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Exact Rényi and Kullback-Leibler Divergences
Between Multivariate t-Distributions

N. Bouhlel, Member, IEEE and D. Rousseau, Member, IEEE

Abstract—In this letter, we propose a closed-form expression
of the Rényi divergence (RD) of order β between two zero-mean
real multivariate t-distributions (MTDs). Such distribution has
been deployed in several signal and image processing applications
where heavy-tailed distribution is well-suited. Based on the
computation of the multiple integral involved in the RD, the
expression of the divergence is provided without resorting to
the conventional time-consuming Monte Carlo (MC) integration
technique. In addition, the Kullback-Leibler divergence (KLD)
is deduced from RD. Finally, a comparison is made between the
MC method and the numerical value of the RD expression to
show how the former gives close approximations to the latter.

Index Terms—Multivariate t-distribution, Rényi divergence of
order β, Kullback-Leibler divergence, Lauricella series.

I. INTRODUCTION

In the literature, numerous divergences have been proposed
to measure the distance between probability distributions,
such as Kullback-Leibler, Rényi [1], Bhattacharyya [2] and
Hellinger [3], etc. The statistical distance has been extensively
used in various applications such as image classification and
texture retrieval [4], [5], change detection [6], speaker recogni-
tion and classification [7], [8], model selection [9], parameter
estimation [10], etc. Explicit expressions of some of these
divergences have been developed for most univariate distri-
butions such as the Gamma, the Cauchy [11], the generalized
Gamma [12] and the generalized Gaussian [13] ones. Also,
expressions exist for some multivariate distributions such as
Wishart [6], multivariate Gaussian and generalized Gaussian
[14], and multivariate Cauchy [15]. However, for other mul-
tivariate distributions, the statistical distances require dealing
with multiple integrals which are analytically intractable, and
so, it is not easy to find closed-form expressions for all
the divergences. As a consequence, different approximation
techniques have been developed: Monte-Carlo (MC) integra-
tion technique [16], variational approximation [17], lower and
upper bounds approximation [18], etc. The MC sampling
can efficiently estimate these statistical distances and achieve
high accuracy when a large number of samples is provided.
Unfortunately, MC sampling is a time-consuming process and
is not practically possible in many applications.

Among the aforementioned distributions, the multivariate
t-distributions (MTD) [19] has received much attention and
has been used in several signal and image processing applica-
tions where non-Gaussian statistics are necessary. Indeed, the
MTD has been used for modeling the non-Gaussian heavy-
tailed clutter measured by high-resolution radars [20], [21].
It is also used to model the wavelet coefficients for speckle
denoising [22], hyperspectral anomaly detection [23], multi-
target tracking [24], etc. The MTD belongs to the elliptical
symmetric distributions [25] and has the multivariate Cauchy

distribution (MCD) as special case. To our knowledge no
closed-form expression existed for the RD and KLD between
two MTDs. Therefore, the objective of this letter is to derive
an expression for the RD between two zero-mean MTDs to
bring solutions for future work on statistical signal processing,
machine learning and other related fields in computer science.
Moreover, we derive an analytic expression of the KLD since
it is a special case of the RD avoiding approximation using
expensive MC techniques. Finally, an implementation of the
proposed RD expression is provided and a comparison is
made with the MC sampling. Section II provides the closed-
form expressions of the RD and KLD between two zero-
mean MTDs. Section III presents the implementation of the
divergence and a comparison with MC sampling method. A
summary and conclusions are provided in the final section.

II. MULTIVARIATE t-DISTRIBUTION AND RÉNYI
DIVERGENCE OF ORDER β

A p-dimensional real random vector X = (X1, ..., Xp)
T

is said to have the p-variate t-distribution with degrees of
freedom ν, mean vector µ, and correlation matrix Σ if its
joint probability density function (pdf) is given by

fX(x|ν,µ,Σ, p) = A

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]− ν+p
2

(1)

where A =
Γ( ν+p2 )|Σ|−0.5

Γ(ν/2)ν
p
2 π

p
2

. The case ν = 1 corresponds
to MCD and ν → ∞ yields the multivariate normal dis-
tribution. Consider X1 and X2 be two real random vectors
that follow zero-mean MTDs with pdfs fX1(x|ν1,Σ1, p) and
fX2(x|ν2,Σ2, p) given by (1). The RD between X1 and X2 is
given by

Dβ
R(X1||X2) =

1

β − 1
ln

∫
Rp
fβX1(x|ν1,Σ1, p)f

1−β
X2 (x|ν2,Σ2, p)dx

=
1

β − 1
lnEX1

{(
fX1(x|ν1,Σ1, p)

fX2(x|ν2,Σ2, p)

)β−1
}
. (2)

Consequently, the closed form expression of the RD between
two zero-mean MTDs is given by (see Appendix A for
demonstration)

Dβ
R(X1||X2) =

1

β − 1

[
β ln

(
Γ( ν1+p

2
)

Γ( ν2+p
2

)

Γ( ν2
2

)

Γ( ν1
2

)

ν
p
2
2

ν
p
2
1

)
+ ln

(
Γ( ν2+p

2
)

Γ( ν2
2

)

)

+ ln

(
Γ(δ1 + δ2 − p

2
)

Γ(δ1 + δ2)

)
− β

2

p∑
i=1

lnλi

+ lnF
(p)
D

(
δ1,

1

2
, ...,

1

2︸ ︷︷ ︸
p

; δ1 + δ2; 1− ν2
ν1

1

λ1
, ..., 1− ν2

ν1

1

λp

)]
(3)

where δ1 = ν1+p
2 β and δ2 = ν2+p

2 (1− β) are notations used
here to alleviate the writing of the equation, and λ1, ..., λp
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are the eigenvalues of the real matrix Σ1Σ
−1
2 arranged in

ascending order. The function F
(p)
D represents the Lauricella

D-hypergeometric series defined for p variables (see Appendix
D). The series is convergent if |1 − ν2

ν1
1
λi
| < 1, i = 1, ..., p.

If not, other Lauricella series expressions can be provided
using transformations (see Appendix D) that can guarantee
the convergence of the series. These equivalent expressions
will be presented in the section III. For the particular case
corresponding to the MCD where ν1 = ν2 = 1, the RD of
order β is given by

Dβ
R(X1||X2) =

1

β − 1

[
− β

2

p∑
i=1

lnλi

+ lnF
(p)
D

(
1 + p

2
β,

1

2
, ...,

1

2︸ ︷︷ ︸
p

;
1 + p

2
; 1− 1

λ1
, ..., 1− 1

λp

)]
. (4)

The KLD is a particular case of the RD where
DKL(X1||X2) = lim

β→1
Dβ
R(X1||X2) [26]. As a consequence the

KLD between two zero-mean MTDs is given by (see Appendix
B for more details)

DKL(X1||X2) = ln

(
Γ( ν1+p

2
)

Γ( ν2+p
2

)

Γ( ν2
2

)

Γ( ν1
2

)

ν
p
2
2

ν
p
2
1

)
+
ν2 − ν1

2

[
ψ(
ν1 + p

2
)

− ψ(
ν1
2

)

]
− 1

2

p∑
i=1

lnλi −
ν2 + p

2

p∏
i=1

(
ν2
ν1

1

λi

) 1
2 ∂

∂a

{
F

(p)
D

(
ν1 + p

2
,

1

2
, ...,

1

2
; a+

ν1 + p

2
; 1− ν2

ν1

1

λ1
, ..., 1− ν2

ν1

1

λp

)}∣∣∣∣
a=0

. (5)

where ψ(.) is the digamma function defined as the logarithmic
derivative of the Gamma function. For the particular case of
the MCD where ν1 = ν2 = 1, the KLD is given by

DKL(X1||X2) = −1

2

p∑
i=1

lnλi −
1 + p

2

p∏
i=1

λ
− 1

2
i

∂

∂a

{
F

(p)
D

(
1 + p

2
,

1

2
, ...,

1

2
; a+

1 + p

2
; 1− 1

λ1
, ..., 1− 1

λp

)}∣∣∣∣
a=0

. (6)

The equation (6) has been demonstrated in [15].

III. IMPLEMENTATION AND COMPARISON WITH
MONTE-CARLO TECHNIQUE

As mentioned in section II, other Lauricella series expres-
sions can be provided using some transformations. These new
expressions differ in the region of convergence. Therefore, for
a valid expression of the RD, the convergence of the Lauricella
series need to be guaranteed. Three cases can be identified.

A. Case (ν1/ν2)λp > . . . > (ν1/ν2)λ1 > 1

The Lauricella series in (3) is convergent since |1− ν2
ν1

1
λi
| <

1, i = 1, ..., p.

B. Case 1 > (ν1/ν2)λp > . . . > (ν1/ν2)λ1

Thanks to the Lauricella transformations given in Appendix
D, we can provide a new convergent form of the Lauricella
series. Indeed, using the transformation (33), the Lauricella
series in (3) can be transformed as follows

F
(p)
D

(
δ1,

1

2
, ...,

1

2
; δ1 + δ2; 1− ν2

ν1

1

λ1
, ..., 1− ν2

ν1

1

λp

)
=

p∏
i=1

(
ν1
ν2
λi)

1
2F

(p)
D

(
δ2,

1

2
, ...,

1

2
; δ1 + δ2; 1− ν1

ν2
λ1, ..., 1−

ν1
ν2
λp

)
(7)

TABLE I
COMPUTATION OF F

(p)
D (.) AND 2F1(.), p = 3, β = 0.5, ν1 = ν2 = 1

N = 20 N = 30

1− ν2
ν1

1
λ 2F1(.) F

(p)
D |ε| F

(p)
D |ε|

0.1 1.0818 1.0818 6.6613e-16 1.0818 6.6613e-16
0.3 1.3015 1.3015 3.4061e-13 1.3015 8.8817e-16
0.5 1.6568 1.6568 2.8780e-8 1.6568 1.6404e-11
0.7 2.3592 2.3591 8.3425e-5 2.3592 1.4177e-6
0.9 4.8050 4.7097 95321e-2 4.7828 2.2172e-2

C. Case (ν1/ν2)λp > 1 and (ν1/ν2)λ1 < 1

This case guarantees that 0 ≤ 1−λj/λp < 1, j = 1, .., p−1
and 0 ≤ 1 − (ν2/ν1)1/λp < 1. The Lauricella series in (3)
can be transformed using (35). The new one is as follows

F
(p)
D

(
δ1,

1

2
, ...,

1

2
; δ1 + δ2; 1− ν2

ν1

1

λ1
, ..., 1− ν2

ν1

1

λp

)
= (

ν2
ν1

1

λp
)δ2

p∏
i=1

(
ν1
ν2
λi)

1
2F

(p)
D

(
δ2,

1

2
, ...,

1

2
, δ1 + δ2 −

p

2
; δ1 + δ2;

1− λ1

λp
, ..., 1− λp−1

λp
, 1− ν2

ν1

1

λp

)
. (8)

Practically, to implement the RD, the infinite sums of the
Lauricella series are replaced by finite sums. Thus, the indices
mi in (30) satisfy 0 ≤ mi ≤ N where N is the upper bound
chosen to achieve a desired precision.

For the particular case λ1 = ... = λp = λ, the Lau-
ricella series becomes equal to the Gauss hypergeometric
function, F (p)

D (δ1,
1
2 , ...,

1
2 ; δ1 + δ2; 1 − ν2

ν1
1
λ , ..., 1 −

ν2
ν1

1
λ ) =

2F1(δ1,
p
2 , δ1 + δ2, 1 − ν2

ν1
1
λ ) allowing thus to compare the

accuracy of calculation between them. Table I shows the
absolute value of the error |ε| computed between F (p)

D (.) and
2F1(.) where p = 3, β = 0.5, N = {20, 30} and ν1 = ν2 = 1.
With these particular values, 2F1(1, 3

2 , 2, 1−1/λ) = 2/(λ−1+
λ−1/2). It is clear to see that |ε| is low and increases when
1− ν2

ν1
1
λ is close to 1.

In the following, we compare the MC technique with our
numerical approximation of the closed-form expression of the
RD. The MC method involves sampling a large number of
samples to compute the sum instead of the integral. Here,
the experiment is repeated 2000 times for each sample size.
The following values are chosen for the experiment: p = 3,
(ν1 = 2, Σ11 = 2, Σ22 = 2, Σ33 = 2, Σ12 = 1.2,
Σ13 = 0.4, Σ23 = 0.6) and (ν2 = 4, Σ11 = 1, Σ22 = 1,
Σ33 = 1, Σ12 = 0.3, Σ13 = 0.1, Σ23 = 0.4). We recall
that our numerical approximation method only depends on N .
However the MC method depends on the sample size. For a
value of N = 30, the accuracy of the numerical approximation
is evaluated to 10−9. The accuracy can be further improved by
increasing the value of N , but it will increase the computation
time. Figure 1 shows the absolute value of bias, the mean
square error (MSE), and the box plot of the difference between
the numerical approximation of the RD of order β = 1/2 and
the MC method, as a function of the sample sizes. It is clearly
seen that the bias and the MSE decrease when the sample
size increases. And so, for large sample sizes, and therefore
longer simulation times, the MC technique becomes close to
our numerical approximation results. Furthermore, the box plot
of the error may show this behavior.
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Fig. 1. Bias (left) and MSE (middle) of the difference between our numerical
approximation and MC sampling of RD of order β = 0.5 for MTD, and Box
plot of the error (right).

In addition, the computing time of the proposed approx-
imation and the classical MC sampling method performed
by simulations are compared for a similar accuracy. Then,
for a precision of 10−6, the calculation time of our method
is 6 time smaller than MC method. This demonstrates the
advantages of the proposed method: the analytical expression
of the divergence and the computational interest.

IV. CONCLUSION

In this paper, a closed-form expression of the RD and KLD
between two zero-mean MTDs have been derived. The diver-
gence expressions depend on the Lauricella D-hypergeometric
series. We have also proposed an efficient implementation of
the divergence to guarantee the convergence of the Lauricella
series. For a large number of samples, the MC sampling
method is close to numerical approximated RD value. The
proposed numerical approximation of the expression of the
RD between two zero-mean MTDs distribution is efficient in
terms of computation time and accuracy.

APPENDIX A
EXPRESSION OF Dβ

R(X1||X2)

The pdf of the Xi is defined for i = 1, 2 by

fXi(x|νi,Σi, p) = Ai

[
1 +

1

νi
xTΣ−1

i x

]− νi+p
2

(9)

and Ai =
Γ( νi+p2 )

Γ(
νi
2 )ν

p
2
i π

p
2 |Σi|

1
2

. We denote by H =

EX1

{( fX1 (x|ν1,Σ1,p)

fX2 (x|ν2,Σ2,p)

)β−1}
developed as follows

H = Aβ1A
1−β
2

∫
Rp

(
1 +

xTΣ−1
1 x

ν1

)−δ1 (
1 +

xTΣ−1
2 x

ν2

)−δ2
dx.

(10)

Consider transformation y = Σ
−1/2
1 x where y =

[y1, y2, ..., yp]
T . The Jacobian determinant is given by dy =

|Σ1|−1/2dx (Theorem 1.12 in [27]) and matrix Σ =

Σ
1
2
1 Σ
−1
2 Σ

1
2
1 is a real symmetric matrix given that Σ1 and Σ2

are real symmetric matrices. Accordingly, the expectation is
evaluated as follows

H =
Aβ1A

1−β
2

|Σ1|−
1
2

∫
Rp

(
1 +

yTy

ν1

)−δ1 (
1 +

yTΣ−1y

ν2

)−δ2
dy.

(11)

Knowing that (Definition 1.1.5 [28])

(
1 +

yTy

ν1

)−δ1
=

1

Γ(δ1)

∫ +∞

0

tδ1−1e
−t(1+yT y

ν1
)
dt, (12)(

1 +
1

ν2
yTΣ−1y

)−δ2
=

1

Γ(δ2)

∫ +∞

0

xδ2−1e
−x(1+ 1

ν2
yTΣy)

dx,

(13)

the expectation expression is given by

H =
Aβ1A

1−β
2

|Σ1|−
1
2 Γ(δ1)Γ(δ2)

∫ +∞

0

∫ +∞

0

tδ1−1xδ2−1e−(t+x)

(∫
Rp
e
−( t

ν1
yT y+ x

ν2
yTΣy)

dy

)
dtdx. (14)

Using the transformation z = ( t
ν1

)1/2y with the Jacobian
determinant given by dz = ( t

ν1
)p/2dy, the last multiple

integral is given as follows∫
Rp
e
−( t

ν1
yT y+ x

ν2
yTΣy)

dy =

(
t

ν1

)− p
2
∫
Rp
e
−zT (Ip+

ν1
ν2

x
t
Σ)z

dz.

where Ip is the identity matrix of size p. Using the following
property which states that if x is a p×1 vector of real variables
and A a p× p symmetric positive definite matrix of constants
the following integral is true [27]∫

x

e−xT Axdx = π
p
2 |A|−

1
2 (15)

the new expectation as a consequence is given by

H =
Aβ1A

1−β
2 π

p
2

|Σ1|−
1
2 Γ(δ1)Γ(δ2)

J (16)

where the multiple integral J is defined

J =

∫ +∞

0

∫ +∞

0

tδ1−1xδ2−1e−(t+x)( t
ν1

)− p
2 |Ip +

ν1
ν2

x

t
Σ|−

1
2 dtdx.

Let λ1, ..., λp be the eigenvalues of Σ. The following deter-
minant is given as follows [27]

|Ip +
ν1
ν2

x

t
Σ| =

p∏
i=1

(1 +
ν1
ν2

x

t
λi). (17)

The following change of variables u = x/t and v = x + t,
allows an expression of the Jacobian determinant defined by
dudv = (1 + u)2/vdxdt. Accordingly, one can write after
development

J = ν
p
2
1 Γ
(
δ1 + δ2 −

p

2

)∫ +∞

0

uδ2−1(1 + u)−(δ1+δ2− p2 )

×
p∏
i=1

(1 +
ν1
ν2
uλi)

− 1
2 du. (18)

By applying another transformation y = 1/(1 + u), the last
equation is given by

J = ν
p
2
1 Γ
(
δ1 + δ2 −

p

2

) p∏
i=1

(
ν1
ν2
λi

)− 1
2
∫ 1

0

yδ1−1(1− y)δ2−1

×
p∏
i=1

(
1− (1− ν2

ν1

1

λi
)y

)− 1
2

dy. (19)

The last integral represents the Lauricella D-hypergeometric
function, denoted F

(p)
D (.). The integral representation of

F
(p)
D (.) is given by (32) in Appendix D. Consequently, (19) is

given by
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J = ν
p
2
1 Γ
(
δ1 + δ2 −

p

2

) p∏
i=1

(
ν1
ν2
λi

)− 1
2 Γ(δ1)Γ(δ2)

Γ(δ1 + δ2)

× F (p)
D

(
δ1,

1

2
, ...,

1

2
; δ1 + δ2; 1− ν2

ν1

1

λ1
, ..., 1− ν2

ν1

1

λp

)
. (20)

Plugging the expression of J in (16), and using the notation
Bi = 1 − ν2

ν1
1
λi
, i = 1, ...p to alleviate the writing of the

equation, the new expression of the expectation is given by

H =

(
Γ( ν1+p

2
)

Γ( ν2+p
2

)

Γ( ν2
2

)

Γ( ν1
2

)

ν
p
2
2

ν
p
2
1

)β
Γ( ν2+p

2
)

Γ( ν2
2

)

Γ(δ1 + δ2 − p
2
)

Γ(δ1 + δ2)

p∏
i=1

λ
− β

2
i

× F (p)
D

(
δ1,

1

2
, ...,

1

2︸ ︷︷ ︸
p

; δ1 + δ2;B1, ..., Bp

)
. (21)

As a consequence, the RD of order β is given by

Dβ
R(X1||X2) =

1

β − 1
lnH. (22)

APPENDIX B
EXPRESSION OF DKL(X1||X2)

The KLD between X1 and X2 is given by

DKL(X1||X2) = lim
β→1

1

β − 1
lnH =

∂

∂β
{lnH}

∣∣
β=1

. (23)

By using the expression (3) of DR, it is easy to prove that
∂

∂β

{
ln

Γ(δ1 + δ2 − p
2
)

Γ(δ1 + δ2)

} ∣∣∣∣
β=1

=
ν1 − ν2

2

[
ψ(
ν1
2

)− ψ(
ν1 + p

2
)

]
(24)

and, since

F
(p)
D

(
ν1 + p

2
,

1

2
, ...,

1

2
;
ν1 + p

2
;B1, ..., Bp

)
=

p∏
i=1

(
ν2
ν1

1

λi

)− 1
2

where Bi = 1− ν2
ν1

1
λi
, i = 1, ..., p, we have the following

∂

∂β

{
lnF

(p)
D

(
δ1,

1

2
, ...,

1

2
; δ1 + δ2;B1, ..., Bp

)}∣∣∣∣
β=1

=

p∏
i=1

(
ν2
ν1

1

λi

) 1
2 ∂

∂β

{
F

(p)
D

(
δ1,

1

2
, ...,

1

2
; δ1 + δ2;B1, ..., Bp

)}∣∣∣∣
β=1

.

(25)

Using the following relation (demonstration in Appendix C)
∂

∂β

{
F

(p)
D

(
δ1,

1

2
, ...,

1

2
; δ1 + δ2;B1, ..., Bp

)} ∣∣∣∣
β=1

= −ν2 + p

2

∂

∂a

{
F

(p)
D

(
ν1 + p

2
,

1

2
, ...,

1

2
; a+

ν1 + p

2
;B1, ..., Bp

)} ∣∣∣∣
a=0

(26)

we can finally establish the expression of KLD for two zero-
mean real MTDs.

APPENDIX C
We use the following notation α =

∑p
i=1mi to alleviate

the writing. Using the Lauricella series definition (30), and
the Pochhammer symbol (31), the derivative of the Lauricella
series with respect to β is given as follows

∂

∂β

{
F

(p)
D

(
δ1,

1

2
, ...,

1

2
; δ1 + δ2;B1, ..., Bp

)}
=

+∞∑
m1,...,
mp=0

∂

∂β

{
(δ1)α

(δ1 + δ2)α

} p∏
i=1

(
1

2

)
mi

Bmii
mi!

. (27)

By using the following property ∂
∂c (c)k = (c)k[ψ(c + k) −

ψ(c)], which is easy to prove using the derivative of Pochham-
mer (31), we can deduce that
∂

∂β

{
(δ1)α

(δ1 + δ2)α

}∣∣∣∣
β=1

=
(ν2 + p

2

) [
ψ(
ν1 + p

2
+ α)− ψ(

ν1 + p

2
)
]

= −
(ν2 + p

2

) ∂

∂a

{
( ν1+p

2
)α

(a+ ν1+p
2

)α

}∣∣∣∣
a=0

. (28)

As a consequence,
∂

∂β

{
F

(p)
D

(
δ1,

1

2
, ...,

1

2
; δ1 + δ2;B1, ..., Bp

)} ∣∣∣∣
β=1

= −
(ν2 + p

2

) +∞∑
m1,...,
mp=0

∂

∂a

{
( ν1+p

2
)α

(a+ ν1+p
2

)α

}∣∣∣∣
a=0

p∏
i=1

(
1

2

)
mi

Bmii
mi!

= −ν2 + p

2

∂

∂a

{
F

(p)
D

(
ν1 + p

2
,

1

2
, ...,

1

2
; a+

ν1 + p

2
;B1, ..., Bp

)} ∣∣∣∣
a=0

(29)

APPENDIX D
LAURICELLA SERIES

The Lauricella series F (n)
D is given as follows [28], [14]

F
(n)
D (a, b1, ..., bn; c;x1, ..., xn)

=

+∞∑
m1,...,
mn=0

(a)m1+...+mn

(c)m1+...+mn

(b1)m1 ...(bn)mn
xm1
1

m1!
...
xmnn
mn!

(30)

where |x1|, ..., |xn| < 1. The Pochhammer symbol (q)i is
defined as follows

(q)i = q(q + 1)...(q + i− 1) =
Γ(q + i)

Γ(q)
if i = 1, 2, ... (31)

Lauricella FD can be expressed as a one-dimensional Euler
integral for any number of variables n. It is defined when
Re(a) > 0 and Re(c− a) > 0 by

F
(n)
D (a, b1, ..., bn; c;x1, ..., xn) =

Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ua−1×

(1− u)c−a−1(1− ux1)−b1 ...(1− uxn)−bndu. (32)

Several transformations can be applied as follows [29], [14]
F

(n)
D (a, b1, ..., bn; c;x1, ..., xn)

=

n∏
i=1

(1− xi)−biF (n)
D (c− a, b1, ..., bn; c;

x1
x1 − 1

, ...,
xn

xn − 1
) (33)

= (1− x1)−aF
(n)
D (a, c−

n∑
i=1

bi, b2, ..., bn; c;
x1

x1 − 1
,
x1 − x2
x1 − 1

,

, ...,
x1 − xn
x1 − 1

) (34)

= (1− xn)c−a
n∏
i=1

(1− xi)−biF (n)
D (c− a, b1, . . . , bn−1, c−

n∑
i=1

bi;

c;
x1 − xn
x1 − 1

, . . . ,
xn−1 − xn
xn−1 − 1

, xn). (35)
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