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Abstract: With increasing environmental awareness and consumer demand for high-quality food
products, industries are strongly required for technical innovations. The use of various emerging
techniques in food processing indeed brings many economic and environmental benefits compared
to conventional processes. However, lipid oxidation induced by some “innovative” processes is often
“an inconvenient truth”, which is scarcely mentioned in most studies but should not be ignored for
the further improvement and optimization of existing processes. Lipid oxidation poses a risk to
consumer health, as a result of the possible ingestion of secondary oxidation products. From this
point of view, this review summarizes the advance of lipid oxidation mechanism studies and mainly
discloses the shade of innovative food processing concerning lipid degradation. Sections involving
a revisit of classic three-stage chain reaction, the advances of polar paradox and cut-off theories,
and potential lipid oxidation factors from emerging techniques are described, which might help in
developing more robust guidelines to ensure a good practice of these innovative food processing
techniques in future.

Keywords: advantages; disadvantages; green food processing; lipid degradation; inducing factors;
innovative techniques; oxidative mechanism

1. Introduction

Traditional food processing technologies use heat to inactivate enzymes or spoilage
microorganisms for the sake of prolonging shelf life and improving product safety and
quality. However, these traditional methods produce industrial wastewater and carbon
dioxide by consuming high-energy inputs of water, electricity and natural gas, resulting in
low productivity and a significant environmental impact [1]. Given this, innovative tech-
nologies have continuously appeared that could cover the shortage of traditional methods
to some extent like reducing cost to increase benefit, energy saving and environmental
protection (Figure 1). In order to further intensify food processing with a higher quality
product, it may be preferable to understand the negative impact of emerging technolo-
gies on food ingredients rather than their positive effects only [2], which would help us
to make an appropriate coupling method or to enhance a current method based on its
underpinning mechanism.

With the growing demand for high-quality food, the previous goal of food processing
has recently been updated [3]. It is well known that food processing methods indeed have
a great influence on the important attributes of foods such as texture, taste, appearance and
nutrients, and future green food processing should guarantee both safety and quality [4],
which requires more technological development to maximize the nutritional value and to
minimize the negative effect.
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Figure 1. Emerging food processing technologies: evolution or revolution? 

Lipids are essential nutrients for human health due to their physicochemical factors 
such as the presence of polyunsaturated fatty acids, and they are susceptible to degrada-
tion by oxidation [5]. Lipid oxidation is a spontaneous process during food processing, 
which can be classified by autooxidation, photooxidation and enzymatic oxidation path-
ways [6]. Common initiators like heat, light and metal ions, or even a small amount of 
oxygen in closed storage containers, can promote lipid oxidation [7,8], some of which 
could be generated by innovative techniques. Despite the potential factors that might in-
duce lipid oxidation, most studies have concentrated on the advantages of these innova-
tive techniques instead of their side effects. For the sake of safer food of ever higher quality 
in future, this review focuses mainly on the potential oxidation-inducing factors of several 
emerging innovative techniques based on the lipid oxidation mechanism. 

2. Mechanisms of Lipid Oxidation 
2.1. Revisiting Initiation, Propagation and Termination 

It is generally believed that oxidation begins by removing hydrogen from fatty acids 
or acylglycerols to form lipid radicals (LH → L∙+H∙) and undergoes a three-stage chain 
reaction of initiation, propagation and termination (Figure 2). However, this simplistic 
free radical chain reaction was found to be much more complex with the introduction of 
alternate chemical reactions and physical structures and properties as well. In most cases, 
the initiation occurs at the oil–water interface, where the interfacial properties greatly in-
fluence oxidation stability [9]. In fact, a small amount of lipid peroxides (LOOH) exists in 
lipids either from commercial products or extracted biological samples. Most LOOH mol-
ecules have hydrocarbon chains and hydrophilic groups, which are surface-active mole-
cules. The decomposition of such original LOOH is assumed to provide the first radical 
for the oxidation initiation, especially in the presence of metal cations [10]. When these 
LOOH molecules reach a critical micelle concentration (CMC), the formed LOOH micelles 
diffuse through a continuous phase and react with transition metals near other drop-
lets/membranes to deliver oxidation by generating LO∙ and/or LOO∙. Metal-catalyzed ox-
idation (LOOH + Fe3+ → LOO∙ + H+ + Fe2+) and reduction (LOOH + Fe2+ → LO∙ + OH- + 
Fe3+) showed that metal catalysts were distributed very unevenly in the negatively 
charged dispersions of lipid colloids, mostly at the interface, where the surface charge 

Figure 1. Emerging food processing technologies: evolution or revolution?

Lipids are essential nutrients for human health due to their physicochemical factors
such as the presence of polyunsaturated fatty acids, and they are susceptible to degradation
by oxidation [5]. Lipid oxidation is a spontaneous process during food processing, which
can be classified by autooxidation, photooxidation and enzymatic oxidation pathways [6].
Common initiators like heat, light and metal ions, or even a small amount of oxygen
in closed storage containers, can promote lipid oxidation [7,8], some of which could be
generated by innovative techniques. Despite the potential factors that might induce lipid
oxidation, most studies have concentrated on the advantages of these innovative techniques
instead of their side effects. For the sake of safer food of ever higher quality in future, this
review focuses mainly on the potential oxidation-inducing factors of several emerging
innovative techniques based on the lipid oxidation mechanism.

2. Mechanisms of Lipid Oxidation
2.1. Revisiting Initiation, Propagation and Termination

It is generally believed that oxidation begins by removing hydrogen from fatty acids
or acylglycerols to form lipid radicals (LH→ L·+H·) and undergoes a three-stage chain
reaction of initiation, propagation and termination (Figure 2). However, this simplistic
free radical chain reaction was found to be much more complex with the introduction
of alternate chemical reactions and physical structures and properties as well. In most
cases, the initiation occurs at the oil–water interface, where the interfacial properties greatly
influence oxidation stability [9]. In fact, a small amount of lipid peroxides (LOOH) exists
in lipids either from commercial products or extracted biological samples. Most LOOH
molecules have hydrocarbon chains and hydrophilic groups, which are surface-active
molecules. The decomposition of such original LOOH is assumed to provide the first
radical for the oxidation initiation, especially in the presence of metal cations [10]. When
these LOOH molecules reach a critical micelle concentration (CMC), the formed LOOH
micelles diffuse through a continuous phase and react with transition metals near other
droplets/membranes to deliver oxidation by generating LO· and/or LOO·. Metal-catalyzed
oxidation (LOOH + Fe3+ → LOO· + H+ + Fe2+) and reduction (LOOH + Fe2+ → LO· +
OH- + Fe3+) showed that metal catalysts were distributed very unevenly in the negatively
charged dispersions of lipid colloids, mostly at the interface, where the surface charge
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could affect the lipid oxidation [11]. Similarly, thermal or UV-induced cracking (LOOH
→ LO· + OH·) and bimolecular decomposition (LOOH + LOOH→ LOO· + LO· + H2O)
could also generate lipid-derived radicals, which can work together or compete for a
reasonable starting mechanism of oxidation. With the increase in LOOH concentration in
micelles, it will be more favorable for bimolecular decomposition, which can reduce the
LOOH concentration to below CMC. If LOOH micelles are destroyed, oxidation can also be
transferred from one colloid to another.
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Figure 2. Three-stage chain reaction of lipid oxidation.

The propagation is usually described as a fast reaction to form peroxy radicals (L· + 3O2
→ LOO·), followed by a slow seizure of hydrogen from adjacent unsaturated lipids. Due
to topological difficulties, L· radicals are not easily formed at the interface, where peroxy
radicals (LOO·) and alkoxy radicals (LO·) provided from the initiation could possibly
capture the hydrogen to accumulate LOOH (LOO· + LH → LOOH + L·) and hydroxyl
lipids (LO· + LH→ LOH + L·), or even lipid epoxy-hydrogen peroxide [12]. LO· radicals
are also assumed to occur via α- and β-splitting, mainly for terminating the reaction
radicals with multiple volatile secondary oxidation products. Theoretically, due to the
high hydrophobicity of LOO·, they may prevent spreading into other droplet/membrane
interfaces in the aqueous phase. However, the high concentration of surfactant in the
aqueous phase leads to the formation of surfactant micelles, which can be used as carriers
to transfer hydrophobic substances in the aqueous phase, thus increasing the interparticle
mass transfer rate of lipophilic molecules. The formation of micelles in a continuous
phase of lipid dispersion may suddenly alter the mass transfer mechanism of lipid-derived
oxidizing substances and thus accelerate the oxidation rate, which may explain the sudden
transition from initiation to propagation [13].

2.2. Polar Paradox and Cut-Off Effect

Currently, a so-called simple, homogeneous, oil medium is actually recognized as a
complex multiphase system that contains a small amount of water and various amphiphilic
components, including minor compounds remaining after the refining process, and polar
oxidation products as well. Polar paradox describes the phenomenon of polar antioxidants
being more effective than their nonpolar homologues in bulk oils, whereas nonpolar
antioxidants are more effective in water-in-oil emulsions. Therefore, the oil–water interface
is considered as the oxidation site where antioxidants concentrate and take effect. Moreover,
some contradictory results showed that the solubility of antioxidants in oils might have had
a greater influence than the interfacial phenomenon at a lower concentration [13], which
implies the limited applicability of the polar paradox (Figure 3). In oil-in-water emulsions, a
nonlinear (or cut-off) effect of hydrophobic resistance to oxidation was found, i.e., the alkyl
chain length of surface-active compounds strongly affected antioxidant activity, whose
mechanism was logically divided into two parts: below the critical chain length and beyond
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the critical chain length. Below the critical chain length, it is assumed that polar antioxidants
with short and medium chains are not sufficient to approach the oxidation site. When
the critical chain length is reached, only antioxidants with proper hydrophobicity can be
located at the water–oil interface, where antioxidants can function more effectively [14].
Beyond the critical chain length, the three following hypotheses have been proposed for
this more complicated situation.
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The reduced mobility hypothesis assumes that the mobility of lipophilic antioxidants
decreases with an increase in alkyl chains, thereby reducing their ability to move toward
oxidation sites. The binding of long-chain antioxidants to their molecular environment is
stronger through hydrophobic interactions, and thus, the lower degree of freedom leads
to a decrease in antioxidant activity. The increase in steric hindrance caused by the chain
length makes contact between long-chain antioxidants and free radicals more difficult,
which may be involved in the cut-off effect [10].

The internalization hypothesis describes that increasing a hydrocarbon chain from a
medium chain to a long chain keeps antioxidants away from its interface. With an increase
in emulsifier content, the cut-off effect of medium-chain esters (e.g., butyl, octyl and dodecyl
esters) in water-in-oil emulsions gradually disappeared while long-chain esters entered the
aqueous phase from an oily core, which was more effective in preventing lipid oxidation at
the interface [15].

The tendency of forming long-chain aggregates is greater than that of moving toward
the boundary mask, thus reducing the antioxidant concentration at the oxidation site. The
self-aggregation hypothesis proposes that amphiphilic antioxidants with long alkyl chains
and polar heads can self-assemble into micelles, layered structures and other associated
colloids to form stable monolayers at the air–water interface. Among the low-concentration
emulsifiers (lower than CMC), the only physical and chemical process possible for the
accumulation of lipid-soluble antioxidant compounds in the aqueous phase is the self-
polymerization of antioxidants through micellization [14].

Similarly, these hypotheses might also be applicable to bulk oils, where CMC would
be the significant factor to regulating and controlling the degree of micellization. Since the
effectiveness of polar antioxidants is better in oil systems, this may inspire a novel strategy
for lipid antioxidation through reverse micelle-assisted extraction, which enables the coex-
istence of both lipid- and water-soluble antioxidants in the same lipid system. Although
the assistance of most innovative techniques could definitely improve this efficiency, its
side effects on reverse micelle formation like the generation of free radicals or initiators,
and temperature, also deserve attention for optimal micellization in lipids, resulting in the
best antioxidative effect.
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3. Description of Lipid Oxidation Induced by Emerging Processing Techniques

As previously described, one common and important factor in lipid oxidation is
active free radical formation. Table 1 presents the general characteristics of some emerging
food processing techniques. Although the pros and cons of these emerging techniques
were included in most studies, it was hard to find lipid oxidation descriptions for all
technical studies. According to the mechanism of lipid oxidation, innovative food processes
involving potential inducing factors are summarized as follows.

As Figure 4 illustrates, the applicable scope of ohmic heating in food processing has
been widely expanded upon. Compared to conventional methods, ohmic heating can
maintain the quality (e.g., main antioxidants, color, acidity, etc.) of fruit and vegetable juices
better, especially for the condition of being under vacuum [16–19]. Nevertheless, electro-
chemical reactions resulting from ohmic heating application may lead to the generation
of free radicals and undesirable texture. Furthermore, concerning the different electric be-
haviors of various antioxidants, a fundamental understanding of the impact of a moderate
electric field on them still needs to be explored to obtain the desired electric effects.
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An atmospheric plasma device can form active ions through molecules in ionized
gas, which might initiate oxidation reactions. Among them, ozone is a three-atom oxygen
molecule formed by the interaction between diatomic oxygen molecules and oxygen
radicals, and the formation of O–O free radicals requires the plasma system to provide
energy [20]. At the same time, ozone is a very active and unstable substance, which can
easily decompose into hydroxyl radicals, hydrogen peroxy radicals and superoxide radicals
that have high oxidation properties [2].

High pressure generally does not initiate lipid oxidation, and free radicals formed by
cleavage are not affected by increased pressure. However, pressure can affect the formation
of covalent bonds during the propagation stage [2]. Cheftel and Culiolib [21] observed that
myoglobin and oxymyoglobin were transformed into Fe3+ forms at higher than 350 MPa to
catalyze lipid oxidation. Bolumar et al. [22] found that high pressure could damage the
cell membrane and release intracellular free radicals or their precursors, which actually
promote lipid oxidation.

Using a pulse electric field (PEF) has shown its different effects on lipid oxidation in oi-
rich products depending on the operating conditions [2]. However, many chemically active
compounds can be produced by discharging or by reacting a food matrix with electrodes.
Liquids close to the electrode surface produce an electrolytic effect and eventually produce
active chemicals such as hydrogen peroxide, hydroxyl radical or chloride ion. In addition,
under the effect of PEF action, oil will produce alkyl radical, alkoxy radical, superoxide
anion radical and so on, among which superoxide anion radical is very active in being
transformed into other active hydroxyl radicals, hydrogen peroxide radicals and so on.
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Lipid oxidation induced by γ radiation is a typical free radical reaction. The gamma
ray is a kind of high-energy ray containing a large amount of ionizing radiation energy,
which induces the H loss reaction of methylene connected with double bonds in unsat-
urated fatty acids and forms free radicals [23]. Radiation can degrade water molecules,
leading to the generation of oxidation (e.g., hydroxyl radicals) and reduction products (e.g.,
hydrogen atoms) [24]. Among them, hydroxyl radicals can easily convert myoglobin into
ferromyoglobin and even convert iron in heme into its free state, forcing it to become the
major catalyst for lipid oxidation [25].

Table 1. Characteristics of emerging food processing techniques.

Technology Principle Processing
Mechanism Advantages Limitations Reference

Radiation
A photon of no mass,
capable of
penetrating material

Forms positively and
negatively charged
ions by interacting
with food molecules;
these unstable
particles rapidly
convert into highly
active free radicals
and react with food
ingredients

X Improves
processing
efficiency

X Reduces enzyme
activity

X Strong
penetration

X Avoids
secondary
pollution

X High reliability
X Suitable for mass

production

6 High cost
6 Radiation risk
6 Insufficient

consumer
awareness of
radiation

6 Loss of nutrition
6 Causes changes

in oxidative
flavor

6 Difficult to detect

[26]

Plasma

An ionized gas
consisting of
particles produced
by free radicals, ions,
electrons and other
discharges; available
at atmospheric or
sub-atmospheric
pressures by
discharge or strong
ultraviolet radiation

When oxygen is
present as part of a
gas, reactive oxygen
species in the plasma
may cause food
quality to decline

X Low water
consumption

X Low operating
temperature

X Low cost
X Inactivated

pathogens
X Enzyme

inactivation
X Changed

hydrophilic-
ity/hydrophobicity

6 Promotes
oxidation of
certain food
ingredients

6 Reduces food
quality

6 Shortens shelf
life

[27]

High
pressure

A food preservation
technology that puts
food into a sealed,
high-strength
pressure vessel,
exerts pressure at a
certain temperature
and maintains it for
a period of time, also
known as ultrahigh
pressure, or high
hydrostatic pressure

To delay or
accelerate the rate at
which a particular
reaction occurs,
together with
changes in physical
properties and
effects on
equilibrium
processes

X High retention
rate of functional
active
components

X Increases mass
transfer rate of
liquid oil

X Increases
permeability of
solvent in cells

X Increases
diffusion of
secondary
metabolites

6 Small effect on
food enzyme
activity

6 Presence of some
microorganisms

6 Expensive
equipment
investment

[28]
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Table 1. Cont.

Technology Principle Processing
Mechanism Advantages Limitations Reference

Pulsed electric
field

Very short pulses of
high-voltage direct
electric current
generated between
two electrodes,
leading to
electroporation and
non-thermal
modification of the
tissue structure

Cell destruction in a
food matrix without
damaging food
properties, which
can improve mass
transfer and cause
electroporation and
inactivation of the
microbial cell wall

X Increases mass
transfer
efficiency and
extraction yield

X Shortens the
processing time

X Very little
heating of the
food
corresponding to
less effect on the
color, nutrient
content and
flavor of food

X Reduces the loss
of thermally
sensitive
compounds

X Time- and
energy-saving

6 No effect on
enzymes and
spores

6 Difficult to use
with conductive
materials

6 Only for liquids
6 Electrolysis may

adversely affect
food

6 High cost of
investment and
low equipment
capacity

[29]

Ohmic
heating

Conduction and
convection heat is
generated internally
within the food mass
due to tissue’s
electrical resistance.

Motion of charged
particles on the
conductive food
materials between
electrodes through
the passage of
electric current;
heating takes place
throughout the
entire volume of the
food

X Rapid and
uniform heating

X No need for
large heating
surfaces

X Suitable for
particulate–
liquid
mixtures

X Possible to have
near-
instantaneous
startup and
shutdown of the
heating unit

6 Foods used for
processing
should be
pumpable

6 Foods should
have a good
electrical
conductivity

6 The process
variables should
be selected
cautiously

[16]

Instant
controlled

pressure drop

A high-temperature
and high-pressure
treatment, the raw
material is treated by
saturated steam in a
short time and then
suddenly pressure
drops to vacuum

Changes in
structural
characteristics
(porosity, surface
area), increased
diffusivity and
permeability within
plants and
availability of certain
active molecules

X Reduction in
processing time

X Instantaneous
reduction in
temperature

X Prevention of
further thermal
degradation

X High quality of
extracts

6 High energy
consumption [30]
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Table 1. Cont.

Technology Principle Processing
Mechanism Advantages Limitations Reference

Compressed
liquefied gas

When a gas is
liquefied, its
physical and
chemical properties
become better

Using low-pressure
liquefied gas as
solvent, changing
the process
selectivity by
adjusting the
pressure at mild
temperature, thus
changing the solvent
extraction efficiency

X Low pressure
X Substitutability
X Improves

enzyme catalytic
ability

X Reduces solvent
use

X Time- and
cost-saving

6 Solubility of
polar
compounds

6 Frequent
maintenance

[31]

Supercritical
fluids

Changes in physical
properties through
pressure and/or
temperature
adjustment beyond
critical values

The density of
supercritical fluid is
close to that of
liquid, resulting in
its dissolving power
being close to liquid,
viscosity, close to gas,
and diffusivity,
between liquid and
gas

X Increases mass
transfer

X Improves
selectivity

X Reduces the use
of organic
solvents

X Solvent-free
residue of
extracts

6 Miscibility with
polar
compounds

6 Professional
requirement

6 High startup
investment

[4]

Ultrasonication

Non-thermal
technique using
frequencies in the
range of 20–100 kHz
at power levels of
10–1000 W/cm2

The collapse of
cavitation bubbles
generates very high
localized pressure
(100 MPa),
temperature (5000 K)
and forces sufficient
to destroy cell walls

X Improves heat
transfer

X Inactivates
microorganisms
in liquid foods

6 Free radical
formation

6 Off-flavor
6 Metallic taste
6 Structural

modification

[32]

4. Invisible Effects of Emerging Techniques on Lipid Degradation
4.1. Ultrasound
4.1.1. Principle

Ultrasound has found numerous applications in the food industry, such as process-
ing, extraction, emulsification, preservation, homogenization, etc. [33]. Ultrasound (US)
refers to mechanical waves which have the property of spreading in elastic media such
as liquids [34]. The ultrasonic wave is mainly characterized by four physical parameters,
namely the frequency (Hertz), ultrasonic power (W), wavelength (cm) and ultrasonic inten-
sity (W·cm−2). It is worth mentioning that ultrasonic intensity (UI) is directly related to
ultrasonic power (UI = P/S; P: power (W) and S: the emitting surface (cm2)).

US frequencies range between 20 kHz and 10 MHz, above the human hearing range
(from 16 Hz to 20 kHz). High frequencies (from 2 MHz to 10 MHz) and low ultrasonic
power (P < 1 W) are applied in the case of diagnostic US essentially used for therapeutic
purposes such as medical imaging. In this power range, there is no destructive effect into the
medium. The desired effect is only to characterize the medium by measuring the submitted
modification of the ultrasonic wave during its propagation into the medium [32]. Power
US is characterized by low frequencies (from 20 kHz to 100 kHz) and high ultrasonic power
(P > 10 W). Contrarily to diagnostic US, high power promotes physical and chemical effects
by creating sufficient interaction between the ultrasonic wave and the elastic medium. This
frequency range is widely valorized in several fields such as food processing and extraction
of natural products. Physical impacts are essentially observed at low frequencies (from
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20 kHz to 100 kHz), while different chemical impacts can be observed in the extended
range of power US frequencies (up to 2 MHz), mainly in the formation of radicals [35].

US-induced impacts can be attributed to the cavitation phenomenon referring to bub-
ble formation, growth and implosion during its propagation into an elastic medium [34,36].
The benefit of the cavitation phenomenon is related to the concentration of acoustic energy
in small volumes (bubbles) and its conversion in extreme physical conditions of temper-
ature and pressure. While passing through an elastic medium, a spatial and temporal
variation in acoustic pressure is induced into the medium, where an oscillatory movement
can therefore be observed on the surface.

Undergoing a succession of compression and rarefaction phases, the medium’s consti-
tutive molecules can be displaced from their equilibrium position. During the compression
phase (negative acoustic pressure), intermolecular distance is significantly reduced leading
to possible collision with the surrounding molecules. During the rarefaction phase (positive
acoustic pressure), intermolecular distance increases dramatically [37]. Thus, voids are
created between the constitutive molecules once their cohesive forces are exceeded by
a higher ultrasonic power. These voids, also called bubbles, are formed from vapors or
gases initially present in the elastic medium. Vapors and/or gases entering bubbles are
partially expelled during the compression phase, resulting in a final increase in bubble size
after many cycles of rarefaction/compression phases. In other words, the bubble volume
increases with each cycle until it reaches a critical size. At this stage, bubbles collapse
during the compression cycle [34,35,37,38]. Bubble implosion results in the creation of hot
spots with extreme conditions of temperature (up to 5000 K) and pressure (up to 5000 atm),
which explains their extremely high physical and chemical reactivity [34,36–38].

4.1.2. Effects on Food Lipids

Although ultrasound is able to produce beneficial modifications in food quality pa-
rameters (e.g., viscosity and homogenization), the physicochemical effects of ultrasound
treatment might also result in quality impairments of food products by the appearance of
off-flavors, modifications in physical parameters and degradation of major and minor com-
pounds. Due to these critical temperature and pressure conditions, allied to the formation
of radicals during sonocavitation, some alterations in food components have been reported
during ultrasonic treatment. Acoustic cavitation can produce radicals in a liquid medium
and molecules such as OH and H radicals can accumulate at the surface of the cavitation
bubble, which can be responsible for initiating the formation of degradation products that
can also trigger radical chain reactions and provoke substantial quality defects in those
products [39]. The potential restrictions and/or uses of the chemical effects generated by
cavitation phenomena are shown in Figure 5.

An increasing number of reports in the literature concern modifications in high-
lipid-containing food products. Table 2 summarizes the effects of ultrasound on high-
fat food products, as well as the experimental conditions used in those studies. Lipid
deterioration is of great economic importance in the production of lipid-containing food
products. Oxidation of unsaturated lipids not only produces unpleasant odors and flavors
but can also decrease the nutritional quality and safety by the formation of secondary
reaction products in foods. In food products, lipid autoxidation is often referred to as
rancidity, which describes the off-flavors obtained by subjective organoleptic evaluation
of the product [40]. Lipid oxidation can also destroy essential fatty acids and produce
oxidized polymers and toxic compounds [41]. The lipid oxidation phenomenon depends
on several complex reaction mechanisms, which are related to the lipid’s structure and the
medium conditions under which the lipids are present. Some determining variables to
lipids’ oxidative stability are the number and nature of the present unsaturation, the type
of interface between the lipids and oxygen, exposure to light and heat, and the presence of
pro- or antioxidants.
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Table 2. Effects of emerging techniques on lipid oxidation.

Food Matrix Experimental Conditions Observations References

Ultrasound

Virgin olive oil 20 A, 400 B, Titanium alloy microprobe C, 5 D,
Spectrophotometer F, Rancimat method G

Ultrasound probe, irradiation time, duty cycle and pulse
amplitude are the most influential variables on the acceleration

of the olive oil oxidation process
[42]

Refined sunflower oil 20 A, 150 B, Titanium alloy probe C, 0.5–2 D, 20 E, UV
spectroscopy, GC and GC/MS F, Sonication G

Increase in peroxide value, decrease in polar compounds and
appearance of off-flavors [43]

Sunflower oil
20/47 A, 450 B, Titanium alloy probe C, 60 E, 20/60 F, UV

spectroscopy, GC and GC/MS F, Emulsification and
sonication G

Sonodegradation identified with off-flavor compounds [44]

Soybean germ and seaweed oils 19/25/40/300 A, 80 B, Titanium cup horn, immersion horn and
cavitating tube C, 30/60 D, 45 E, GC/FID F, Extraction G

Slight oxidation with decrease in the relative percentage of
unsaturated fatty acids, irrespective of the degree of unsaturation [45]

Kiwi seed oil 80 B, Titanium horn C, 30 D, 50 E, GC/MS and sensory
evaluation F, Extraction G Partial lipid degradation found with the presence of off-flavors [46]

Bleached olive oil 20 A, 750 B, Immersible probe C, 13–43 D, 30–70 E, HPLC and
SPME/GC/MS F, Bleaching G

Increase in peroxide value and acid value, losses in
α-tocopherols and minor changes in fatty acid composition; the

oil flavor partly deteriorated after long treatment
[47]

Soybean oil 20 A, 90–180 B, Probe C, 0.5–3 D, 25 E, GC, SEM F, Extraction G Increase in saturated fatty acids, decrease in unsaturated fatty
acids and the oxidation percentage was 3.4% [48]

Flaxseed oil 20 A, 600 B, Microprobe C, 5/10/20 D, GC/MS, GC F,
Extraction G

Minor effect on fatty acid losses, peroxide levels increased and
free radicals may have also been generated; organic solvent may

have limited oxidation
[49]

Palm and sunflower oils 66 A, Ultrasonic ring transducer cell C, 15 D, 45 E, Microscope
and GC/MS F, Crystallization G

Appearance of benzene as one of the oxidation products in a
very small quantity [50]

Chocolate mousse 25 A, 150 B, Bath C, 2 D, 25 E, Color, Sensory analysis F, Food
preparation G

Darker color of sonicated samples, decrease in viscosity and
apparition of off-flavors [51]

Sunflower oil 40 A, - B, Titanium sonotrode C, 3 D, Ion chromatography and
sensory test F, Cutting G

A short ultrasonic treatment was sufficient to generate a
remarkable off-flavor [52]

Kolkhoung (Pistacia khinjuk) kernel oil 24 A, 100 B, Titanium sonotrode C, 30/40/50 E, GC and HPLC F,
Extraction G

The fatty acid and oxidation of the oil were not affected by the
ultrasound but the temperature [53]
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Table 2. Cont.

Food Matrix Experimental Conditions Observations References

Castor oil 20 A, 130 B, Standard probe C, 35 D, 70 E, CLSM and SEM F,
Soxhlet extraction and thermosonication extraction G

More stable to oxidize during thermosonication due to low
iodine and peroxide values [54]

Rapeseed 40 A, 73.5/105 B, Bath C, 30 D, 37–49 E, GC/FID, pressure DSC
and TEM F, Pretreatment before oil pressing G

Unfavourable changes were observed in the oxidative stability of
the oil after seed sonication [55]

Microalgae (Heterochlorella luteoviridis) 20 A, 72 B, Probe C, 10 D, 30 E, GC/MS, GC/FID and TEM F,
Extraction G.

No oxidation process was observed; carotenoids acts as an
antioxidant in preserving polyunsaturated fatty acids [56]

Microwaves

Olive oils 2.45 A, 720 B, 1.5–15 D, 145–313 E, HPLC F, Heating G,
Domestic microwave oven H

Microwave heating induced oxidative alterations, especially in
extra virgin olive oil and olive oil [57]

Refined peanut, high-oleic sunflower and
canola oils

2.45 A, 720 B, 1.5–15 D, GC/FID and DSC F, Heating G,
Domestic microwave oven H

Different degrees of lipid thermooxidation induced by
microwaves in vegetable oils were observed [58]

Baru and soybean crude oils 1000 B, 1–15 D, GC-FID and color F, Heating G, Domestic
microwave oven H Increase in peroxide value, color change [59]

Soybean germ and seaweed oils 100 B, 30/60 D, 60/120 E, GC/MS F, Extraction G, Open and
closed vessel or under pressure H

Higher yields were achieved with closed-vessel irradiation at
120 ◦C with negligible lipid oxidation, as well as combined

ultrasound/microwave irradiation
[45]

Olive oil 1000 B, 1–10 D, 30 E, GC-FID and HPLC F, Cooking G, Domestic
microwave oven H Addition of vegetable extracts to improve the stability of olive oil [60]

Extra virgin olive oil 700 B, 15 D, 50–225 E, Raman spectroscopy and GC/FID F,
Cooking G, Microwave oven H

A progressive degradation of carotenoids in extra virgin olive oil
was observed at 180 ◦C [61]

Sunflower and corn oils 700 B, 2–10 D, 80–158 E, GC-MS and HPLC F, Extraction G,
Microwave oven H

Increase in primary and secondary oxidation products, fatty acid
content and tocopherol content [62]

Virgin olive,
refined sunflower and peanut oils

1100 B, 15 D, - E, Spectrophotometer, GC-FID F, Cooking G,
Microwave oven H Increase in the trans isomers of unsaturated fatty acids [63]

Gurum seed oil 800 B, 2–6 D, 74–146 E, Spectrophotometer, color and GC-MS F,
Extraction G, Microwave oven H

Oxidative stability increased with microwave heating for
different times [64]

Mashhadi melon, Iranian watermelon,
pumpkin and yellow apple seed oils

1000 B, 1–15 D, GC/FID and oil quality analysis F, Home
heating and cooking G, Microwave oven H

Oil quality decreased with longer exposure to microwave
heating, resulting in the formation of primary and secondary

oxidation products
[65]
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Table 2. Cont.

Food Matrix Experimental Conditions Observations References

Black cumin seed oil
180/540/900 B, 1.5/3/4.5 D, 25 E, Rancimat device,

Spectrophotometer, SEM F, Pretreatment before extraction G,
Microwave oven H

Inverse relation between the microwave power and the time of
the oxidative stability; microwave radiation degraded

susceptible bioactive compounds
[66]

Flaxseed oil 2.45 A, 180/360/540 B, 5/10 D, Color, Spectrophotometer and
Rancimat F, Roasting G, Microwave system H

Formation of Maillard reaction products during roasting led to a
change in oil color [67]

Chia seed oil 2.45×106 A, 180–900 B, 15 D, GC and HPLC, Spectrophotometer
F, Roasting G, Industrial microwave device H

Microwave roasting could cause significant changes in the
physicochemical properties of chia oil like losses in its bioactive

components
[68]

Poppy seed oil 2.45×106 A, 720 B, 25 D, GC/FID and Spectrophotometer F,
Roasting G, Microwave oven H

Microwave roasting cast negative effects on the nutritional and
functional attributes of the seed and oil [69]

Soybean oil 10–60 D, 150–250 E, NMR, Pressurized DSC and viscometer F,
Irradiation G, Sophisticated microwave oven H

Microwave irradiation increased the oil viscosity due to the
formation of a cyclic ring structure with polymerization [70]

Cold plasma

White and brown rice 250 B; 20 D TBARS increased after 20 min of treatment [71]

Wheat flour 15/20 B; 1/2 D The content of free fatty acids and phospholipids decreased
significantly [72]

Chicken breast DBD, Peak power: 100, average power: 2 B; <10 D No lipid oxidation observed [73]

Semi-dry squid Pulsed corona discharge; 20 I; 1.5 A; 10 D TBARS value increased [74]

Bresaola 15.5/62 B; 5/0.33 D TBARS value increased [75]

Bacon 14000 A, 75/100/125 B; 1.5 D Higher TBARS values after 7 days of storage [76]

Cheddar cheese DBD, Peak power: 100, average power: 2 B; 10 D TBARS value increased [77]

Olive oil DBD; 6 I; 60 D The concentration of secondary oxidation products increased [78]

Fish oil DBD; 6 I; 60 D The concentration of oxidation products increased significantly [79]

High pressure

Sunflower oil 30 J Oxidation reduction. [80]

4% (w/v) water-in-oil emulsion 0.1~137.9 J The oxidation stability of the crude emulsion was poor [81]
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Table 2. Cont.

Food Matrix Experimental Conditions Observations References

Soybean oil and conjugated linoleic acid
(20%, v/v) emulsion

15 J; 15 J,
High-temperature short-time conditions; 200 J

The oxidation stability followed the order of ultrahigh-pressure
homogenization > conventional homogenization > conventional

homogenization + high-temperature short-time conditions
[82]

10–20% (w/v) water-in-oil emulsion 15 J; heat, 15 J; 100–300 J 20% of the water-in-oil emulsion had the best oxidation stability [83]

10–50% olive oil 100, 200 J, 25 E; 5000 rpm, 20 E; 15 J, 60 E 100 J of high-pressure homogenization stability [84]

15% sunflower seed oil + 5% olive oil 100, 200 J, 15 J The treated emulsion had high oxidation stability, and the 100 J
treatment especially was the best [85]

Yak body fat 100–600 J; 4, 15 E; 20 days
Samples treated under lower pressure had good sensory

acceptability; high-pressure treatment had a catalytic effect on
lipid oxidation

[86]

Milk 200, 300 J High concentration of secondary oxidation products for the 300 J
treated group [87]

Fresh meat 400–800 J; 5–40 E; 0–60 D High pressure, temperature and time synergistic effects
promoted an increase in free radicals [22]

Dry-cured ham 600 J; 2 E; 120 days Samples with high muscle fat content were unstable [88]

Pulse electric field

Peanut oil 20/30/40/50 I; 1 A; 40 µs Lipid oxidation inhibition [89]

Chicken breast 0.01/0.055/0.11 A; 7.5/10/12.5 I (fresh samples) 14/20/25 I
(frozen samples); 20 µs No lipid oxidation observed [90]

Vegetable beverage 20–35 K; 100–475 µs No lipid oxidation observed [91]

Cooked lamb meat 1–1.4 K; 20 µs; 0.09 A No lipid oxidation observed [92]

Beef muscles 1.4 K; 20 µs; 0.05 A Lipid oxidation observed [93]

Cold boned beef Low-voltage PEF (2.5 I, 0.2 A, 20 µs); high voltage PEF (10 I, 0.2
A, 20 µs)

Higher degree of lipid oxidation in high-voltage pulsed electric
field samples [3]

Oleic acid 25–35 K; 400 µs Lipid oxidation observed [94]

Lecithin 0–35 K; 0–800 µs Lipid oxidation observed [95]
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Table 2. Cont.

Food Matrix Experimental Conditions Observations References

Radiation

Flaxseed and Tung oils 0/50/100 L Oxidation acceleration [96]

Rapeseed oil 2/4/7/10 L No secondary oxidation product, which was positively
correlated with the peroxide value [97]

Peanut oil Infrared shortwave radiation; 150 E; 25/40/55/70 D Improved oxidation stability of the extracted oil [98]

Peanut oil 2.5/5/7.5/10 L; 6 months at room temperature
Induction period and tocopherol content were negatively

correlated with irradiation dose; radiation and storage increased
the production of oxidized compounds

[99]

Peanut 4/6/8 L Irradiation was an effective tool for peanut oil preservation. [100]

Raw unpeeled almond kernels 1/1.5/3/5/7 L Volatile off-flavor compounds increased with the increase in
irradiation dose. [101]

Cashew 1/1.5/3/5/7 L Volatile compounds such as aldehydes, ketones and alcohols
increased, corresponding to lipid oxidation [102]

Vegetable oil 1/2/3 L; additional tocopherol The antioxidant activity decreased significantly [103]

Red meat 0–9.4 L The content of tocopherol decreased significantly [104]

A: Frequency (kHz), B: Power (W), C: Type of ultrasonication, D: Exposure time (min), E: Temperature (◦C), F: Main analytical method, G: Type of treatment, H: Type of microwave
apparatus, I: Kilovolt (KV), J: Megapascal (MPa), K: Kilovolt/centimeter (KV/cm), L: Kilogray (kGy). GC/MS: Gas chromatography mass spectrometry; GC: Gas chromatograph;
GC-FID: Gas chromatography-flame ionization detection; HPLC: High-performance liquid chromatography; SPME: Solid-phase micro-extraction; CLSM: Confocal laser scanning
microscopy; FESEM: Field-emission scanning electron microscopy; DSC: Differential scanning calorimetry; TEM: Transmission electron microscopy; NMR: Nuclear magnetic resonance;
DBD: Dielectric barrier discharge; TBARS: Thiobarbituric acid reactive substance.



Molecules 2023, 28, 8138 15 of 28

Molecules 2023, 28, x FOR PEER REVIEW 9 of 26 
 

 

products, as well as the experimental conditions used in those studies. Lipid deterioration 
is of great economic importance in the production of lipid-containing food products. Ox-
idation of unsaturated lipids not only produces unpleasant odors and flavors but can also 
decrease the nutritional quality and safety by the formation of secondary reaction prod-
ucts in foods. In food products, lipid autoxidation is often referred to as rancidity, which 
describes the off-flavors obtained by subjective organoleptic evaluation of the product 
[40]. Lipid oxidation can also destroy essential fatty acids and produce oxidized polymers 
and toxic compounds [41]. The lipid oxidation phenomenon depends on several complex 
reaction mechanisms, which are related to the lipid’s structure and the medium conditions 
under which the lipids are present. Some determining variables to lipids’ oxidative stabil-
ity are the number and nature of the present unsaturation, the type of interface between 
the lipids and oxygen, exposure to light and heat, and the presence of pro- or antioxidants. 

 
Figure 5. The potential restrictions and/or chemical effects generated by cavitation phenomena. 

Table 2. Effects of emerging techniques on lipid oxidation. 

Food Matrix Experimental Conditions Observations References 
Ultrasound 

Virgin olive oil 
20 A, 400 B, Titanium alloy microprobe C, 5 D, Spectro-

photometer F, Rancimat method G 

Ultrasound probe, irradiation time, duty cy-
cle and pulse amplitude are the most influ-
ential variables on the acceleration of the ol-

ive oil oxidation process 

[42] 

Refined sunflower 
oil 

20 A, 150 B, Titanium alloy probe C, 0.5–2 D, 20 E, UV 
spectroscopy, GC and GC/MS F, Sonication G 

Increase in peroxide value, decrease in polar 
compounds and appearance of off-flavors 

[43] 

Sunflower oil 
20/47 A, 450 B, Titanium alloy probe C, 60 E, 20/60 F, UV 
spectroscopy, GC and GC/MS F, Emulsification and soni-

cation G 

Sonodegradation identified with off-flavor 
compounds 

[44] 

Soybean germ and 
seaweed oils 

19/25/40/300 A, 80 B, Titanium cup horn, immersion 
horn and cavitating tube C, 30/60 D, 45 E, GC/FID F, Ex-

traction G 

Slight oxidation with decrease in the relative 
percentage of unsaturated fatty acids, irre-

spective of the degree of unsaturation 
[45] 

Kiwi seed oil 
80 B, Titanium horn C, 30 D, 50 E, GC/MS and sensory 

evaluation F, Extraction G 
Partial lipid degradation found with the 

presence of off-flavors 
[46] 

Bleached olive oil 
20 A, 750 B, Immersible probe C, 13–43 D, 30–70 E, 

HPLC and SPME/GC/MS F, Bleaching G 

Increase in peroxide value and acid value, 
losses in α-tocopherols and minor changes 

in fatty acid composition; the oil flavor 
partly deteriorated after long treatment 

[47] 

Figure 5. The potential restrictions and/or chemical effects generated by cavitation phenomena.

4.2. Microwaves
4.2.1. Principle

Nowadays, microwaves have not only gained in popularity for defrosting, heating or
cooking, but are also used in food processing such as drying, thawing, tempering, cooking,
baking, sterilization, blanching and extraction. Microwave radiation has many advantages;
this process is completed in a few seconds or minutes with high reproducibility, reducing
the extraction time and energy normally needed for conventional heating.

Microwaves are electromagnetic waves with a frequency range from 0.3 GHz to
300 GHz, i.e., they span the range of wavelengths from 1 m to 1 cm. Their waves are between
radio frequencies and infrared radiation on the electromagnetic spectrum. Industrial
applications in food processing have grown steadily since the frequencies of 2.45 GHz
and 915 MHz have become more common. Microwaves are composed of an electric
and magnetic field and thus represent electromagnetic energy. This energy is a type of
innocuous radiation that creates the molecular motion of ions by the rotation of dipoles but
has no effect on molecular structure. This dipole rotation comes from alternative movement
of polar molecules which try to line up with the electric field. Many collisions due to
the agitation of molecules generate energy release, which results in rapid heating. Thus,
microwave radiation comes from dissipation of the electromagnetic waves in the irradiated
material. The dissipated power in the medium depends on the dielectric properties and the
electric field strength.

The mechanisms of microwaves and conventional heating are different. Microwave
heating transforms electromagnetic energy into thermal energy, which starts from a heat
source and transfers to a medium by conduction, convection or radiation in conventional
heating. This phenomenon can be explained by the Fourier heat equation, where ρ, Cp, κ, T
and t represent the specific density (kg·m−3), specific heat capacity (J·kg−1·K−1), thermal
conductivity (W·m−1·K−1), temperature (K) and time (sec), respectively.

ρCp
∂T
∂t

+ κ∇2T + P
/

V = 0 (1)
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4.2.2. Effects on Food Lipids

In contrast with conventional heating, microwaves allow a rapid rise in temperature,
a volumetric heating, and the maximum temperature of the irradiated material depends
only on the rate of heat loss and power applied. The distribution of the electric field is not
homogeneous in the irradiated material and “hot spots” appear if heat production is faster
than heat transfer. At this moment, for highly viscous media such as oils, the degradation
induces oxidative processes to vegetable oils, leading to quality and nutritional losses, as
well as lower bioactive properties and physical changes [60]. Table 2 summarizes the effects
of microwave heating on the degradation of vegetable oils and the experimental conditions
used in those studies. Cerretani et al. [57] investigated the effect of microwave radiation
on the formation of reactive free radicals that rapidly reacted with atmospheric oxygen to
produce secondary oxidation products. The formation of secondary oxidation products in
olive oil was determined by testing for the p-anisidine value, which showed a significant
increase after 3 min of microwave heating. The peroxide value as another oxidative index
was also evaluated, which greatly decreased after up to 6 min of heating. These preliminary
results show that microwave energy may induce oxidation in olive oil.

Moreover, Borges et al. [59] studied the effects of microwave heating on the compo-
sition and physicochemical properties of baru and soybean crude oils. They concluded
that both oils became oxidized after 3 min of heating with a 94% decrease in tocopherol
content, corresponding to a reduced antioxidant activity by half, and the oxidative stability
was reduced by about 72%, accompanied by the loss of its typical yellow coloration. In
the same way, Karrar et al. [64] investigated the impact of microwave heating on the lipid
composition and the oxidative stability of gurum seed oil, whose results showed that
triacylglycerol and diacylglycerol decreased with microwave heating (800 W) after 2, 4 and
6 min, respectively, compared with the untreated sample. This same trend was observed
for the change in tocopherol content, which has several benefits to overall human health.
Another study aimed at evaluating the physicochemical properties and oxidation stability
of castor oil using microwave-assisted solvent extraction (MAE) from castor seed [105]. The
oil from the MAE was more viscous and had a higher acidic value compared to that of the
Soxhlet extraction as the reference. The increase in acidic value may be attributed to the
hydrolysis of triacylglycerols by microwaves which produce more free fatty acids.

4.3. Ohmic Heating
4.3.1. Principle

Ohmic heating is also known as electric resistance heating, which is a technique based
on the passage of alternative current (50–100 Hz) through food material in order to generate
internal heat (i.e., Joule effect). Parameters such as the voltage and the frequency of electric
current and electrical conductivity can affect the characteristics of food components since
they determine the heating rate. The first industrial application of ohmic heating began in
1920 with milk pasteurization in a continuous process. This technique is particularly fit for
viscous products, liquid foods and the concentration process especially for fruits with a
high electrical conductivity value which leads to heating in a few seconds. Many studies
revealed that ohmic heating is superior to conventional heating in terms of energy and
time saving [106]. In addition, the use of low frequencies between 50 and 60 Hz increases
electrochemical reactions and the erosion of electrodes, where the contact between the
electrodes and the material food is a critical aspect of the process.

The advantages of ohmic heating include uniform and volumetric heating, reduced
processing time and thermal damage to thermolabile components like vitamins, bioactive
ingredients and color parameters [107], as well as non-contact between the food material
and hot surfaces. Ohmic heating allows for the conversion of electrical energy into thermal
energy, which can be used as an intermittent batch process or in a continuous flow sys-
tem [108,109]. Several studies showed that ohmic heating had little effect on the oxidative
degradation of vitamin C [110], whose degradation depends on the treatment time, the
type of electrode and the voltage gradient.
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4.3.2. Effects on Food Lipids

Ohmic heating is unsuitable for foods with low electrical conductivity such as those
with a high fat content. Hence, studies concerning the impact of ohmic heating on fatty
acid profiles are still scarce. Al-Hilphy et al. [111] reported an ohmic-based oil extraction
from fish waste, which showed better quality under appropriate processing conditions than
the conventional method. Fresh Gac aril is very susceptible to oxidation and degradation;
Aamir and Jittanit [112] studied the effect of ohmic heating on Gac aril oil extraction in
comparison with conventional heating. The experiments were conducted using three
extraction stages at 50 ◦C with the selected ratio of Gac aril powder to the solvent and
time for each stage. With the ohmic method, the extraction efficiency and the content of
carotenoids in the Gac aril oil were enhanced with the porous and ruptured microstructure
of oil-extracted raw material. Kumari et al. [113] optimized their process parameters
(900 V/m, 85 ◦C for 10 min) to maximize the recovery of sesame oil. Although the ohmic
heating treatment of sesame slightly increased the FFA in the oil, all FFA values were
below the maximum permissible limit for all treatment combinations. In addition, Kuriya
et al. [114] investigated the effect of ohmic heating on the quality of blueberry-flavored
dairy desserts, where different electric field strengths (1.82, 3.64, 5.45, 7.30 and 9.1 V/cm)
at 60 Hz were used and compared to a conventional heat treatment (90 ◦C/3 min) as the
control. The type of processing and the electrical field had no significant impact on the
fatty acid profile.

4.4. Plasma
4.4.1. Principle

Plasma is often referred to as the fourth state of matter. It is an ionized gas composed
of free electrons, ions, reactive atoms, neutral fractions and photons that are in a metastable
state with a net charge of approximately zero. According to the temperature of electrons,
plasma can be divided into low-temperature and high-temperature plasma [115]. More
specifically, low-temperature plasma can be divided into thermal plasma and non-thermal
or cold plasma according to its thermodynamic equilibrium [116]. Moreover, cold plasma
exhibits thermodynamic imbalance at two temperatures, i.e., ions and neutral molecules
remain at low temperatures (slightly higher than room temperature), while the temperature
of electron gas is about 104 K [117]. Therefore, the cold plasma system used in food
processing is kept at a relatively low temperature, which is very beneficial to the food
processing industry.

Dielectric barrier discharge (DBD) and plasma jets are commonly used in food process-
ing. The DBD device consists of two metal electrodes while at least one electrode is covered
by a dielectric barrier, which acts as a stabilizing material to avoid any arc transitions and
create a large amount of microdischarge for uniform processing. The plasma jet device
consists of two concentric electrodes while the inner electrode is usually connected to
power at a high frequency, resulting in the ionization of working gas, which presents as a
“jet-like” nozzle [118].

4.4.2. Effects on Food Lipids

Plasma is an emerging food processing technology, among which non-thermal plasma,
especially atmospheric plasma, has received widespread attention in the food industry [119].
It is an accelerated oxidation technology with great potential to predict lipid oxidation
phenomena and/or oxidation stability. This plasma can standardize the control of lipid-
accelerated oxidation in complex food matrices with the production of high-concentration
active substances such as singlet oxygen, hydroxyl radicals, atomic oxygen, ozone and
excited molecular nitrogen [78]. Unfortunately, these active substances, and free radicals in
particular, can also initiate lipid oxidation by hydrogen abstraction from lipid molecules.

Gas in the electric field can accelerate the movement of charged ions and free electrons.
These accelerated particle collisions with other molecules lead to energy sharing, displace-
ment reactions and charge exchange, resulting in several free radicals. When discharging to
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feed gases containing N2 and O2 molecules, their collision with electrons leads to a series
of reactions, forming NxOy, O3 and peroxy dimer. The collision of electrons (e−) with O2
leads to the formation of solitary oxygen atoms in the discharge zone (e− + O2 → 2O + e−),
which are then attacked by reaction O2 to produce ozone (O + O2 + M→ O3 + M), where M
is O, O2 or O3. However, ozone and singlet oxygen will promote potential lipid oxidation
in foods. When water is present in the feed gas, it causes OH, H2O2 and H formation,
which in turn may inhibit O3 formation [71].

Table 2 summarizes some effects of plasma on lipid oxidation in foods, as it is known
that the type and content of a lipid are closely related to its oxidation. Gavahian et al.
(2018) [71] found that the thiobarbituric acid reactive substance (TBARS) value of brown
rice after 20 min of atmospheric plasma treatment was higher than that of white rice,
indicating that plasma is more suitable for foods with a relatively low fat content. Bahrami
et al. [72] showed that treating wheat flour with plasma for 1 or 2 min significantly reduced
the content of free fatty acids and phospholipids in the wheat flour, and plasma-treated
wheat flour decreased the content of linoleic acid by 100% compared to untreated wheat
flour. Thirumdas et al. [120] observed that the peroxide content in peanuts and walnuts
treated with 60 kV plasma increased by 20% in their production of oxidative rancidity. Lee
et al. [73] found that dielectric barrier discharge for 10 min did not cause the oxidation effect
in packed chicken breast. The oxidation stability of the chicken breast was however better
than that of red meat plasma, which might have been related to the higher fat content in the
meat. Choi et al. [74] found that corona spray discharge caused lipid oxidation, resulting in
an increase in the TBARS value during storage while it could improve the sanitary quality
of semi-dry squid. The high unsaturated fatty acid content in squid is sensitive to lipid
oxidation [121], which may be related to primary oxidation products and active substances
produced by further plasma reactions. The free fatty acids and other primary oxidation
products generated from the drying process make the lipids in squid more susceptible to
oxidation by plasma.

Moreover, lipid oxidation is associated with input power, processing time and storage.
The TBARS value of bresaola (i.e., dried and aged bacon) samples treated by one-minute
atmospheric pressure plasma with air-conditioned packaging (30% of O2 and 70% of Ar)
increased from 0.15 to 0.35 mg/kg [75]. Atmospheric pressure plasma at 100 W for 1.5 min
had a negative effect on lipid, though it could improve the microbial safety of bacon [76].
The TBARS value of bacon increased after 7 days of storage, indicating that the presence of
oxygen in the carrier gas accelerated the lipid oxidation rate. Plasma treatment did not affect
the lipid oxidation level in canned ham due to the presence of nitrite and ascorbic acid [119].
Yong et al. [77] reported that the TBARS value of cheddar cheese could be influenced by
plasma treatment time, where lipid oxidation could be reduced by optimizing process
parameters. Plasma treatment could accelerate lipid oxidation, especially for the formation
of volatile secondary oxidation products like aldehydes and ketones. The concentration
of volatile secondary oxidation products in plasma-treated olive oil samples increased
significantly [78]. Similarly, the secondary oxidation products in plasma-treated fish oil
significantly increased compared with untreated fish oil [79].

4.5. High Pressure
4.5.1. Principle

Pressure is a basic thermodynamic variable corresponding to temperature. Thermal
effects during a high-pressure process (HPP) can cause changes in material volume and
energy [122]. Combined net effects during an HPP may be synergistic, antagonistic or
superimposed. Reactions such as phase transitions or molecular redirection depend on
temperature and pressure, which cannot be treated alone. The previously mentioned HPP
principles as follows [123].

• Isostatic principle: Regardless of the geometry and size of the food, the pressure is
assumed to be uniform and equal in all directions of the food composition.
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• Le Chatelier’s principle: Any phenomena (phase transition, changes in molecular
configuration, chemical reactions) accompanied by a decrease in volume are enhanced
by pressure, which will facilitate a system’s transition to the lowest volume.

• Microscopic ordering principle: An increase in pressure at a constant temperature
enhances the order of a given material molecule. Therefore, pressure and temperature
antagonize molecular structures and chemical reactions.

• Arrhenius relationship: As with heat treatment, various reaction rates in the HPP
process are also affected by the thermal effect during pressure treatment. Net pressure–
heat effects can be synergistic, superimposed or antagonistic.

4.5.2. Effects on Food Lipids

The most pressure-sensitive biological components are lipid systems [124]. Indeed, the
melting temperature of triglycerides can increase by more than 10 ◦C per 100 MPa, and thus
lipids in a liquid state at room temperature crystallize under high-pressure treatment [12].
Bolumar et al. [22] found that free radical formation would not occur at pressures below
400 MPa, which can be considered as a threshold in HPP treatment. The kinetics of free
radical formation followed a zero-order reaction at pressures below 600 MPa, whereas that
at higher treatment pressures was more aligned with a first-order reaction with a reaction
rate of 0.016–0.07 µM/min [125].

Pressure affects not only the physical properties of food components (e.g., surface
tension, density, viscosity and thermal properties, etc.) and dynamic equilibrium processes,
but also the rate of lipid oxidation by slowing down or accelerating the reaction. Hebishy
et al. [84] observed a higher oxidation rate for emulsions treated by an ultrahigh pressure
of 200 MPa compared to those treated by 100 MPa, especially for those containing 1% or
2% of whey protein isolate, which may have been due to the decreased ability of whey
protein to protect oil droplets. With the increasing pressure in the ultrahigh pressure
treatment, the temperature at the outlet of the homogeneous valve increased, resulting in
the over-processing phenomenon. Whey proteins were partially denatured or aggregated,
leading to large polymeric dissociation, which could allow more proteins to gather on the
droplet surface and prevent oxidation better [85]. Pereda et al. [87] found that the content
of malondialdehyde and hexanal was much lower in milk under 300 MPa compared to
that of 200 MPa. Wang et al. [86] also found that the TBARS values of treated fat samples
at 400 MPa and 600 MPa were much higher than those at 200 MPa, indicating that lipid
oxidation increased with pressure.

Although the temperature generated by high-pressure processing is considered low,
it is sufficient enough to affect various nutrients and bioactive molecules [2]. The emul-
sification of multiple oils (i.e., sunflower, camel and fish oils) by microfluidization at the
pressure of 21–138 MPa using sodium caseate as an emulsifier could lead to an increase
in oxidation stability [87]. The increased temperature of water-in-oil emulsion during
pressure treatment could lead to the binding of lipids to proteins during storage, resulting
in a reduction of oxidation products. Bolumar et al. [22] found thresholds for the formation
of free radicals at 25 ◦C and 400 MPa and 5 ◦C and 500 MPa, respectively. Above these
thresholds, free radical formation increased with the increasing pressure, temperature and
time. It is believed that the synergistic effects of high pressure and temperature could
promote lipid oxidation.

In addition, there are many factors affecting oxidation, such as the oil content, physical
structure of emulsion (e.g., size and specific surface area of droplets), emulsifier and
emulsion type, etc. [83,126]. As Table 2 summarizes, Fuentes et al. [88] reported the
oxidative stability difference in two dry-cured ham types under a high-pressure treatment
of 600 MPa, namely in the flank (lower fat content) and hip (higher fat content), indicating
that unsaturated lipids in the flanking samples were more easily oxidized corresponding to
their high TBARS value. Atares et al. [80] used a high-pressure jet homogenizer of 30 MPa
to determine the structure and oxidative stability of water-in-oil emulsions prepared with
sunflower oil in the presence of the flavonoids rutin and whey protein as emulsifiers. The
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droplet size decreased after high-pressure homogenization, whereas the emulsion structure
stability increased, thus reducing lipid oxidation. Nakaya et al. [127] found that the
oxidation stability of lipids in an emulsion could be enhanced by reducing the droplet size.
Phoon et al. [81] used high-pressure homogenization (0.1~137.9 MPa) to form a water-in-oil
emulsion (4%, w/v), which showed a poor oxidation stability due to its larger droplet size
when exposed to oxygen directly. Ultrahigh-pressure homogenization is a novel antioxidant
technique for the production of fine, stable submicron emulsions [128]. Soybean oil and
conjugated linoleic acid emulsions (20%, v/v) containing soy protein isolate (4%, w/v) as an
emulsifier were studied [82], indicating that the emulsion treated by ultrahigh-pressure
homogenization (100~300 MPa) had the smallest particle size with the best oxidation
stability. Furthermore, lipid oxidation decreased with increasing oil content under constant
pressure according to the change in the TBARS value, which is consistent with previous
findings [129]. This may have been due to the fact that the water-soluble pro-oxidant
components decreased proportionally with the increased oil phase in the emulsion, thus
reducing the number of free radicals and slowing down lipid oxidation [130]. Compared
to other oil content, emulsions with 10% of oil content treated at an ultrahigh pressure
also had poor physical stability, which might have been due to their link with oxidation
stability [131]. The mechanism of HPP-induced cholesterol oxidation remains unclear. The
most supported hypothesis is related to cell membrane damage, which can induce free
radical formation through the synergistic action of denatured proteins [132]. Furthermore,
applying very high pressure (>800 MPa) can also form free radicals and promote lipid
peroxidation, resulting in cholesterol oxidation [125]. It is believed that the increase in the
oxidation rate may be due to the increase in the interface area, which leads to the increase
in contact between the oil and peroxide.

4.6. Pulse Electric Field
4.6.1. Principle

PEF technology applies a high voltage pulse in a specific and short amount of time,
resulting in a high electric field with electroporation phenomena occurring in the treated
material placed between two electrodes [133]. A transmembrane potential difference is
formed on the cell membrane under the action of an applied electric field. When the electric
field strength of the transmembrane exceeds the threshold, the voltage shrinkage force
causes a local dielectric breakdown of the membrane, resulting in a pore as a conductive
channel [134]. Due to high electric field pulses, the cell membrane increases membrane per-
meability by expanding existing pores or generating new ones, which may be permanent or
temporary depending on the operating conditions [29]. The mechanism of electroporation
is mainly based on the voltage contraction force that affects the cell membrane. Hence, the
pulsed electric field technique is considered as a pretreatment process for the disintegration
of vegetative organisms [135], which illustrates the electrical, reversible and irreversible
breakdown of the cell membrane.

4.6.2. Effects on Food Lipids

PEF is a non-thermal food preservation technology mainly used in liquids. Compared
to traditional hot barrel sterilization, PEF can inactivate most pathogenic or spoilage mi-
croorganisms, which has the advantages of maintaining food freshness effectively, having
an impact on enzymatic activity and is energy-saving. Minimizing the loss of taste, color,
texture, nutrition and thermal-sensitive functional components in food has attracted in-
creasing attention in recent years [9,136–138]. PEF is among the emerging technologies that
have been successfully applied in various low-viscosity liquid foods such as milk, soy milk,
pea soup, egg liquid and juice beverages [89]. However, few studies concerning the effects
of PEF on food composition have been reported, especially in food lipids [139]. Therefore,
understanding the role of PEF technology in electrochemical reactions and lipid oxidation
is necessary for further development of the food processing industry [95].
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PEF treatment can change the permeability of cells, which makes meat components
such as lipids easier to oxidize or to promote the reaction between enzymes and their
substrates. It can also change fatty acids and volatile components and ultimately affects the
shelf life of food [93]. Moreover, Pataro et al. [140] showed that metal ions released from
pulsed electric fields led to electrode contamination or corrosion, and even lipid oxidation
at the end. Table 2 summarizes some effects of PEF on lipid oxidation in foods. Zeng
et al. [89] observed that the acidic value of PEF-treated peanut oil after storage at 40 ◦C
for 100 days was lower than that of untreated peanut oil, while the carbonyl value during
this storage period decreased with the increase in the electric field intensity, indicating that
PEF treatment could inhibit the rate of lipid oxidation. Arroyo et al. [90] found that the
malondialdehyde content of PEF-treated fresh frozen chicken breast increased but there
was no significant difference in the TBARS value for different conditions. Cortes et al. [91]
also noted that the peroxidase of PEF-treated samples was partially inactivated while the
TBARS value was not significantly changed.

Furthermore, Ma et al. [92] found that PEF-treated lamb meat would not produce lipid
oxidation immediately. However, the malondialdehyde content in the treated sample after
7 days of storage was higher than that in the control, though the product quality was still
acceptable (<2 mg malondialdehyde/kg sample). Notwithstanding, Faridnia et al. [93]
found that the lipid oxidation of PEF-treated beef muscles was significantly enhanced,
where the TBARS value was higher than that of the non-PEF treated samples. PEF treatment
made thawed-from-frozen meat more prone to lipid autoxidation caused by the release
of metal ions in iron complexes. The thawed-from-frozen samples accumulated the most
malondialdehyde content after a storage period of 18 days. High-voltage PEF-treated
boned beef samples exhibited a higher lipid oxidation rate compared to those treated with
low-voltage PEF at the end of the storage period [3], which is probably because of the
high thermal energy generated during the high-voltage PEF treatment that could reduce
the antioxidant capacity of meat and accelerate the lipid oxidation rate during storage.
Moreover, no significant effect was found on the acidic value of PEF-treated oleic acid
and lecithin samples after storage [95,96]. Nevertheless, the change in both the peroxide
value and carbonyl value at different degrees was influenced by the electric field intensity
and storage time, indicating that PEF treatment did induce the oxidation of oleic acid
and lecithin.

4.7. Radiation
4.7.1. Principle

The effects of radiation can be divided into direct and indirect effects. The direct effect
is due to the nonspecific collision of radiation photons with atoms in microbial molecules.
Radiation disintegrates key biomolecules such as DNA, RNA, enzymes and membrane
proteins [141]. It also induces the formation of DNA photoproducts, namely cyclobutane
pyrimidine dimer and pyrimidine (6–4) pyrimidone photoproducts, which inhibit tran-
scription and replication and inactivate microorganisms [142,143]. The indirect effect is
due to the effect of free radicals produced during irradiation hydrolysis. Ionizing radiation
can generate sufficiently high energy to activate chemical reactions in many food systems.
Radiation first ionizes one electron in the effluent, producing highly active substances such
as hydroxyl radicals and hydrogen peroxide, and then forms many intermediates which
can react with each other or with other components in the system. Many intermediates
produced during this time have high chemical activity [144]. Therefore, the indirect effect
of irradiation on microbial inactivation depends on the water availability in food [141].

4.7.2. Effects on Food Lipids

Electromagnetic waves (e.g., visible, x, γ, ultraviolet, infrared, etc.) and electrons
can be used in food processing with the advantages of having uniform heating, high heat
transfer efficiency, less mass loss, being energy-saving, and having a prolonged shelf life
and improved safety. It has been reported that the shorter the wavelength, the better the
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thermal penetration effect [98]. The free radicals formed by irradiation have an important
effect on the oxidative stability of foods with high fat content, but generally, they have no
effect on the nutritional value of foods. Similar to the results of lipid changes observed
using conventional methods, irradiation accelerates oxidative decay in foods [145]. Food
products with either a higher lipid or unsaturated fatty acid content are more prone to
oxidation reaction, which is mainly caused by free radicals formed in the indirect action of
radiation [146]. The higher the irradiation dose, the higher the excitation level, and thus
more free radicals are produced to easily enhance lipid oxidation and color change [147].

The lipid oxidation rate increases with the radiation dose. As Table 2 presents, an
oxidation rate ranging from 0 to 50 kGy increased faster than that of 50–100 kGy [96]. A
significant positive correlation between the radiation dose and peroxide value was found
with a correlation coefficient of 0.908 [97]. The peroxide value of peanut oil extracted from
infrared radiation-treated seeds was significantly higher than that from original seeds [98],
which may be due to the temperature increase during the roasting process. According to
Lee et al.’s study [148], the radiation dose of 5.0 kGy greatly increased the oxidation of
soybean oil, cottonseed oil, corn oil and linoleic acid. The concentration of both primary
and secondary oxidation products increased with the increase in γ radiation dose [99]. Both
primary and secondary oxidation products accumulated in peanut oil under a γ radiation
of 8 kGy, where the content of secondary oxidation products increased faster [100]. Cashew
nuts (Anacardium occidentale L.) radiated at higher doses (7 kGy) could be oxidized to form
aldehydes and ketones as well [102]. The content of these volatile secondary oxidation
products was also found to increase significantly in peanut and pistachio oils using the
same radiation dose [103].

The oxidation stability index is affected by many factors, such as fatty acid composition
and antioxidant content. Total antioxidant capacity increases as the roasting temperature
increases. Hence, the storage stability of peanut oil from an infrared radiation pre-baking
treatment significantly improved compared to the control [98]. Similarly, some Maillard
reaction products generated from heating treatment can also improve the antioxidant
capacity of oil [149]. However, γ radiation shortens the induction period of crude peanut
oil and reduces the oxidative stability, though the total tocopherol content is positively
correlated with the induction period [99].

Radiation can also cause a content change in endogenous antioxidants in oils to some
extent, like tocopherols and phenolic compounds. The polyphenolic content of peanut oil
extracted from infrared radiation roasted seeds increased by 62.20% whereas the contents
of total tocopherol and three tocopherol congeners decreased significantly compared to oils
from raw peanuts [98]. The degradation of tocopherol exceeded the oxidative protection
of Maillard reaction products when the temperature increased from 147 ◦C to 157 ◦C. The
decrease in γ-tocopherol content was affected differently by the instantaneous γ radiation of
5.0 kGy [99]. The loss of α-tocopherol in soybean oil was as high as 92.3% with γ radiation
of 3.0 KGy [103]. Irradiation could significantly decrease the tocopherol content, among
which α- and δ-tocopherol degraded the most while γ-tocopherol resistance to degradation
was the best [104].

5. Conclusions and Perspectives

The content of active compounds and the absence of denatured molecules are gener-
ally two main factors used to determine the quality of food lipids. During the processing of
food containing considerable level of lipids, lipid degradation may occur depending on the
process conditions like high temperature, long-term treatment, presence of light, oxygen,
metal ions and free radicals. Although the aforementioned innovative food processing
methods in accordance with the green extraction concept aim to obtain non-denatured
and biodegradable end products without contaminants with added values, their accom-
panying negative effects require additional attention. The key to further investigating
such techniques in both academia and food industries is to select or combine together
the appropriate technique for the future good manufacture practice. Furthermore, some
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alternative hypotheses on lipid oxidation reactions and mechanisms still require evidence,
which is of paramount importance for the optimization of processing conditions for the
sake of high-quality products with maximum economic value and minimum lipid oxida-
tion. Furthermore, reliable and robust equipment of good applicability is also necessary to
guarantee the reproducibility of products and stable quality control.
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