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Abstract—In this paper, we propose a new method for
parameter estimation of the probability density function of
the photosystem II (PSII) index in chlorophyll fluorescence
imaging. The PSII index is modeled as the ratio of two
normal distributions. The proposed method is based on
hierarchical Bayesian modeling, and the mean field variational
Bayes is performed to approximate the hierarchical Bayesian
inference.The approach is evaluated using data acquired on
Arabidopsis thaliana. The optimal variational Bayes posterior
distributions are computed and then used to estimate the
parameters. The preliminary results on the parameter estimation
are satisfactory and meet our expectations.

Index Terms—Chlorophyll fluorescence imaging, maximum
quantum yield of photosystem II (PSII), hierarchical Bayesian
model, parameter estimation, variational Bayes,

I. INTRODUCTION

In the past two decades, chlorophyll fluorescence (ChlFl)

imaging has been widely used for plant phenotyping [1], [2],

[3], [4], [5]. It helps quantifying plant resistance, monitoring

plant photosynthesis, and tracking disease development and

leaf growth [6]. For instance, in ChlFl imaging technique,

several fluorescence parameters are computed to track the

photosynthesis of the plant [7], [8]. The maximum quantum

yield of photosystem II (PSII) photochemistry ((Fm −
F0)/Fm) [9] is among the most used ChlFl parameters. PSII

is an important indicator of plant stress [4]. This ratio depends

on two measured fluorescence parameters, Fm maximum

fluorescence yield and F0 minimum fluorescence yield. The

PSII serves as a biomarker to assess the normal or abnormal

photosynthetic activity of plant tissue, thus making it possible

to discriminate between diseased and healthy leaves.

In most of the literature, Gaussianity is assumed for the

PSII. But, very recently the non-Gaussianity of the PSII has

been highlighted empirically [10]. Moreover, the authors in

[11] investigate the non-Gaussianity of the PSII by modeling

the latter as the ratio of two normally distributed variables.

In addition, the authors propose an Expectation-Maximization

(EM) algorithm to estimate the parameters of the probability

density function (pdf) of the ratio. In this work, we propose

another parameter estimation method for the ratio by adopting

a hierarchical Bayesian modeling. The variational inference is

performed here in this study to approximate the hierarchical

Bayesian inference and to provide an efficient estimation.

The paper is organized as follows. We start by introducing

in section II the statistical modeling of the PSII as a ratio of

two normal distributions. In section III, we estimate the ratio

parameters using the mean field variational Bayes. We apply

the proposed method to arabidopsis thaliana ChlFl imaging

data, and we discuss the obtained results in section IV. Finally,

some concluding remarks close up this paper.

II. STATISTICAL MODELING OF PHOTOSYSTEM II INDEX

In the ChlFl imaging technique, the raw images Fm and F0

are not directly used [7], [8]. Instead, they are combined to

produce some indices which serve as a biomarker. We focus

on the most common of these indices, known as the maximum

quantum yield of PSII [9]:

Fv

Fm

= 1−
F0

Fm

. (1)

where Fv is the difference between Fm and the minimum

fluorescence F0. The PSII ratio is an indicator of plant stress

and is among the most used ChlFl parameters.

In [11], it was shown that both Fm and F0 are modeled as

two independent Gaussian distributed variables. Consequently,

the ratio distribution of Fv/Fm can be modeled in the

following way. Let us consider the variables X and Y as F0

and Fm respectively, where X and Y are two independent

normally distributed variables given by

X ∼ N (µx, σ
2
x) and Y ∼ N (µy, σ

2
y). (2)

The pdf of the variable Z = X/Y is defined by [11]

fZ(z) =
ρ

π(1 + ρ2z2)
e
−

1+β2ρ2

2δ2y 1F1

(

1,
1

2
;

1

2δ2y

(1 + βρ2z)2

1 + ρ2z2

)

(3)

where ρ =
σy

σx
, β = µx

µy
, δy =

σy

µy
and 1F1(.) is the confluent

hypergeometric function, also known as Kummer’s function

defined as follows [12]:

1F1(a; c; z) =
+∞
∑

n=0

(a)n
(c)n

zn

n!
, (a)n: the Pochhammer symbol

As a consequence, the pdf of Fv/Fm is given by fZ(1− z).



III. PARAMETER ESTIMATION OF THE RATIO OF TWO

NORMAL DISTRIBUTIONS

We seek to estimate the set of parameters θ = {ρ, β, δy}
from observations z = (z1, ..., zn), where n is the sample

size, or otherwise, estimate θ = {µx, σ
2
x, µy, σ

2
y} since the

former can be deduced from the latter. In the absence of

an explicit solution of the maximum likelihood (3), as it

is described in [11], the Expectation-Maximization (EM)

algorithm is used to find an estimation θ̂ given a current

estimate θ′ of θ. In this study, we present another method

to infer the parameters: the hierarchical Bayesian method

performed by the variational Bayes (VB) method [13]. A

hierarchical Bayesian model makes it possible to integrate all

the existing knowledge on the phenomenon to be studied to

compute expectations with respect to the posterior distribution.

But often these multilevel models give rise to analytically

intractable distributions. Consequently, sampling methods such

as Markov Chain Monte Carlo (MCMC) are used. Some

attractive tools for constructing an MCMC algorithm are the

Metropolis-Hasting algorithm or the Gibbs sampler. More

precisely, the posterior mean of θ is computed with respect

to the posterior distribution f(θ|z) by sampling from it using

a Gibbs sampler.

The variational inference is an optimization-based technique

for approximate hierarchical Bayesian inference [14], and

provides a computationally efficient alternative to the MCMC

sampling methods when θ is high dimensional or fast

computation is of primary interest. The VB approximates

the posterior distribution by a distribution with density q(θ)
belonging to some tractable family of distributions. The best

VB approximation q∗ is found by maximizing the variational

lower bound L(q(θ)) on ln f(z) with respect to the posterior

distribution so as to obtain the following solution:

q∗ = argmax
q(θ)
L(q(θ)) = argmax

q(θ)

∫

q(θ) ln
f(θ, z)

q(θ)
dθ (4)

Maximizing the lower bound is equivalent to minimizing the

Kullback-Leibler (KL) divergence from q(θ) to f(θ|z). The

Mean Field VB (MFVB) is one of the classes of VB algorithms

[13]. It can easily perform approximate Bayesian inference by

assuming some form of factorization for q. Indeed, thanks to

the mean field theory, the approximate posterior distribution

is factorized into disjoint groups q(θ) =
∏m

i=1 q(θi), thus

breaking the dependencies among the random variables. With

this approximation, the solution to the maximization problem

in equation (4) can be derived as follows

ln q∗(θi) ∝ Eq(−θi){ln f(θ, z)} i = 1..m (5)

where Eq(−θi){.} denotes the expectation w.r.t.

q(θ1), ..., q(θi−1), q(θi+1), ..., q(θm) defined by

Eq(−θi){ln f(θ, z)} =
∫

ln f(θ, z)
∏

j 6=i q(θj)dθj . In the

following is the description of the approach.

A. Parameter Estimation with Mean Field Variational Bayes

We propose the hierarchical Bayesian model:

zi|yi, µx, σ
2
x ∝ |yi|fX(ziyi) (6)

yi|µy , σ
2
y ∼ N (µy , σ

2
y) (7)

µx ∼ N (µx0, σ
2
x0) (8)

σ2
x ∼ Inv-Gamma(αx0, βx0) (9)

µy ∼ N (µy0, σ
2
y0) (10)

σ2
y ∼ Inv-Gamma(αy0, βy0). (11)

The conditional pdf of the observed data Zi is derived based

on the ratio representation in the ratio model Z = X/Y .

Specifically, with the knowledge of the normally distributed

Xi component and by performing the transformation from

Xi to Zi, the conditional pdf of the observed Zi given the

variable Yi is obtained as f(zi|yi, µx, σ
2
x). The inverse Gamma

distribution is selected as the pdf of the variables σ2
x and σ2

y

since in literature, it has been shown that this distribution

is effective in describing the variance [15]. The conjugate

prior for the likelihood function f(yi|µy, σ
2
y) is chosen to

be a normal distribution with a fixed mean and variance,

(µy0, σ
2
y0). The knowledge of the conjugate prior significantly

simplifies the posterior distribution derivation. The joint pdf

of all variables can be written when Λ = (y, µx, σ
2
x, µy, σ

2
y)

as

f(z,Λ) = f(z|y, µx, σ
2
x)f(y|µy, σ

2
y)f(µx)f(σ

2
x)f(µy)f(σ

2
y) (12)

We derive the MFVB procedure for approximating the

posterior distribution f(y, µx, σ
2
x, µy, σ

2
y|z) by imposing the

product of independant factors

q(y, µx, σ
2
x, µy, σ

2
y) = q(y)q(µx)q(σ

2
x)q(µy)q(σ

2
y). (13)

B. Derivation of q(y)

The optimal VB posterior for y is given by

ln q∗(y) = Eq(µx,σ2
x,µy ,σ2

y)
{ln f(z|y, µx, σ

2
x) + ln f(y|µy , σ

2
y)}+C

=
n
∑

i=1

ln |yi| −
n
∑

i=1

Aiy
2
i +

n
∑

i=1

Biyi + C (14)

where Ai and Bi are defined as

Ai =
1

2

[

Eq(σ2
x)
{
1

σ2
x

}z2i +Eq(σ2
y)
{
1

σ2
y

}

]

(15)

Bi = Eq(µx){µx}Eq(σ2
x){

1

σ2
x

}zi + Eq(µy){µy}Eq(σ2
y)
{
1

σ2
y

}, (16)

and C denoted the constants independent of yi as they are

unnecessary for identifying the optimal variational distribution

q∗(y) which is given as follows:

q∗(y) ∝
n
∏

i=1

Ai

|yi|e−Aiy
2
i +Biyi

1F1(1,
1
2 ,

B2
i

4Ai
)
. (17)

It is clear that q∗(y) is a product of q∗(yi) with the moment

of order 1 and 2 given as follows



















Eq(y){yi} = Bi

Ai

1F1(2,
3
2
,
B2

i
4Ai

)

1F1(1,
1
2
,
B2

i
4Ai

)

Eq(y){y
2
i } = 1

Ai

1F1(2,
1
2
,
B2

i
4Ai

)

1F1(1,
1
2
,
B2

i
4Ai

)
.

(18)



Readers are referred to [11] for more details about the

computation of the moment of order 1 and 2.

C. Derivation of q(µx) and q(σ2
x)

The optimal VB posterior for µx is given by

ln q∗(µx) = Eq(y,σ2
x,µy ,σ2

y)
{ln f(z|y, µx, σ

2
x) + ln f(µx)}+ C

= −
1

2
A

(

µx −
B

A

)2

+ C (19)

with

A = nEq(σ2
x){

1

σ2
x

}+
1

σx0
, (20)

B =
n
∑

i=1

ziEq(σ2
x)
{
1

σ2
x

}Eq(y){yi}+
µx0

σ2
x0

. (21)

Here, C represents the constants independent of µx. They are

unnecessary for identifying the optimal variational distribution

q∗(µx). It follows that q∗(µx) is N (µxn, σ
2
xn) distribution

with parameters given as follows:

σ2
xn = 1/A =

[

nEq(σ2
x){

1

σ2
x

}+
1

σx0

]

−1

, (22)

µxn = B/A = σ2
xn

[

Eq(σ2
x)
{
1

σ2
x

}
n
∑

i=1

ziEq(y){yi}+
µx0

σ2
x0

]

. (23)

The optimal VB posterior for σ2
x is given by

ln q∗(σ2
x) = Eq(y,µx,µy ,σ2

y)
{ln f(z|y, µx, σ

2
x) + ln f(σ2

x)}+ C

= −(1 + αx0 +
n

2
) ln σ2

x −
1

σ2
x

×

[

βx0 +
1

2

n
∑

i=1

Eq(y,µx){(ziyi − µx)
2}

]

. (24)

It follows that q∗(σ2
x) is Inv-Gam(αxn, βxn) with parameters

defined by

αxn = αx0 +
n

2
, (25)

βxn = βx0 +
1

2

n
∑

i=1

z2iEq(y){y
2
i }+

n

2
Eq(µx){µ

2
x}

− Eq(µx){µx}
n
∑

i=1

ziEq(y){yi}. (26)

After the identification of the optimal variational distributions

q∗(µx) and q∗(σ2
x), we are able to compute the expectations

w.r.t. q∗(µx) and q∗(σ2
x) as follows: Eq(σ2

x)
{ 1
σ2
x
} = αxn

βxn
,

Eq(µx){µx} = µxn and Eq(µx){µ
2
x} = σ2

xn + µ2
xn.

D. Derivation of q(µy) and q(σ2
y)

The optimal VB posterior for µy is given by:

ln q∗(µy) = Eq(y,µx,σ2
x,σ

2
y)
{ln f(y|µy , σ

2
y) + ln f(µ2

y)}+ C

= −
1

2
A(µy −

B

A
)2 + C (27)

where

A = nEq(σ2
y)
{
1

σ2
y

}+
1

σ2
y0

, (28)

B = Eq(σ2
y)
{
1

σ2
y

}
n
∑

i=1

Eq(y){yi}+
µy0

σ2
y0

. (29)

It follows that q∗(µ2
y) is normal distribution N (µyn, σ

2
yn) with

parameters

σ2
yn = 1/A =

[

nEq(σ2
y)
{
1

σ2
y

}+
1

σy0

]

−1

, (30)

µyn = B/A = σ2
yn

[

Eq(σ2
x)
{
1

σ2
x

}
n
∑

i=1

Eq(y){yi}+
µy0

σ2
y0

]

. (31)

The optimal VB posterior for σ2
y is given by:

ln q∗(σ2
y) = Eq(y,µx,σ2

x,µy){ln f(y|µy , σ
2
y) + ln f(σ2

y)}+ C

= −(1 + αy0 +
n

2
) ln σ2

y −

[

βy0 +
1

2

n
∑

i=1

Eq(y,µy){(yi − µy)
2}

]

1

σ2
y

.

It follows that q∗(σ2
y) is Inv-Gam(αyn, βyn) with parameters

defined by

αyn = αy0 +
n

2
(32)

βyn = βy0 +
1

2

n
∑

i=1

Eq(y){y
2
i }+

n

2
Eq(µy){µ

2
y}

− Eq(µy){µy}
n
∑

i=1

Eq(y){yi}. (33)

The determination of the optimal variational distributions

q∗(µy) and q∗(σ2
y) allow us to compute the expectations w.r.t.

q∗(µy) and q∗(σ2
y): Eq(σ2

y)
{ 1
σ2
y
} =

αyn

βyn
, Eq(µy){µy} = µyn

and Eq(µy){µ
2
y} = σ2

yn + µ2
yn.

The optimal variational distributions are then summarized

as follows:

q∗(µx) ∼ N

(
µx0

σ2
x0

+ αxn

βxn

∑n

i=1 ziEq(y)(yi)

1
σx0

+ nαxn

βxn

,

[

n
αxn

βxn

+
1

σx0

]

−1)

(34)

q∗(σ2
x) ∼ Inv-Gam

(

αx0 +
n

2
, βx0 +

1

2

n
∑

i=1

z2i Eq(y){y
2
i }

+
n

2
(σ2

xn + µ2
xn)− µxn

n
∑

i=1

ziEq(y){yi}

)

(35)

q∗(µy) ∼ N

(

µy0

σ2
y0

+
αyn

βyn

∑n

i=1 Eq(y)(yi)

1
σy0

+ n
αyn

βyn

,

[

n
αyn

βyn

+
1

σy0

]

−1)

(36)

q∗(σ2
y) ∼ Inv-Gam

(

αy0 +
n

2
, βy0 +

1

2

n
∑

i=1

Eq(y){y
2
i }

+
n

2
(σ2

yn + µ2
yn)− µyn

n
∑

i=1

Eq(y){yi}

)

(37)

q∗(yi) = Ai
|yi|e

−Aiy
2
i +Biyi

1F1(1,
1
2
,

B2
i

4Ai
)
, where Ai =

1

2

[

αxn

βxn

z2i +
αyn

βyn

]

and Bi = µxn
αxn

βxn

zi + µyn
αyn

βyn

. (38)

The parameters (µxn, µyn, σ
2
xn, σ

2
yn, αxn, βxn, αyn, βyn) are

determined from Algorithm 1 with the following updating

procedure:

Algorithm 1

Initialize: (µxn, µyn) ∈ R, (σ2
xn, σ

2
yn) > 0, (αxn, βxn) > 0 and

(αyn, βyn) > 0



1: Update the following
2: For i = 1..n (sample size)
3: Ai =

1
2

[

αxn

βxn
z2i +

αyn

βyn

]

4: Bi = µxn
αxn

βxn
zi + µyn

αyn

βyn

5: Eq(y){yi} =
Bi

Ai

1F1(2,
3
2
,
B2

i
4Ai

)

1F1(1,
1
2
,
B2

i
4Ai

)

6: Eq(y){y
2
i } =

1
Ai

1F1(2,
1
2
,
B2

i
4Ai

)

1F1(1,
1
2
,
B2

i
4Ai

)

7: End For
8: βxn ← βx0 + 1

2

∑n

i=1 z
2
i Eq(y){y

2
i } +

n
2
(σ2

xn + µ2
xn) −

µxn

∑n

i=1 ziEq(y){yi}

9: σ2
xn ←

[

nαxn

βxn
+ 1

σx0

]

−1

10: µxn ← σ2
xn

[

µx0

σ2
x0

+ αxn

βxn

∑n

i=1 ziEq(y)(yi)
]

11: βyn ← βy0 + 1
2

∑n

i=1 Eq(y){y
2
i } +

n
2
(σ2

yn + µ2
yn) −

µyn

∑n

i=1 Eq(y){yi}

12: σ2
yn ←

[

n
αyn

βyn
+ 1

σy0

]

−1

13: µyn ← σ2
yn

[µy0

σ2
y0

+
αyn

βyn

∑n

i=1 Eq(y)(yi)
]

14: Until convergence.
15: Return (µxn, µyn, σ

2
xn, σ

2
yn, αxn, βxn, αyn, βyn)

We stop the iterative scheme when

the change of the ℓ2-norm of the vector

(µxn, σ
2
xn, µyn, σ

2
yn, αxn, βxn, αyn, βyn)

T is smaller than

ǫ = 10−3. We derive the posterior mean or the posterior

mode based on the marginal posterior distribution q∗(µx),
q∗(µy), q

∗(σ2
x) and q∗(σ2

y). The mean or mode is the value

at which the posterior pdf takes its maximum value. Based

on VB distributions, we compute the posterior mean

Eq∗(µx)(µx) = µxn; and Eq∗(σ2
x)(σ

2
x) =

βxn

αxn − 1
(39)

Eq∗(µy)(µy) = µyn; and Eq∗(σ2
y)
(σ2

y) =
βyn

αyn − 1
. (40)

Finally we can deduce the values of the estimated parameters














































β̂ =
Eq∗(µx)(µx)

Eq∗(µy)(µy)
=

µxn

µyn

ρ̂ =

√

√

√

√

Eq∗(σ2
y)
(σ2

y)

Eq∗(σ2
y)
(σ2

y)
=

√

βyn(αxn − 1)

βxn(αyn − 1)

δ̂y =

√

Eq∗(σ2
y)
(σ2

y)

Eq∗(µy)(µy)
=

1

µyn

√

βyn

αyn − 1
.

(41)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The ChlFl imaging on rosettes of Arabidopsis thaliana

is considered here. The image of the PSII index is made

available to conduct the parameter estimation approach. To

build variational inference with the mean field approximation,

we selected area located in the limb of the leaves as illustrated

in Figure (1.a). The normalized histogram of the selected

area is represented in Figure (1.b). The ChlFl experimenters

have suggested the following parameter β = 0.1429, ρ =
6.0000, δy = 0.2143 for purpose of comparison with our

estimation method. We proceed by using the following values

for the initialization of algorithm: αx0 = 1; βx0 = 500; µx0 =
10 ; σ2

x0 = 1.52; αy0 = 1; βy0 = 15000; µy0 = 42 ; σ2
y0 = 42.

The number of samples are n = 1000. The MFVB algorithm is

stopped after 460 iterations. Figure (2) show the evolution of
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Fig. 1: Image of F0/Fm (a). Plots of normalized histogram of

the selected area in image F0/Fm (b).

the parameters (µxn, µyn, σxn, σyn, βxn, βyn) over iterations

from application of Algorithm 1. It is clear to see the

convergence of these parameters starting from iteration 200.

Figure (3) show the approximate posterior density functions

for the four model parameters (µx, σ
2
x, µy, σ

2
y). The estimated

parameters (β̂, ρ̂, δ̂y) over the iterations are shown in Figure

(4). The horizontal lines with red color correspond to the

true values of these parameters. The final values of these

parameters are β̂ = 0.1438, ρ̂ = 5.8782, δ̂y = 0.2372,

which are very close to the true parameters. Figure (5)

depicts the comparison between the normalized histogram

of the index F0/Fm and the estimated pdf fZ(z) computed

based on the estimated parameters (β̂, ρ̂, δ̂y) over the selected

area. The fit ability is evaluated qualitatively by using the

Kolmogorov-Smirnov (KS) hypothesis test. Based on the

p-value (= 0.36) we can confirm that the estimated pdf curve

fit well the normalized histogram.
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Fig. 2: Updates of (µxn, µyn, σxn, σyn, βxn, βyn) over

iterations.

It is worth noticing that the algorithm is insensitive to the

initialization of the parameters (βxn, µxn, σ
2
xn, βyn, µyn, σ

2
yn)

since the final result does not change. What really changes

is the speed of convergence, more precisely, the number of

iteration increases when the initial values are not chosen
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Fig. 3: Approximate marginal posterior density function for

µx, σ2
x, µy and σ2

y estimated by MFVB.
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Fig. 4: Updates of (β̂, ρ̂, δ̂y) over iterations.

carefully. It should be noted that if we consider: µ′
x = aµx,

σ′
x = aσx, µ′

y = aµy and σ′
y = aσy where a > 0 is a real

constant then

ρ =
σ′
y

σ′
x

=
σy

σx

, β =
µ′
x

µ′
y

=
µx

µy

, δy =
σ′
y

µ′
y

=
σy

µy

(42)

This means that for different quadruplets (µ′
x, σ

′
x, µ

′
y, σ

′
y) and

(µx, σx, µy, σy) one can have the same parameters (β, ρ, δy),
and consequently the same distribution fZ(z).
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Fig. 5: Plot of PSII normalized histogram and estimated

distribution given by (3) using the final estimated parameters

(β̂, ρ̂, δ̂y).

V. CONCLUSION

A method for parameter estimation of the PSII index in

chlorophyll fluorescence imaging has been proposed. The

method is based on a hierarchical Bayesian modeling. The

mean field approximation is performed to approximate the

hierarchical Bayesian inference and to provide an efficient

estimation. The approach has been evaluated on data acquired

on rosettes of Arabidopsis thaliana. The estimation results are

encouraging and can further be improved in several ways. The

first way is by evaluating the performance for different sample

sizes. A second way is by introducing some dependencies

between µx and σ2
x in their models, the same process for µy

and σ2
y . We expect that these additional actions will enhance

the estimation performance.
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[4] M. L. Pérez-Bueno, M. Pineda, and M. Barón, “Phenotyping plant

responses to biotic stress by chlorophyll fluorescence imaging,” Frontiers

in Plant Science, vol. 10, 2019.
[5] R. Valcke, “Can chlorophyll fluorescence imaging make the invisible

visible?” Photosynthetica, vol. 59, pp. 381–398, 2021.
[6] L. Li, Q. Zhang, and D. Huang, “A review of imaging techniques for

plant phenotyping,” Sensors, vol. 14, no. 11, pp. 20 078–20 111, 2014.
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