs in our research, we successfully simulated the evolu-
tion of bacterial species governed by the GLV model. Our proposed approach
relies on a loss function that effectively combines the constraints of the physical
model with data.

We experimented with various architectures and numerical strategies to en-
hance the efficiency and accuracy of this methodology. Subsequently, to illus-
trate the capability of the developed PINN in capturing expected outcomes, we
considered two test cases with distinct behaviors. Finally, considering potential
experimental applications, we discuss the influence of data, including different
sampling, missing data, and noise, on the robustness of this method.

Looking forward, our perspective involves extending this approach into a
more complex framework, particularly for the estimation of GLV parameters.
Traditionally, algorithms designed for parameter estimation tasks require re-
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Figure 11: Prediction of the PINN with noisy data for the stationary test case
with Ns = 20 species.
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peated solving of the model, making computational efficiency a crucial consid-
eration. In this context, the adoption of a fast yet robust method, such as the
proposed PINN, holds the potential to be pioneering in the field of parame-
ter estimation for the GLV model. With such methodological developments,
we expect to improve the optimization of parameter estimation processes, thus
gaining a deeper understanding of microorganism dynamics.
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