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Abstract

Microorganisms form complex communities known as microbiota, in-
fluencing various aspects of host well-being. The Generalized Lotka-
Volterra (GLV) model is commonly used to understand microorganism
population dynamics, but its application to the microbiota faces challenges
due to limited bacterial data and complex interactions. This preliminary
work focuses on using a Physics-Informed Neural Network (PINN) and
synthetic data to build a surrogate model of bacterial species evolution
driven by a GLV model. The approach is calibrated and tested on several
models differing in size and dynamic behavior.
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Introduction
Microorganisms play an essential role as abundant and diverse entities within
ecosystems, exerting a significant influence on biological functioning. They often
come together in complex communities called microbiota, establishing symbi-
otic relationships with their environment to maintain a state of equilibrium.
However, the spatial distribution of microorganisms in the human body is not
homogeneous, varying according to habitat or anatomical site [31]. In the di-
gestive tract, for example, the concentration of microorganisms increases from
the stomach, where the acidity and the presence of digestive enzymes are unfa-
vorable for the development of bacteria, towards the colon where conditions are
optimal for their growth, the temperature is constant (37 °C), the environment
is not very acidic and is rich in water, transit is slow and food is abundant [15].
The gut microbiota found mainly in the human colon is a dynamic ecosystem
whose development is influenced by several factors: genetics, age, geographical
location, stress, diet, exposure to infectious agents or pollutants, and antibiotic
intake [25, 35]. Numerous studies continue to reveal that the gut microbiota
plays a crucial role in various aspects of our well-being [3], such as digestion,
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regulation of the immune system [18], protection against infection, vitamin syn-
thesis, and even influences on cerebral and metabolic functions [8]. Imbalances
or alterations in this ecosystem can be associated with a wide range of health
problems, from digestive disorders and autoimmune diseases to obesity and neu-
rological disorders [9]. Certain disturbances in the composition and functions
of the microbiota resulting in dysbiosis can lead to certain syndromes such as
irritable bowel syndrome [15]. The microbiota can also be used as a medicine
(using fecal transplants) to treat certain illnesses such as antibiotic-resistant
diarrhea caused by Clostridium difficile [15]. In natural ecosystems, the soil
microbiota actively participates in the decomposition of organic matter, releas-
ing essential nutrients for plants, and some bacteria can establish symbiotic
relationships with plant roots, promoting their growth by providing additional
nutrients [12, 27]. A better understanding of the microbiota could have a major
impact on environmental sustainability, improving human health and manag-
ing ecosystems but despite advances in studies of bacterial ecological dynamics,
the question of the nature of bacterial interactions in the intestinal microbiota
remains open.

The Generalized Lotka-Volterra (GLV) model is commonly used to model
and anticipate variations in microorganism populations within an ecosystem
[37, 36, 24]. In the case of the microbiota, it could provide information on how
changes in the composition and abundance of a microorganism population could
influence the ecosystem [16, 7]. Furthermore, by analyzing the model parame-
ters, we can identify the microbial species that have a significant influence on the
dynamics of the microbiota as a whole [32, 11], predict interspecies interactions
[33], species coexistence [14], and even community structure and dynamics [6].

However, when modeling large ecosystems with multiple species, simulat-
ing the GLV model may lead to computational challenges. This is particu-
larly true in the context of parameter estimation, where many approaches (for
instance Maximum Likelihood or MCMC estimation) explore the parameter
space and simulate the model accordingly, potentially generating extensive sim-
ulation times and numerically unstable behaviors along the exploration process.
Alternative approaches have been proposed in the literature, based on the so-
called “metamodelisation” of the system trajectories, for instance through splines
[30, 23] or Gaussian processes [10, 38], embedded in a parameter estimation pro-
cedure. The main advantages of these approaches are to avoid numerical issues
related to dynamical system simulation, and also to allow an easy integration of
prior information in the trajectory reconstruction process, such as experimen-
tal data. The objective of the present work, in a first step towards parameter
estimation, is to investigate the ability of Physics-Informed Neural Networks
(PINNs) in providing such metamodels in the specific context of GLV ODEs,
based on some typical issues they may raise.

PINNs is a recent and appealing approach that allows the fast and accurate
simulation of large and complex dynamical systems [29]. A PINN is a machine
learning framework that combines neural networks with physics-based principles
to efficiently solve complex physical problems. PINNs are designed to handle
supervised learning tasks while respecting prescribed physical laws expressed
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through partial differential equations (PDEs) or ordinary differential equations
(ODEs). They provide a powerful approach to solving problems based on PDEs
and ODEs, but training PINN for certain ODE models with either sensitivity
to initial conditions, or complex behavior, such as the ones presented above,
requires an adequate architecture as well as a significant amount of synthetic
training data and computational effort or an accurate emulation [2].

In the present preliminary work, we will design a PINN method, and apply
it to the GLV model to simulate the evolution of bacterial species in presence of
experimental data, potentially noisy. The paper is organized as follows: in Sec-
tion 1, we present the governing equations of the GLV model and provide some
examples applied to the context of bacterial populations. Section 2 introduces
the PINN framework, and presents some preliminary results about the archi-
tecture employed in this study. Finally, Section 3 shows the results obtained
using the PINN to solve the GLV model, applied to synthetic cases of bacterial
populations with and without added noise to the generated observations.

1 Generalized Lotka-Volterra model
In this section, we introduce the Generalized Lotka-Volterra model [36]. This
model has been developed to mathematically model the coexistence of various
numbers of species in a closed system in a competitive or predator environment.
Section 1.1 is devoted to the introduction of the notation and the description
of such model, while Section 1.2 presents two examples that will be used in the
sequel for numerical applications.

1.1 Description of the model
Assuming large and well-mixed bacteria population, with only bidirectional in-
teractions between bacteria populations, and also assuming that their composi-
tion, diversity, and dynamics are not influenced by external factors or environ-
mental conditions (e.g. physical and chemical parameters such as temperature,
pH, humidity, light intensity, nutrient availability, and oxygen levels, host in-
teractions, ...), then the evolution of Ns different species of bacteria population
over a horizon of time tmax can be described by a Generalized Lotka-Volterra
(GLV) model [37]:

dxi

dt
(t) = µixi(t) +

Ns∑
j=1

aijxi(t)xj(t), ∀t ∈ [0, tmax], 1 ≤ i ≤ Ns, (1)

with the initial condition xi(t = 0) = xi0. The scalar xi(t) represents the abun-
dance of the bacterial population of species i at time t, µi represents the intrinsic
growth rate of the bacterial population i, and aij describes the interaction co-
efficient representing the direct effect of one unit of biomass of the bacterial
population of species j on the growth rate of the bacterial population of species
i.
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Bidirectional interactions among these bacterial populations can be catego-
rized into competition, cooperation, antagonism, and mutualism, but they often
lack symmetry due to differences in species characteristics, environmental con-
ditions, and ecological roles. For instance, a negative coefficient aij means that
the population j has a negative impact on the growth of the population i, e.g.
competition or predation by population j on population i. On the other hand,
a positive coefficient aij means that the presence of the population j enables
the population i to thrive, e.g. cooperation between the populations i and j or
predation by population i on population j.

These asymmetric interactions are crucial for maintaining ecosystem bal-
ance; beneficial bacteria can inhibit pathogens through competition and an-
tagonism, while cooperative relationships enhance resilience against infections.
However, since aij and µi can take any signs and values, several behaviors can be
observed [17, 21, 13, 19] such as oscillations, stable equilibrium with coexisting
species, extinction of some species or even demographic explosion or chaos.

The simulation of GLV models can raise numerical issues, to prevent them
and avoid unrealistic negative solutions, we assume positive initial conditions
and use the logarithmic formulation of the model. For t ∈ [0, tmax], dividing by
xi(t) in Equation (1) leads to the following formulation:

d log(xi(t))

dt
= µi +

Ns∑
j=1

aijxj(t). (2)

Setting µ = [µ1, · · · , µNs ]
T , A = (aij)1≤i,j≤Ns and u = [u1, · · · , uNs ]

T with
ui = log(xi), Equation (2) can be written under the matrix form:

du(t)

dt
= µ+A exp (u(t)) , (3)

with the initial condition u(0) = u0.
In the following, the matrix θ denotes the matrix of the GLV parameters,

which contains the intrinsic growth rate and the interaction coefficients:

θ =

 µ1 a11 . . . a1,Ns

...
...

. . .
...

µNs aNs1 . . . aNsNs

 .

In this study, the classical solver of the GLV model employed as reference is
implemented in Python using the odeint function from the scipy.integrate
library. The default solver of the library is used, namely LSODA. In the following,
we denote by exact solution, or true solution utruth the trajectories computed
with such solver knowing a priori the values of the parameters θ.

1.2 Illustrative cases for numerical simulation of the GLV
model

As mentioned above, the solution of the GLV model can exhibit very different
behavior. While GLV models with three species or fewer have been extensively
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studied [19], there are few theoretical results on GLV models in higher dimen-
sions, except for models with specific structures such as bounded competitive
GLV (negative off-diagonal terms in the interaction matrix), cooperative sys-
tems (positive off-diagonal terms). We refer the reader to [4] for a complete
survey of available theoretical results.

If the parameters (µ,A) are taken randomly, the probability to reach a
situation where only one species outlives while all the others go extinct increases
with the system dimension. Species co-existence through stable oscillations or
steady state is indeed non-generic.

A possible approach to obtain an oscillating model consists of generating a
matrix A that possesses specific properties:

(i) its diagonal elements and the vector µ are set to zero, effectively nullifying
any self-impact of species;

(ii) the matrix A is antisymmetric, guaranteeing that the interaction between
species i and species j is equal in magnitude but opposite in impact to the
interaction from species j to species i (predation interaction);

(iii) the sum of each row in A is precisely zero, thereby guaranteeing a com-
pensatory effect for the impact of one species on another.

Assumptions (i) and (ii) ensure the total population to be constant over time
(see [4, Chap. 3]), whereas (iii) ensures that vectors with equal, strictly positive
coordinates are fixed points of the system. In the case of systems with even
dimensions, after [4, Chap. 3], such systems are Hamiltonian and a strictly con-
vex Hamiltonian can be constructed, which guarantees (see e.g. [26]) that the
corresponding GLV model exhibits oscillatory dynamics. For systems exhibit-
ing Hamiltonian behavior in even dimensions, exploring the use of symplectic
numerical methods [20] provide a structured approach to preserve system prop-
erties such as energy conservation.

For the general GLV model, [4, Theorem 5] provides a sufficient condition
for the asymptotic convergence towards a stable, coexistence equilibrium, which
refers to a situation where the interactions between the different species reach an
equilibrium point where they coexist sustainably. Indeed, if the model parame-
ters ensure that the growth rates and interactions among different species bal-
ance each other, resulting in a strictly positive equilibrium denoted as −A−1µ,
and if there exists a non-negative diagonal matrix D satisfying AD+DA⊤ be-
ing negative-definite, then the positive equilibrium is both stable and globally
attractive in the positive region of the space. This characterization suggests a
heuristic to generate such parameters:

1. Randomly generate a pair (µ,A) ∈ RNs × RNs×Ns , with µ ≥ 0 and the
diagonal of A < 0, and imposing 20 to 40 % of the extra-diagonal terms
of A to be zero.

2. Solve the equation µ+AX = 0. If any element of X is negative, then go
back to step (1), else continue to step (3).
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3. Set D := diag(X), if AD + DA⊤ is negative-definite, then keep the
generated parameters, else eliminate it and go back to step (1).

Note that in the limit case where all the extra-diagonal terms of A are zero,
the GLV model becomes a set of uncoupled logistic growth equation, with a
trivial positive stable steady state satisfying the proposed heuristic. Hence, by
playing on the percentage of zeros in the extra-diagonal part of A or on their
magnitude, the heuristic should provide adequate parameters, even for high
dimensional models.

To illustrate the capability of the PINN to accurately capture the expected
outcomes, two illustrative test cases with distinct behaviors will be considered.
In this section, the test cases and the related numerical simulations are pre-
sented.

Example 1.1. We introduce a first example with Ns = 3 bacterial species.
The interaction matrix, the intrinsic growth rate, and the initial population are
chosen as follows:

A3 =

 −2 −5 −0.5
−0.5 −1 −1.2
−1 −0.5 −1

 , µ3 = [7.5, 2.6, 2.5]
T and u0 = [5, 3, 1]

T
. (4)

The growth of one species triggers a reduction in another, fostering a re-
ciprocal cycle until a state of stationary equilibrium is achieved. Figure 1(a)
illustrates the evolution of these three populations over the time window of in-
terest for this illustrative example, while Figure 1(b) highlights that stationary
equilibrium is achieved in the long term.

Example 1.2. We consider a bacterial population with Ns = 20 species. Us-
ing the algorithm described previously, we generate a parameter matrix θ20 =
(µ20,A20) such that the system possess at stationary state −A−1

20 µ20. The ob-
tained matrix is available at ht tp s: // gi st .g it hu b. co m/ th om as -s ai gr
e/ 4f 92 bb b0 22 21 a3 35 c4 cb af d7 4b 24 41 fb . An example of the simulation
of the system, using random initial states is presented in Figure 2. The theo-
retical limits for the populations are also shown. For this case, we select a final
simulation time tmax = 20 s.

2 Physics-Informed Neural Network
This section introduces the neural network framework that is used to simulate
the GLV model: Physics-Informed Neural Networks and the discussion about
its architecture.

2.1 PINN framework
Physics-Informed Neural Networks or PINNs have been introduced in [29] as
neural networks designed to address supervised learning tasks while adhering
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Figure 1: Results of the simulation of the GLV model with three populations of
microbes for an initial population u0 = [5, 3, 1]
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to specified laws of physics outlined by nonlinear partial differential equations.
It combines both supervised and unsupervised learning. In traditional super-
vised learning, the network learns from a labeled training dataset, where inputs
and outputs are matched: the network aims at minimizing a loss function that
measures the difference between its predictions and the data labels. In unsu-
pervised learning, the network is exposed to unlabeled data, and its objective is
to identify patterns or relationships within the data without explicit guidance
from labeled examples. The PINNs are trained to simultaneously minimize the
gap between the predictions and the training dataset and satisfy the governing
physics equations, thereby incorporating both types of learning to achieve a
comprehensive and physics-informed model.

The goal of the PINN is to construct a neural network approximation ûθ(t)
of the solution u(t) of Equation (3) based on the knowledge of this equation,
where ûθ : [0, tmax] → RNs denotes the function predicted by the network for a
given parameter θ. For t ∈ [0, tmax], we introduce the residual L of the GLV
model (3) with respect to the prediction ûθ at time t defined as

L(ûθ; t) :=
dûθ(t)

dt
−

(
µ+A exp(ûθ(t))

)
. (5)

In the present work, we have in view a specific situation where, unlike in the
usual framework of PINNs, the initial condition of the GLV model is not exactly
known and it is assumed to be observed together with other observations at other
time points. For this reason, we add second information based on a sample of
data U (e). The data, in this specific contribution, are generated numerically, but
eventually experimental data should be provided. By averaging measurement
errors, introducing these data should reduce the sensitivity to errors on the
initial condition and improve the accuracy of our predictions given a fixed grid
time points. Thus, the loss function should both satisfy the model (3) and fit
the data U (e).

The neural network approach proceeds by using an optimizer to update
the weights and bias by minimizing a loss function. In our implementation,
we employ the optimizer Adam, implemented in the PyTorch library. This
loss function is defined as a linear combination of quantities that measures the
quality of our prediction. Specifically in the context of GLV model, we introduce
two types of errors for the development of our PINN:

• MSEdata: the mean squared misfit by the data, also called the data loss,
which is used to assess the extent to which the model can faithfully repro-
duce the data presented

MSEdata(t
(e)) =

1

NsNe
obs

Ns∑
i=1

Ne
obs∑

k=1

(
ûi(t

(e)
k )−U

(e)
i,k

)2

, (6)

for an experiment e, t(e) =
(
t
(e)
i

)Ne
obs

i=1
and Ne

obs are respectively the time of
observations and the number of observations, U (e)

i,k represent the quantity
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of bacterial population of species i observed at time t
(e)
k and ûi

θ is the
neural network prediction of the bacterial population of species i: û =(
ûi

)Ns

i=1
;

• MSEL: the mean squared residual, also called the physical loss, which
enforces the structure imposed by (5) at a finite set of collocation points
tr = {tj}

Nf

j=1 ⊂ [0, tmax]

MSEL(tr) =
1

NsNf

Ns∑
i=1

Nf∑
j=1

Li(û; tj)
2, (7)

where L(û; t) = (Li(û; t))
Ns

i=1.

Note that the influence of the initial conditions is included in the model, by the
loss MSEdata, but, as mentioned above, due to potential measurement errors,
there is no reason to distinguish it from other available data. We introduce the
loss function to be minimized, involving a hyperparameter λPINN > 0:

Loss = MSEdata(t
(e)) + λPINNMSEL(tr). (8)

For all our numerical experiments, unless otherwise specified, we take Nf =
100 collocations points and Nobs = 10 observational data points. We present
in Figure 3 an example of the evolution of the MSEs of the loss, over the
iteration during the learning process of the PINN. The loss employing a value of
λPINN = 0.1 is also presented. The results presented are obtained from the case
with 20 bacterial species, introduced in Example 1.2. We remark that after a
certain number of epochs, the global loss decreases steadily, demonstrating the
learning process of the PINN, while the data loss stabilizes at a lower value, and
the physical loss remains higher, likely due to the complexity of the governing
equations.

2.2 PINN architecture
In this section, we discuss the chosen architecture for the neural network trained
within the PINN framework exposed above. A single neural network will cor-
respond to a single experiment e, and will therefore be trained to predict, for
a time t as input, the population of the Ns species in the given experiment.
By adopting a single neural network, the model is tasked with predicting the
population dynamics of all Ns species at a given time t within the specific exper-
iment. The rationale behind this decision is to streamline the training process
and enhance efficiency instead of considering a different neural network for each
species. This consolidated architecture simplifies the complexity of the overall
framework and promotes a more unified and manageable training procedure.
This strategic choice aimed at achieving a balance between computational effi-
ciency and predictive accuracy, providing a pragmatic solution for the modeling
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Figure 3: Evolution of the data loss MSEdata (6), physical loss MSEL (7) and
loss function Loss (8), over the epochs during the training of the PINN for the
Example 1.2

objectives within the PINN framework. Thus, the proposed architecture, out-
lined in Figure 4, is composed of successive neural layers of various sizes and
utilizes the hyperbolic tangent as activation function. The hyperparameters
governing the number and size of intermediate layers, denoted as Nlayers and
Slayers respectively, are subject to tuning, which is detailed in Section 2.3.

t

α1,1

...
α1,Ns

α·,1
...
...

α·,Slayers

. . .

α·,1
...
...

α·,Slayers

û1(t)
...

ûNs(t)

tanh(·) tanh(·) tanh(·)

Nlayers layers of size Slayers

Figure 4: Proposed architecture for the PINN framework: an input layer t, a
second layer of size Ns, Nlayers of size Slayers, and an output layer of size Ns

to predict the population of the different species evaluated at time t. We use a
hyperbolic tangent activation function for all our layers.

This chosen architecture aims to strike a balance between model complexity
and predictive accuracy, leveraging the interconnectedness of species dynamics
while maintaining computational feasibility. The choice of layer sizes being pro-
portional to the number of species Ns allows the network to effectively handle
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the complexity of interspecies interactions, maintaining a sufficiently rich fea-
ture space. Additionally, it is possible to improve the network’s ability to cap-
ture oscillatory dynamics by incorporating Fourier features [34], which could be
particularly beneficial for cases like Example 1.1, where periodic behaviors are
prominent. This enhancement will be explored in future work.

In the following, we present two different aspects that have been investigated
to increase the effectiveness of the PINN framework, notably the strategy to tune
the architecture hyperparameters and the application of time normalization to
the classical GLV model.

2.3 Selection of hyperparameters
Setting up the PINN described in Section 2.1 requires choosing λPINN as well
as the architecture of the multilayer perceptron (the number of layers Nlayers,
and the size of these layers Slayers) and the number of epochs used in training,
Nepochs, which corresponds to how many times the entire dataset is passed
through the neural network during the training process. We decided to use
Optuna [1], an open-source hyperparameter optimization framework, to search
the hyperparameter space to find the best value for these hyperparameters with
respect to a chosen metric. This metric, EPINN, will be the relative error of our
prediction concerning the true solution at each collocation point:

EPINN =
1

Ns

Ns∑
j=1

∥∥∥ûj − uj
truth

∥∥∥2
L2([0,tmax])∥∥∥uj

truth

∥∥∥2
L2([0,tmax])

. (9)

We explore the tuning of the hyperparameters Nepochs, Nlayers and Slayers.
The objective value optimized by Optuna, presented in the following results, is
the logarithm of the error EPINN. When selecting the architecture of the PINN,
we also need to keep in mind the computational cost that would be required by a
more complex architecture: the more parameters are involved, which are directly
influenced by Ns, Nlayers and Slayers, the more time will be needed to perform
the training of the neural network. Unlike the other hyperparameters, we did
not perform specific tuning for λPINN, as its value depends on the confidence
in the model versus the data. In this study, λPINN was chosen deterministically
based on prior knowledge, and a thorough exploration of its optimization is
beyond the scope of this work.

We present in Figure 5 various findings of our investigation performed on the
oscillatory test case with Ns = 3. Precisely, Figure 5(a) shows the impact of the
hyperparameters on the prediction error EPINN, while Figure 5(b) illustrates the
error distribution map observed as the size Slayers and number of layers Nlayers
vary. As expected, the results indicate that the error is smaller when these two
parameters are higher. The interesting finding is that the Slayers affects more
the relative error than Nlayers, see Figure 5(a). Moreover, when Nlayers ≥ 2 we
do not see such an improvement in the results, this behavior is also notable
for Slayers > 20. In Figure 5(c) we display the evolution of the prediction error
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EPINN according to the value of the most influential hyperparameter Slayers. We
recover the fact that the wider the layers are, the more precise the prediction
is and the threshold Slayers > 20 where no appreciable increase of accuracy is
highlighted. In order to understand the operations carried out by Optuna, we
additionally use different colors to illustrate each stage within the trial process.
Finally, we performed the same study, focusing on the computational time to
find a balance in terms of efficiency for the architecture of the PINN, as presented
in Figure 5(d). The impact is measured on two metrics: the prediction error
EPINN and the computational time needed to train the neural network, at a
fixed number of epochs. We recover that the size of the layers impacts the
relative error, but less affects the time of simulation: the training of a deeper
neural network will take more time than the training of a wide one.

In light of all these results, we hereafter select the hyperparameters Nepochs =
2000, Nlayer = 2 and Slayer = 7 × Ns, giving the following architecture to
the neural network: [1, Ns, 7×Ns, 7×Ns, Ns]. The final number of trainable
parameters of the network is then dependant on the number of species. For
the two examples presented in this work, with Ns = 3 and Ns = 20, we have
respectively 571 and 25,221 trainable parameters in the neural network.

While we utilized Optuna for hyperparameter optimization, our experiments
emphasized the more challenging oscillatory dynamics with Ns = 3, as this
presents a greater challenge for neural networks compared to stationary dynam-
ics. The architecture’s proportional scaling with Ns ensures that the increase
in the number of species does not impede the network’s effectiveness across
different system sizes.

2.4 Time normalization
To enhance the stability of numerical computations during the training of PINN,
expedite the convergence of PINN learning by mitigating potential issues like
vanishing gradients and gradient explosions as discussed in [22, 39], and facil-
itate the optimization process by improving the handling of diverse scales in
model parameters, we propose a modification to the GLV model introduced in
Section 1.1. Originally defined over a finite time interval [0, tmax], the model is
reformulated by normalizing the time, leading to a formulation defined over a
normalized time interval [0, 1]. Normalization is a widely adopted approach in
machine learning for enhancing neural network performance. In this context,
specifically, data contain significant variations from one timescale to another,
time normalization would help the model to focus on the underlying patterns
(dynamics of competition, predation, cooperation, or other interactions between
species that persist over significant time scales despite noise or short-term vari-
ations in the data) rather than on variations in amplitude. With this rationale,
to obtain the normalized version of the GLV model, we perform the following
change of variable T := t/tmax. Hence, the GLV model (3) is rewritten as:

du(T )

dT
= tmax

(
µ+A · exp(u(T ))

)
for T ∈ [0, 1]. (10)
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This change of variable leads to a change also in the loss function (8), specifically
in the physical loss MSEL (7) leading to change of the hyperparameter λPINN:

λPINN
normalized = λPINN(tmax)

2. (11)

On Figure 6, the PINN predictions û obtained with the original GLV model
(3) and with the normalized GLV model (10) using the appropriate scaling of
λPINN are compared for both cases introduced in Section 1.2.

These results suggest that the prediction is better when time normalization
is used, confirming our hypotheses. Specifically, for the oscillatory test-case
presented, see Figure 6(a), the mean relative error on the predicted trajectories
(9) is E

w/o norm
PINN = 0.14 without the normalization and E

w/ norm
PINN = 2.04 · 10−2

with the normalization. For the second test case with Ns = 20 species, see
Figure 6(b), even though it is less striking than in the oscillatory case, the time
normalization enables to improve the prediction accuracy. The mean relative
error on the predicted trajectories is Ew/o norm

PINN = 0.11 without the normalization
and E

w/ norm
PINN = 7 · 10−2 with the normalization.

We figure that with the time normalization, the error gains one order of
magnitude. Hence, we will consider the normalized version of the PINN for
further simulations. Our tests indicate that logarithmic normalization of con-
centrations does not significantly increase training duration while improving the
accuracy of the results, making it a suitable choice for our analysis. Hereafter,
by abuse of notation, t will refer to the normalized time variable and λPINN to
the normalized hyperparameter λPINN

normalized.

3 Numerical results over the influence of data
This section presents some numerical results obtained with the PINN described
in the previous section. The cases introduced in Examples 1.1 and 1.2 will be
both used in the following to compare û the approximation computed by the
PINN with the reference solution utruth computed by solving the GLV model
introduced in Sec. 1 for the two specific sets of given parameters θ. In the
present study, using the reference solution of the GLV model, we generate syn-
thetic data to train the PINN. Still, the impact of different behavior of the
dataset on û is highlighted in this study in order to test the robustness of the
proposed approach to potential issues that may arise when working with real
data. To do so, the following situations are considered hereafter:

1. generating data on a fixed equidistant grid over the time interval [0, tmax]
or selecting those times randomly from a uniform distribution;

2. intentionally reducing the number of available data, to simulate missing
or few data in actual experiments;

3. adding noise to the data, to simulate the noise in actual experiments.
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Figure 6: Comparison of the PINN predictions with and without time normal-
ization. The full blue line is the true solution of the model, and the dashed
lines are the predictions of the two PINNs, with time normalization (green) or
without it (red). The appropriate scaling for λPINN

2 is applied.

17



In the following we analyze the accuracy and the efficiency of the PINN with
respect to these three situations for the two illustrative examples presented in
Sec. 1.2.

3.1 Impact of data sampling strategy
In this section, we focus on the impact of the data sampling on the accuracy
of the prediction of the PINN. To begin with, we look at the distribution of
the data over the time interval [0, tmax]. Two data sets of size Nobs = 5 are
generated. In the first data set, the data are generated over a uniform grid of the
time interval. In the second dataset, the data are generated at times randomly
sampled following a uniform distribution in the time interval. The predictions
of the PINNs trained with these two datasets and for the two test cases are
shown in Figure 7. During the training process, all the collocation points are
taken identical and equidistributed over the interval [0, tmax]. For the case with
3 species, see Figure 7(a), the errors are EPINN = 0.17 for random times and
EPINN = 0.13 for equidistant time ones. On the other hand, the case with 20
species results in EPINN = 3.56 ·10−3 for random times and EPINN = 3.37 ·10−3

with equidistant time ones, see Figure 7(b).
For both cases, the impact of the distribution of the data on the PINN’s

accuracy is not remarkable: the resulting PINN approximations û are similar
using different strategies. This outcome is interesting from an experimental
point of view, where the sampling strategy can be constrained.

3.2 Influence of the number of data used in the training
on the network’s prediction

First, we focus on the oscillatory example with Ns = 3 species, described in
Example 1.1. From the model parameters θ3, two sets of data with various
sizes are generated: one with Nobs = 2 and Nobs = 12. It should be noted that
the case Nobs = 1 (usually the initial condition) corresponds to the standard
framework of PINNs for ODEs, thoroughly investigated in the existing literature
[5]. The results of the prediction of the PINN for both sets of data are presented
in Figure 8. For a small number of data, the PINN is not able to properly
approximate the reference solution and the predicted trajectories are not able
to capture the behavior of the true solution. However, as the number of data
increases, the prediction becomes more accurate. It is also highlighted by the
mean relative errors (9) that is E

(2)
PINN = 0.25 for the PINN trained with 2

observation data and E
(12)
PINN = 7 · 10−2 when 12 observations are provided.

Secondly, we analyze the test case where 20 species are considered, with the
convergence toward a stationary state (Example 1.2). The results are presented
in Figure 9 for two different training sets: one with Nobs = 3 (Figure 9(a)) and
one with Nobs = 11 (Figure 9(b)). Note that only 4 species are presented. We
remark that, with a small number of observations, unlike the oscillatory case,
the PINN tends to approximate fairly well the trajectories and fits perfectly the
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Figure 7: PINNs predictions trained with data generated on a fixed equidistant
time grid (orange dashed line) and on times randomly selected from a uniform
distribution (blue dashed line) over the time interval [0, tmax].
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Figure 8: Prediction of the PINN with various numbers of points used for the
training set. The population is composed of three species (Ex. 1.1). The full
blue line is the true solution of the model, the dashed red line is the model’s
prediction. The square points are the data used for the training of the PINN.
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Figure 9: Prediction of the PINN with various numbers of points used for the
training set Nobs, for the test case with Ns = 20 (only 4 species are presented).
The full blue line is the true solution of the model, predictions of the PINN
with and without time-normalization are drawn in dashed lines, green and red
respectively.

theoretical limit. Precisely, the error is E
(3)
PINN = 5.16 · 10−3. Doing the same

with more data (Nobs = 11), see Figure 9(b), we remark that predictions of
the PINN are similar to the previous case with E

(11)
PINN = 5.55 · 10−3. One can

conclude that in this case, the number of observations does not influence the
PINN approximation and especially the estimation of the stationary state.

In analyzing the results, it is noteworthy that the oscillatory test case ex-
hibits poorer accuracy compared to the stationary counterpart. This disparity
can be attributed to the chosen activation function, which inherently struggles
to replicate periodic behaviors without additional constraints from more data
to guide the predicted trajectories of PINNs. It is worth mentioning that al-
ternative activation functions (e.g., cosine) could successfully capture periodic
patterns but might fall short in reproducing stationary behaviors [28]. Given
the need to make this activation function choice “offline” before knowing the spe-
cific parameters and the system behavior, we have consciously adhered to the
hyperbolic tangent choice, prioritizing the reproduction of stationary behavior.
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This decision aligns with our focus on biological applications that often involve
steady-state scenarios. In specific circumstances, however, alternative activa-
tion functions can be employed in the proposed approach to better simulate
oscillating behaviors.

In the oscillatory test case, the inclusion of data points, such as through data
loss, is crucial to avoid local minima and prevent constant incorrect predictions,
even when no noise is present in the data. Conversely, in the stationary case,
while the model can function without such data, adding data points enhances
accuracy and reduces computational time, as shown in our preliminary tests.
These findings are consistent with previous results reported in [5].

3.3 Adding noise
In order to evaluate the proposed methodology on more realistic data, we con-
ducted some tests with noisy synthetic data.

From deterministic generated data y, we define the following multiplicative
noise ynoisy as:

ynoisy = Log-N
(
µ = ln(y)− 1

2
σ2, σ = ln(1 + ν2)

)
,

where ν is the desired ratio between the standard deviation and the value (ν =
std
y ). In the context of noisy data for the GLV model, we select a value for ν

between 0.1 and 0.3.
To begin with, we present the results for the oscillatory case with 3 bacterial

species, introduced in Example 1.1, see Figure 10. In the figure, the exact
solution is still plotted, even if the data are noisy, as we do not expect the
predicted trajectory to be equal to the exact solution. The error resulting from
the PINN approximation is E

(3)
PINN = 3.18 · 10−2.
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Now we focus on the second example introduced in Example 1.2 with 20
species, see Figure 11. The error resulting from the PINN approximation is
E

(20)
PINN = 4.89 · 10−2.

For both test cases, the predicted trajectories are quite close to the refer-
ence solutions and the errors between the PINN approximations and reference
solutions are fairly low. This tells that the developed PINN model is robust to
noisy data, which is a positive outcome of the method. Note that such results
are obtained to a fine-tuning of the hyperparameter λPINN.

4 Conclusions and perspectives
In conclusion, our utilization of the GLV model within this study has provided
valuable insights into the dynamics of microorganism populations. Despite its
widespread use, conventional methods may encounter challenges in solving the
GLV model due to the intricate behaviors associated with specific parameter
sets. By employing PINNs in our research, we successfully simulated the evolu-
tion of bacterial species governed by the GLV model. Our proposed approach
relies on a loss function that effectively combines the constraints of the physical
model with data.

We experimented with various architectures and numerical strategies to en-
hance the efficiency and accuracy of this methodology. Subsequently, to illus-
trate the capability of the developed PINN in capturing expected outcomes, we
considered two test cases with distinct behaviors. Finally, considering potential
experimental applications, we discuss the influence of data, including different
sampling, missing data, and noise, on the robustness of this method.

This study on the application of a PINN to the GLV model is a preliminary
study to assess the capability of such approach to simulate the evolution of
bacterial species. Looking forward, our perspective involves extending this ap-
proach into a more complex framework, particularly for the estimation of GLV
parameters. Traditionally, algorithms designed for parameter estimation tasks
require repeated solving of the model, making computational efficiency a crucial
consideration. In this context, the adoption of a fast yet robust method, such as
the proposed PINN, holds the potential to be pioneering in the field of param-
eter estimation for the GLV model. With such methodological developments,
we expect to improve the optimization of parameter estimation processes, thus
gaining a deeper understanding of microorganism dynamics. However, further
investigations, that are out of the scope of this preliminary study, are required
to adapt the proposed approach for various parameter values.
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Figure 11: Prediction of the PINN with noisy data for the stationary test case
with Ns = 20 species.
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