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How to optimize the allocation of enzymes in metabolic pathways has been
a topic of study for many decades. Although the general problem is complex
and nonlinear, we have previously shown that it can be solved by convex
optimization. In this paper, we focus on unbranched metabolic pathways
with simplified enzymatic rate laws and derive analytic solutions to the
optimization problem. We revisit existing solutions based on the limit of
mass-action rate laws and present new solutions for other rate laws. Further-
more, we revisit a known relationship between flux control coefficients and
enzyme abundances in optimal metabolic states. We generalize this relation-
ship to models with density constraints on enzymes and metabolites,
and present a new local relationship between optimal reaction elasticities
and enzyme amounts. Finally, we apply our theory to derive simple
kinetics-based formulae for protein allocation during bacterial growth.
1. Introduction
The idea that living beings show optimal shapes or behaviour has a very long
history. A process like evolution, which combines random mutations with a
selection for favourable properties, could potentially lead to optimization, but
the question of if and/or when should we expect living beings to function opti-
mally has been widely debated and is far from solved. In practice, it can be
useful to invoke optimality principles to seek insights and design principles
that might be relevant in naturally evolved systems [1]. Specifically, cell metab-
olism has often been studied using this approach [2,3], thanks to the powerful
mathematical models that we have to describe it. But although natural selection
has been the main inspiration for this study, the evolutionary aspects of path-
way optimization are not discussed here, and are rather left for the reader to
reflect upon.

Within cells, protein is arguably the most important and central resource,
both in terms of contributing to fitness, but also since protein synthesis requires
large amounts of energy, metabolic precursors, and ribosomes, and the proteins
themselves occupy a significant portion of cellular space. Therefore, a cell
should generally save protein wherever it can. This notion, specifically for
enzymes, has been mathematically applied in genome-scale metabolic models
[4,5], models of core metabolism [6], and in direct comparisons between path-
ways [7,8]. Since the proteome is a limiting resource, its allocation to different
sectors (metabolism, translation, etc.) is a topic of high interest. In some
works, people assumed optimality. Other papers assumed a general rule
based on linear growth rate control. Interestingly, even a very simple linear
chain model, with two reactions representing metabolism and protein synthesis
and with a bound on the total protein budget, has been successful in explaining
bacterial growth laws and overflow metabolism [9,10]. However, these bacterial
growth law models did not consider enzyme kinetics.

Here, we focus on a special case of this cost/benefit analysis: the efficient
use of metabolic enzymes in unbranched pathways operating at steady state,
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Figure 1. Optimal enzyme levels in unbranched metabolic pathways. In the
basic optimality problem in this paper, we consider a chain of reactions and
ask how a given protein budget should be spent on metabolic enzymes to
achieve a maximal steady-state flux. If the efficiencies (i.e. the reaction rates
per catalysing enzyme) of all the enzymes were known, the steady-state flux
would determine the enzyme levels, and there would be nothing to opti-
mize. Here we assume that the enzyme efficiencies can be adjusted by
choosing the metabolite concentrations (not shown), and we search for
the optimal metabolite and enzyme profile. The aim is to maximize the
flux at a given total enzyme amount (bottom) and possibly under a con-
straint on metabolite concentrations (top). The flux ratios between
reactions are predefined, for example, assuming equal fluxes in all the reac-
tions (right).
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giving priority to scenarios that can be solved analytically.
We explore several types of kinetic rate laws and introduce
the idea of bounding the total metabolite concentration
(which is required in some cases for meaningful results).
To define states of maximal enzyme efficiency, we can consider
two equivalent optimality problems: maximizing a production
flux at a given enzyme budget or minimizing protein usage at
a given required production flux. In both cases, we maximize
the production flux per enzyme usage within the given con-
straints. If the product of the pathway is directly tied to
biomass, the overall enzyme efficiency, called ‘biomass/
enzyme efficiency’, can serve as a proxy for cell growth [6].
Furthermore, this optimality problem is also relevant in
other contexts, such as metabolic engineering of synthetic
pathways using a set of existing and/or new-to-nature
enzymes with known kinetic parameters [11,12].

Another perspective often used to analyse metabolic sys-
tems is through their control, e.g. the effect of changes in a
level of an enzyme on pathway flux [13]. In optimal metabolic
states with a bound on the sum of enzyme levels, each enzyme
effectively carries an opportunity cost. This cost must be
balanced by a marginal benefit, given by the flux control coef-
ficient—as defined in metabolic control analysis (MCA) [13–
15]. Hence, for systems in optimal states, there are simple
relationships between enzyme abundance and flux control
[16–18]. We will recapitulate these results below, generalize
them to models with a density constraint on enzyme and
metabolite levels, and illustrate them using some of our ana-
lytic solutions. In addition, we present a simple rule that
links optimal enzyme investments around a given metabolite
to the reaction elasticities of this metabolite.

Finally, we show how the analytic solutions derived here
might be useful for modelling phenomena on the level of
entire cells such as the Monod curve (i.e. the relationship
between the concentration of a limiting nutrient and the
growth rate of bacteria [19]). We use this model to demon-
strate how each kinetic parameter should affect the growth
rate under different conditions.

In summary, this paper revisits the question of optimal
enzyme allocation and adds to previous results. We focus on
unbranched metabolic pathways, extend the optimality pro-
blem, discuss new optimality conditions, and present
analytic solutions that directly show how different factors
determine optimal enzyme levels and fluxes. We discuss gen-
eral principles, in particular how optimal enzyme levels reflect
flux control and local reaction elasticities, and use our theory
to derive formulae for kinetics-based bacterial growth.
2. Results
2.1. Optimal states of unbranched pathways
One of the first attempts at analytically solving the enzyme
allocation problem was published by Waley [20], who studied
short pathways of two to three reactions while assuming that
the concentrations of metabolites (which were denoted linking
intermediates) are much below the enzymes’ KM values, and
therefore affect the flux linearly. Given the total amount of
catalytically active protein (bounded by 1tot), the relative
enzyme concentrations should be such that they maximize
rate (figure 1). Based on these assumptions, one can derive
simple formulae for the optimal enzyme levels and
maximal pathway flux. Later studies repeated this result and
generalized it to linear pathways of any size [17,18,21]. Here,
we will revisit this general solution and extend it to other
types of rate laws beyond the one considered by Waley [20]
(which, from now on, we will refer to as mass-action).

Consider the following unbranched pathway [22] (figure 1):

S0 O
v1
S1 O

v2 � � �Ovn Sn: ð2:1Þ
In a kinetic model, each variable si represents the concentration
of a metabolite i and each variable 1i represents the level (molar
concentration or mass concentration) of the enzyme catalysing
reaction i. Imagine that the total enzyme level in the pathway
is bounded by 1tot, i.e. X

i

1i � 1tot: ð2:2Þ

What would be the optimal strategy for distributing this
resource between the reactions in order to maximize the
steady-state flux? To answer this question, we need to know
how the rate of each reaction depends on the levels of
enzyme, substrate, and product, as well as on kinetic par-
ameters. This is described by rate laws. For some rate laws,
we can solve the optimization problem and obtain an analytic
solution that describes exactly how much of each enzyme
should be allocated. Below, we will also consider a variant of
this problem with an extra bound on the sum of metabolite
levels or with fixed initial and final metabolite concentrations (s0
and sn).

Since single analytic solutions are rare but instructive, we
explore them in this article. We consider four different rate
laws (summarized in figure 2): the general Haldane rate law
(saturable and reversible) which has no analytic solution,
and three solvable approximations derived from it. As
explained above, the enzyme levels 1i may refer to either
molar concentrations or mass concentrations (depending on
the modeller’s preference). In the case of molar concentrations,



Haldane

v = εkcat (1 – e–θ)

ηfor

ηsat

ηsat = 1p KP, η for = 1 s   KS, p KP

s
KS

KS KP
1 + s + p

Michaelis−Menten thermodynamic mass–action
s

ηforηfor

s
s + KS

v = εkcat

ηsat

v = εkcat (1 – e–θ) v = εkcat (1 – e–θ)
KS

ηsat

Figure 2. The Haldane rate law and some simplified rate laws. Simplified rate laws are obtained as limiting cases by setting efficiency terms η for or ηsat to 1 or
another constant value (figure 3) or by assuming that reactant concentrations are small (in the case of the mass-action rate law). For the enzyme optimality problem
in unbranched pathways, we do not know of any analytic solutions for the Haldane rate law. We report here solutions for the other, simplified rate laws (where the
solution for the thermodynamic rate law contains an unknown auxiliary parameter). Symbols are explained in the text.
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the kcat values are catalytic constants (e.g. in units of s−1). In the
case of mass concentrations, the kcat values are specific
activities (e.g. in units of μmol ×min−1 ×mg−1).

— Reversible saturable rate law (Haldane). As a general rate law
for a reaction S↔ P, we consider the reversible saturable
rate law

v ¼ 1
kcatþ s=KS � kcat� p=KP

1þ s=KS þ p=KP
, ð2:3Þ

with Michaelis–Menten constants KS and KP, which can
be factorized into

v ¼ 1 kcatþ ð1� e�uÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
hforðuðs,pÞÞ

s=KS

1þ s=KS þ p=KP|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
hsatðs,pÞ

, ð2:4Þ

with the thermodynamic driving force θ(s, p) = ln(Keq

s/p), the thermodynamic force efficiency ηfor and the
saturation efficiency ηsat (figure 3). Note that the driving
force can also be defined as −ΔG0 which is equal to
RT ln(Keq s/p), but here we drop the gas constant R and
temperature T to have a unitless (positive) variable. The
two efficiency terms can only assume values between 0
and 1. This factorized formulation of the Haldane rate
law is equivalent to the one in equation (2.3), based on
the constraint that Keq ¼ kcatþ =kcat� � KP=KS, which is com-
monly known as the Haldane relationship (see [23] for
more details). This rate law is the most realistic one that
we discuss in this work, and deriving it requires only
a few assumptions. However, it is also the most math-
ematically complex and therefore most questions we
raise below do not have analytic solutions. So, in
addition, we consider three simplified rate laws as
limiting cases.

— Mass-action rate law. A very common approximation for
enzymatic rate laws (the one also made by Waley [20])
is based on the limit of low metabolite concentrations
(s≪ KS and p≪KP). In this case, the concentration-
dependent terms in the denominator (i.e. s/KS + p/KP)
can be neglected and we get

v ¼ 1 ðkcatþ s=KS � kcat� p=KPÞ: ð2:5Þ
There are many equivalent ways to write down this rate
law. For instance, we can apply the same approximation
to the factorized form in equation (2.4) to get
v ¼ 1 kcatþ ð1� e�uÞ s=KS, and we can further replace θ
with its explicit definition based on reactant concen-
trations and write v ¼ 1 kcatþ =KS ðs� p=KeqÞ. Another
common form for this rate law is based on the first-
order rate constants kþ ; kcatþ =KS and k� ; kcat� =KP.
Using them in equation (2.5) looks like this:
v ¼ 1 ðkþs� k�pÞ. As the rate law resembles mass-action
kinetics for non-enzymatic reactions, we will refer to
this as the ‘mass-action’ rate law although here the
enzyme level appears as a prefactor. Throughout this
paper, we will switch between these four different
notations based on convenience.

— Thermodynamic rate law. If the saturation efficiency ηsat is
approximated by 1 (e.g. in the limit s≫KS and p≪KP),
we obtain

v ¼ 1 kcatþ 1� p
s

1
Keq

� �
¼ 1 kcatþ ð1� e�uÞ: ð2:6Þ

We will also consider a special case of this rate law where
θ→ 0 and therefore p/s≈Keq, i.e. the reaction is
close to equilibrium. In this case, the rate law becomes
v ¼ 1 kcatþ u.

— Irreversible saturable rate law (Michaelis–Menten kinetics).
We next assume that both p≪ s Keq (which means that
θ→∞ and therefore the thermodynamic force efficiency
ηfor can be approximated by 1) and also p≪KP (so we
can drop p/KP from the denominator in ηsat). In this
case, we obtain the Michaelis–Menten rate law

v ¼ 1 kcatþ
s

sþ KS
, ð2:7Þ

which depends on the substrate, but not on the product con-
centration. Originally, Michaelis & Menten [24] developed
this irreversible rate law by assuming that the rate of
enzyme–substrate binding is very fast compared to catalysis,
and that the catalytic step is irreversible. The assumptions
made here lead to the same result but are less stringent.

In the approximations, instead of setting the thermodynamic
or saturation efficiencies to their maximal value of 1, we
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Figure 3. The Haldane rate law and its factorization into efficiency terms. (a) The Haldane rate law. In the factorized form (right), thermodynamic and saturation
effects are described by separate efficiency factors. (b) The saturation efficiency as a function of the substrate concentration (in log-scale, relative to the KA), assuming
b≪ KB. (c) The thermodynamic force efficiency as a function of the driving force θ. (d ) A surface plot showing the rate v as a function of θ and the substrate
concentration (in log-scale, relative to the KA). The parameters are K eq ¼ KA ¼ kcat ¼ 1 ¼ 1 and KB = 10. (e) A surface plot showing the enzyme demand for a
given rate (v = 1). All kinetic parameters are the same as in (d ).
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may also approximate them by constant numbers smaller
than 1; we obtain exactly the same rate laws, but instead of
the kcat value we obtain a smaller apparent value in the
approximated rate law.

2.2. Analytic formulae for unbranched metabolic
pathways

How can we characterize metabolic states by using analytic
formulae? Here we consider chains of uni–uni reactions, or
reactions in which all reactant concentrations except for one
substrate and one product are given as model parameters.
For such an unbranched pathway with a given type of rate
law (e.g. mass-action or Michaelis–Menten rate laws), we
are interested in formulae for a number of quantities:

1. Metabolic steady state. Given the enzyme levels, external
metabolite concentrations and kinetic constants, we can
directly compute the stationary fluxes and internal metab-
olite concentrations. For general metabolic networks, no
explicit formulae are known, but for unbranched path-
ways with some simplified rate laws, explicit formulae
exist. Incidentally, this also shows that in these models
the steady-state concentrations are unique.

2. Stability of steady state. If the Jacobian matrix in a steady
state has positive eigenvalues, the state is asymptotically
unstable and is not able to persist under the inevitable
chemical noise in the cell. Stability is also a prerequisite
for metabolic control coefficients being defined. A suffi-
cient (but not necessary) condition for stable steady
states in unbranched metabolic pathways is given in
electronic supplementary material, section 5.8.

3. Metabolic control. The metabolic response coefficients RX

are defined by MCA as the derivatives between steady-
state concentrations or fluxes and model parameters
(e.g. the enzyme levels). If two model parameters act
(exclusively) on the same reaction, all their response coef-
ficients will be the same except for a proportional scaling.
Taking this into account, one can define the metabolic
control coefficients CX, which describe the same type of
derivatives, but for a set of hypothetical, reaction-specific
parameters. In practice, if reaction rates are proportional
to enzyme levels and if each reaction is catalysed by a
single specific enzyme, we can write the enzyme response
coefficients as RX

1l
¼ CX

l � vl=1l. Importantly, throughout
this paper we use elasticities, response coefficients, and
control coefficients in their unscaled form, for instance
unscaled enzyme response coefficients RJ

1i
¼ @J=@1i

instead of the common scaled form ð1i=JÞð@J=@1iÞ ¼
@ ln J=@ ln 1i.

The metabolic control coefficients can be computed
from the stoichiometric matrix and the elasticity matrix,
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and they satisfy summation and connectivity theorems.
They can be computed in two ways: if an analytic formula
for the metabolic steady state is known (as is the case in
some unbranched pathway models studied below), we
may differentiate symbolically by the enzyme levels; other-
wise, we may compute the elasticity coefficient matrices by
differentiating the rate laws and then compute the control
coefficient matrices from them using a known formula;
however, since this formula involves a matrix inversion,
writing this down as an analytic formulae may be extre-
mely complicated, and control coefficients are usually
computed numerically. Symbolic expressions for meta-
bolic control coefficients can be conveniently handled by
the PYSCESTOOLBOX [25]. Another way to compute control
coefficients, which follows from the enzyme-control rule
and works only in optimal states, is described below.

4. Optimal metabolic states. In our basic metabolic optimality
problem, we define optimal states as states in which a
given enzyme budget (a fixed sum of enzyme levels) is
allocated to maximize a production flux. Kinetic constants
and external metabolites are given, and we compute the
optimal metabolite profile, the optimal enzyme profile
and the optimal flux. If the flux distribution is known
(e.g. a steady-state flux in an unbranched pathway) and
increases or decreases proportionally with the enzyme
levels, this problem is equivalent to the problem of mini-
mizing the enzyme demand at a given (unit) flux. This
convex problem can be solved numerically [26], but ana-
lytic solutions were known only for very few cases.
Below we present some new analytic solutions. Formulae
for optimal enzyme levels and the optimal achievable flux
are shown in table 1. We also consider a related problem,
maximizing the flux under a constraint on the total
enzyme plus metabolite amount.

5. Metabolic control in optimal states. The control coefficients
tell us how a metabolic system responds to perturbations
(resulting in a new state that is stationary, but probably
non-optimal). For optimal states (with a constraint on
the sum of enzyme levels), the enzyme-control rule
states that enzyme levels and flux control coefficients
must be proportional. Since we know (from the sum-
mation theorem) that the control coefficients must sum
to 1, we can conclude: whenever there is an analytic for-
mula for optimal enzyme levels, we also obtain a
formula for the control coefficients. Below we extend
this to models with general density constraints on
enzymes and metabolites, and derive an additional rule
that relates enzyme levels to metabolite elasticities
around each metabolite.

2.3. Optimal metabolic states: analytic solutions
What are the general principles behind optimal enzyme allo-
cation? One important principle, valid in optimal metabolic
states, has been shown for pathways with mass-action rate
laws [21] and later been confirmed for general rate laws
[17]: in optimal states, where the metabolic flux has been
maximized at a fixed enzyme budget, enzyme levels and
flux control coefficients must be proportional:

1�i / CJ
i
�
: ð2:8Þ

Here the star * denotes variables in the optimal state.
To derive this rule, we note that in an optimal state each
enzyme has a marginal cost (contribution to the enzyme
budget, per mole of enzyme) which must be balanced by
the same marginal benefit (contribution to the production
flux, per mole of enzyme). If all enzymes contribute to the
enzyme budget with equal weights, their marginal costs are
the same. This means that also their marginal benefit must
be the same, which are given by the (unscaled) flux response
coefficients RJ

el ¼ @vst=@el. This, finally, means that their
flux control coefficients CJ

l ¼ ð@vst=@elÞ=ðvst=elÞ must be
proportional to the enzyme levels el.

Together with the summation theorem for flux control
coefficients [14,27],

P
i C

J
i ¼ 1, we obtain the conversion

formulae

CJ
i ¼

1�iP
j 1

�
i

and 1�i ¼ 1tot C
J
i : ð2:9Þ

The enzyme-control rule (2.8) provides a condition for
metabolic states, independent of the type of rate laws con-
sidered. Importantly, it holds only in states of maximal flux,
given a fixed total enzyme amount and no other constraints.
More realistic models employ also bounds on metabolite
levels [5,22,28] for different reasons. First, metabolite
levels in real cells are bounded: while metabolite molecules
may be small, their concentration is high, and they contribute
much more than macromolecules to osmotic pressure.
Second, as we will see below, some models without metab-
olite bounds lead to paradoxical results. We will therefore
present a generalized version of the enzyme-control rule
that takes metabolite bounds into account.

But what are the general shapes of optimal enzyme pro-
files, i.e. how do enzyme levels vary across the network?
And on what factors (kinetic, thermodynamic or cost factors)
does this depend? To answer this, the enzyme-control rule
alone would not be enough (because no kinetic details
appear in the rule). Also numerical studies would not be
enough (because they apply to single cases and yield no gen-
eral laws). Hence, to study this it would be good to consider
analytic solutions. Unfortunately, analytic solutions are not
known for general metabolic models, but rather only for
special cases of unbranched pathways (such as ones with
mass-action rate laws [20]).

We now present analytic formulae for optimal metabolic
states with different types of rate laws. We discuss the rate
laws in increasing order of difficulty. An overview of all
analytic solutions is given in table 1.
2.3.1. Michaelis–Menten rate law
We first consider the Michaelis–Menten rate law (i.e. irrevers-
ible reactions with simple saturation kinetics):

vi ¼ 1i � kcati
si�1

si�1 þ KM;i
: ð2:10Þ

In an unbranched pathway at steady state, all rates must
be equal. To describe them, we introduce a new variable J
called the pathway flux, and require that 8i vi ¼ J. Now
we can use equation (2.10) to find a relationship between
substrate and enzyme levels:

1i ¼ J
kcati

� 1þ KM;i

si�1

� �
¼ J ai þ bi

si�1

� �
, ð2:11Þ
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where we defined ai ; 1=kcati and bi ; KM;i=kcati for
convenience.

Combining this equation with an upper bound on total
enzyme from equation (2.2) we get

1tot �
X
i

1i ¼
X
i

J ai þ bi

si�1

� �

¼ J
X
i

ai þ
X
i

bi

si�1

 !
, ð2:12Þ

and by rearranging we obtain

J � 1totP
i ai þ

P
i
bi

si�1

: ð2:13Þ

Maximizing J would mean that we reach the upper
bound, and therefore we can also treat this as an equality.
Since 1tot is constant and the only free variables are the
metabolite concentrations, the maximal flux is reached
when the denominator on the right-hand side is minimized.
The problem is that it is a monotonically decreasing function
in si (for each i) and since metabolite concentrations are
unbounded, the optimum would be at si→∞, which for-
mally is not a mathematically defined state. But even if we
consider this as a limit, the resulting state would not be con-
trollable, but instead very fragile against any changes of
enzyme levels (see electronic supplementary material, section
3.1). In reality, of course, the range of physiological osmotic
pressures does impose some constraint on the concentrations
of small molecules. As a proxy for this effect, we can add
another constraint to bound the sum of all metabolite concen-
trations,

P
i si � stot. Now, one can show (see electronic

supplementary material, section 5.1) that the optimal
allocation of enzymes will obey

1i
� / ai þ

ffiffiffiffiffi
bi

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbk1=2

q
stot

, ð2:14Þ

where β is the vector of all βi and kxk1=2 ¼ ðPi
ffiffiffiffi
xi

p Þ2 is the l1/2
norm (i.e. kbk1=2 ; ðPi

ffiffiffiffiffi
bi

p Þ2). In this case, the maximal flux
would be

J� ¼ 1tot � (kak1 þ kbk1=2=stot)�1: ð2:15Þ

Note that the solution looks essentially the same even if
we constrain the first metabolite (s0) to have a fixed concen-
tration (see electronic supplementary material, section
5.1.4). We will revisit this case in §2.5 in the context of a
course-grained model of a growing cell.

If the metabolite density constraint is not very tight (i.e.
stot is large enough), we can ignore the second term in
equation (2.14), which would be equivalent to assuming
that all enzymes are substrate-saturated. In this case, the opti-
mal allocation of enzymes will be proportional to αi (or
inversely proportional to kcati ) and therefore

lim
stot!1 J� ¼ 1tot � (kak1)�1: ð2:16Þ

Interestingly, kαk1, which is equal to the sum of kcat recipro-
cals, is in fact the inverse of the pathway specific activity
(PSA) as originally defined by Bar-Even et al. [11]. Indeed,
the idealized scenario considered in that study (where all
enzymes were irreversible and saturated) provides an upper
bound on the maximal flux achievable. Interestingly, if we
see the ai ¼ 1=kcati as minimal enzymatic turnover times
and aPW ¼ 1tot=J is the turnover time of the pathway, we
can simply rephrase equation (2.16) by saying that, like in
the case of the PSA, turnover times along a pathway are addi-
tive. In fact, this holds more generally for any rate law vi = ei
ki(s), if the enzyme turnover times are defined as τi = 1/ki,
and resembles the fact that in physics, electric resistances in
a series of resistors are additive.

One of the reasons the irreversible Michaelis–Menten
model is unrealistic is that it does not capture reactions
that are close to equilibrium and therefore suffer from a
counter-productive reverse flux. This is yet another reason
why it might be impossible for some metabolites to
reach very high concentrations: they might be products of
unfavourable reactions. In most metabolic networks, about
half of the reactions are reversible and therefore it would be
more realistic to use a reversible rate law such as Haldane’s.
However, using the Haldane equation would typically
create a system of equations for which no analytic solution
is known. So, first, we will consider rate laws that account
for the reverse flux but, for simplicity, ignore substrate
saturation.
2.3.2. Thermodynamic rate law
Irreversible rate laws like the Michaelis–Menten kinetics
depend only on the substrate concentration; in the formula
there is no product-dependent reverse term that would
decrease the total rate or could make it become negative.
However, according to thermodynamics, such laws can
only be approximations: thermodynamically feasible rate
laws must contain a reverse term and must depend on the
thermodynamic imbalance of substrate and product concen-
trations expressed by the thermodynamic driving force.
Some rate laws can even be written as functions of the ther-
modynamic force alone. Here we describe such a
‘thermodynamic’ rate law, where v is proportional to the ther-
modynamic force efficiency 1� e�u, while the saturation
efficiency ηsat is assumed to be constant and given by 1:

vi ¼ 1i kcati (1� e�ui ) ¼ 1i kcati 1� si
si�1

1
Keq
i

 !
: ð2:17Þ

This type of kinetics approximates cases where all
reactions are saturated (si≫KM; i) and therefore the thermo-
dynamic force efficiency ηsat in equation (2.4) becomes
1. The parameters here are the turnover numbers kcati
and the equilibrium constants Keq

i . However, as we will
learn soon, the individual equilibrium constants Keq

i do not
change the result, and only the overall equilibrium constant
(Keq

tot ¼
Q

i K
eq
i ) matters.

As before, we can define the steady-state pathway flux J
and apply an upper bound on the total enzyme to get

1tot �
X
i

1i ¼
X
i

J
kcati (1� e�ui )

¼ J �
X
i

1
kcati

� 1
1� e�ui

 !

and J � 1tot �
X
i

1
kcati

� 1
1� e�ui

 !�1

:

9>>>>>=
>>>>>;

ð2:18Þ

Unfortunately, there is no closed-form analytic solution
for the maximal rate of this thermodynamic rate law. But
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Figure 4. The relationship between the maximal flux per enzyme and the
overall driving force for the thermodynamic rate law. Even though we do
not have a closed-form solution for J* as a function of θtot, we can still
plot J�ðCÞ against utotðCÞ for varying values of C using equations
(2.19) and (2.20). Here, we show this relationship for a pathway with 2
steps (yellow). The parameters are: K eqi ¼ 1, kcat1 ¼ 3 s�1, and the kcat

of the second enzyme is either (a) kcat2 ¼ 100 s�1 or (b) kcat2 ¼ 2 s�1.
The orange dashed line represents the approximations for very small driving
forces based on equation (2.23), and similarly in pink for very large driving
forces as in equation (2.21). The approximation (dashed purple line) using
equation (2.24) is based on effective parameters chosen to match the
slope at θtot = 0 and the limiting maximal flux at θtot→∞.
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we do have something very close which requires rather
simple computations. First, we need to invert the functional
relationship between the overall driving force (θtot) and
an auxiliary variable C which is defined by the inverse
function of

ln
s0
sn
Keq
tot

� �
¼ utot ¼ 2

X
i

ln

ffiffiffiffiffiffiffi
C

kcati

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C

kcati

s !
: ð2:19Þ

The expression on the right-hand side is analytic and
strictly increasing in the range C [ ½0, 1Þ, so there is a
unique solution that can be found by simple numerical
methods. Then, we can use that value to directly calculate
the optimal driving forces, enzyme levels, and pathway flux:

ui
� ¼ 2 ln 1

kcati
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kcati

C

q� �� �
þ ln (Ckcati ),

1�i ¼ J�
2 � 1

kcati
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kcati

C

q� �

and J� ¼ 21tot �
X
i

1
kcati

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kcati

C

r ! !�1

:

9>>>>>>>>=
>>>>>>>>;

ð2:20Þ

The full derivation of this solution can be found in electro-
nic supplementary material, section 5.2.2. An example
of what the relationship between the driving force and
the optimal flux looks like is illustrated in figure 4 for a
pathway with two enzymes. Furthermore, a comparison
between our exact formula presented here and a numerical
solution based on convex optimization [8] shows no
difference at all.

These formulae cannot be directly evaluated because of
the unknown parameter C. To obtain solutions that do not
depend on this parameter, we now consider two limiting
cases in which C is either infinitely high (very high driving
force) or infinitely low (very low driving force).

When the driving forces are very high (i.e. θtot→∞), the
solution for C in equation (2.19) will approach infinity and
the optimal flux becomes

lim
utot!1

J� ¼ lim
C!1

2 1totP
i 1=k

cat
i � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ kcati =C
p� �

¼ 1totP
i 1=k

cat
i

¼ 1tot � (kak1)�1, ð2:21Þ

with parameters ai ¼ 1=kcati defined as before. This solution
indeed makes sense as it is equivalent to the fully
saturated limit in the Michaelis–Menten case (see §2.3.1,
equation (2.16)).

However, when the driving force in the pathway is lim-
ited (C has a finite positive value), this driving force will be
split between reactions according to their kcati values:
enzymes with a higher kcati value will have to pay a higher
penalty due to their driving force being closer to 0. On the
other hand, slow enzymes will obtain more driving force,
which will help them by having a smaller fraction of reverse
flux. Notably, the distribution does not depend on the reac-
tion equilibrium constants (only on the overall Keq

tot ).
Perhaps this is not that surprising if we consider the fact
that the concentrations of intermediate substrates and pro-
ducts are unconstrained and therefore we have enough
degrees of freedom to adjust to any value of Keq

i as long as
the total driving force stays the same.
One can also consider the other extreme where all reac-
tions are close to equilibrium, which means that θtot is close
to 0 (and therefore also each θi→ 0). In this case, we can
approximate equation (2.18) by

J � 1tot �
X
i

1
kcati

� 1
1� e�ui

 !�1

� 1tot �
X
i

1
kcati ui

 !�1

: ð2:22Þ

Maximizing J under the constraint
P

i ui ¼ utot yields the
following solution (see the full derivation in electronic



royalsocietypublishing.org/journal/rsfs
Interface

Focus
14:20230029

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 F

eb
ru

ar
y 

20
24

 

supplementary material, section 5.2.3):

ui
� � utot

ffiffiffiffiffiffiffiffiffi
1=kcati

pX
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1=kcati

q
and J� � utot 1totX

i

ffiffiffiffiffiffiffiffiffiffiffiffi
1=kcat

p !2 ¼ 1tot � utot
kak1=2 :

9>>>>>>>=
>>>>>>>;

ð2:23Þ

Using the two limiting cases (θtot→∞ and θtot≈ 0), we
can approximate the solution from equation (2.20) by a
much simpler formula, which has the same shape as the
thermodynamic rate law for a single reaction:

J� � 1tot
kak1

1� exp � kak1
kak1=2

utot

 ! !
: ð2:24Þ

Figure 4 compares between the precise and approximate
solution for two example cases (a more detailed comparison
for metabolic pathways of different lengths and parameter
choices is shown in electronic supplementary material,
section 5.3). One can appreciate that the two curves are
nearly indistinguishable, illustrating the good quality of the
approximation.
2.3.3. Mass-action rate law
Next, we consider the same unbranched pathway but assuming
mass-action rate laws:

vi ¼ 1i kcati =KM;i si�1 � si
Keq
i

 !
¼ 1i b

�1
i si�1 � si

Keq
i

 !
: ð2:25Þ

As before, we defined bi ; KM;i=kcati . Note that instead of
equation (2.5) we use a form of the mass-action rate law that
does not require the turnover rate and KM of the product
(and instead uses Keq

i ), to avoid confusing indexation of
forward and backward parameters.

Like with the previous rate laws, we define the
pathway flux J and apply an upper bound on the total
enzyme levels:

1tot �
X
i

1i ¼
X
i

J bi

si�1 � si=K
eq
i

¼ J
X
i

bi

si�1 � si=K
eq
i

and J � 1tot �
X
i

bi

si�1 � si=K
eq
i

 !�1

:

9>>>>=
>>>>;

ð2:26Þ
Again, we maximize the flux at a constrained total
enzyme level. Optimization with Lagrange multipliers
yields the following expressions for the optimal individual
enzyme levels (1 j

�) and the maximal flux (J*) (see
full derivation in electronic supplementary material, sec-
tion 5.4):

1�j ¼ 1tot
ffiffiffiffiffiffiffiffiffiffi
g j

kgk1=2

q
and J� ¼ 1tot � s0 K

eq
tot�sn

kgk1=2

9>=
>; ð2:27Þ

where γj is defined as

gi ; bi

Yn
j¼i

Keq
j : ð2:28Þ
Of course, the exact value of this maximum depends on all
the different system parameters. However, it is interesting to
consider a naive assumption where all the γj parameters are
identical. In such a case, the flux in the pathway would decrease
quadratically with the number of steps [13]. Of course, we
know that in real metabolic pathways the equilibrium constants
are typically not close to 1, and therefore this approximation
might not have many applications in biology.

What would happen if a mutation improved the catalytic
rate of only one of the enzymes 1i by a factor of a (i.e. βi
decreases by a factor of a, but the equilibrium constant Keq

i
remains the same)? In this case, γi would be divided by a but
the optimal enzyme concentration for this reaction 1i

� would
only decrease by a factor of

ffiffiffi
a

p
. This saving would then be dis-

tributed proportionally among all the n enzymes and would
contribute to an increase in the pathway flux J. On the flip
side, if for some reason the activity of one enzyme is decreased
by a multiplicative factor b, it would need to ‘pay’ (increase the
enzyme’s concentration) only by a factor

ffiffiffi
b

p
, and this increase

would be ‘funded’ by all of the enzymes together in order to
keep the same 1tot, thus lowering J.
2.3.4. Haldane rate law
So far we analysed three cases where all enzymes could be
described by the same kinetic rate law: mass-action, Michae-
lis–Menten, or thermodynamic. Although these rate laws can
reliably describe some enzymes in specific conditions, it is
very unlikely that such an approximation would apply to
all the reactions in a single pathway (except for the trivial
case of a 1-reaction pathway). A more realistic model
would allow all reactions to be reversible and saturable.
Here, we will analyse such a case based on the factorized
rate law with one substrate and one product. Note that
although it is equivalent to equation (2.3), we prefer this for-
mulation because it is easier to separate thermodynamics
from saturation effects.

vi ¼ 1i � kcati � (1� e�ui ) � si�1=KS,i

1þ si�1=KS,i þ si=KP,i
: ð2:29Þ

As always, we can assume that all fluxes are equal to J,
and use the total enzyme budget to get an upper bound:

1tot �
X
i

1i ¼
X
i

J

kcati � (1� e�ui ) � si�1=KS,i

1þ si�1=KS,i þ si=KP,i

¼ J �
X
i

1
kcati

(1� e�ui )�1 1þ KS,i

si�1
þ siKS,i

si�1KP,i

� � !

and J � 1tot �
X
i

1
kcati

(1� e�ui )�1 1þ KS,i

si�1
þ siKS,i

si�1KP,i

� � !�1

,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð2:30Þ
where we can now appreciate how this is a generalization of
both equations (2.13) (Michaelis–Menten) and (2.18) (thermo-
dynamic). We can see that the maximal pathway flux would
be realized when the term in parentheses is minimized with
respect to the si, i.e.

minimizes
X
i

1
kcati

1� e�uiðsÞ
� 	�1

1þ KS,i

si�1
þ siKS,i

si�1KP,i

� �
:

ð2:31Þ

Unfortunately, as we already mentioned before, no ana-
lytic solution to this problem is known in the general case.
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2.4. Optimal metabolic states: insights from metabolic
control analysis

2.4.1. Enzyme-control rule and enzyme-elasticity rule
We now continue with some observations about the enzyme-
control rule. The enzyme-control rule equation (2.8) states that
enzyme levels and flux control coefficients in optimal states are
proportional: 1�i / CJ

i
�
. When the aim is to compute control

coefficients in optimal states (at a given enzyme budget 1tot),
this rule comes in handy. The summation theorem tells us
that the flux control coefficients must sum to 1; therefore, the
optimal enzyme levels are given by the flux control coeffi-
cients, multiplied by the (predefined) total enzyme level,
and we obtain the simple conversion CJ�

i ¼ 1�i =1tot and
1�i ¼ 1tot C

J�
i . In the basic form of the rule, we put a constraint

on the enzyme mass and assume that enzyme levels are mass
densities. If the enzyme levels are molar concentrations, and
differently weighted in the constraint, the weights can be
taken into account by modifying the rule.

To what types of optimality problems does the rule apply?
If the metabolic system is not an unbranched pathway but a
general network with one target flux, the rule will still hold
(where the flux control coefficients refer to this target flux).
This also holds for models with metabolite dilution. However,
there are some limitations. Obviously, the rule cannot hold in
states in which control coefficients are not defined. This con-
dition may seem unproblematic, but it is actually violated in
the pathway with Michaelis–Menten rate laws, because in
the limit si→∞ required by optimization, any variations of
single enzyme levels would break the steady state. We discuss
this in electronic supplementary material, section 3.1.

One way to avoid this problem is to add a bound onmetab-
olite levels. For example, wemay consider a generalized density
constraint on enzyme levels and metabolite concentrations

Maximize z � v s.t. a � 1þ b � s � r,

with a linear fluxobjective z � v insteadofa single target flux, and
enzymeweights al, metaboliteweights bi, and an upper bound ρ
on the molecule density. Problems with this constraint lead to a
generalized form of the enzyme-control rule. For an unbranched
pathway with equal weights a for enzymes and equal weights b
for metabolites (e.g. molecular masses), we obtain the new
enzyme-control rule

1�l ¼ 1�tot C
J�
l � J�

b
a

X
i

C si�
l , ð2:32Þ

where the symbolsCJ�
l andCsi�

l denote, respectively, the flux and
control coefficients in the optimal state. Likewise, 1�tot is the (non-
fixed) sum of enzyme levels emerging in the optimal state. For
derivation and details, see electronic supplementary material,
section 3.2.

The original enzyme-control rule has a direct and useful
consequence. Since enzyme levels (in optimal states) are pro-
portional to flux control coefficients, they need to satisfy a
connectivity theorem. Connectivity theorems relate the elasti-
cities of a given metabolite i to control coefficients of the
reactions around this metabolite. In the case of flux control
coefficients, the right-hand side of the theorem is zero, and
we obtain a simple equation for the optimal enzyme levels
around a metabolite i:X

j

1 j � Ej,i ¼ 0, ð2:33Þ
where Ej,i = ∂vj/∂si denotes the unscaled elasticity between
metabolite i and reaction j.

We call this formula the enzyme-elasticity rule (see elec-
tronic supplementary material, section 4). A similar rule for
small adaptations of enzyme levels, instead of the enzyme
levels themselves, had previously been shown in [29]. For a
linear pathway, the enzyme-elasticity rule yields a simple
result: in an optimal state, for each metabolite i and its produ-
cing reaction j = i− 1 and its consuming reaction j = i, the ratio
of enzyme levels 1i=1 j must be equal to the absolute inverse
ratio of the elasticities jEvj

ci =E
vi
ci j. An example of this, with the

mass-action rate law, is derived in electronic supplementary
material, section 4. In contrast to the enzyme-control rule
(which yields only one equation for the entire pathway), the
enzyme-elasticity rule yields an equation for every internal
metabolite, which determines the ratio of the enzyme levels
around this metabolite. Together with the known sum of
enzyme levels, these rules determine the enzyme profile
completely (given all the elasticities in the optimal state).
2.4.2. Analytic formulae for metabolic control
We learned that enzyme levels in optimal states (with a
bound on total enzyme, and maximizing the steady-state
flux) satisfy two general laws, the enzyme-control rule and
the enzyme-elasticity rule. Hence, if we have a formula for
the optimal enzyme levels, and if the enzyme-control rule
applies, we can compute the flux control coefficients. More-
over, the enzyme-elasticity rule (which comes from the
connectivity theorem) relates the optimal enzyme levels to
elasticities. These formulae can be trusted, but for didactic
reasons we set out to compute the control coefficients for
some of the rate laws analytically (also demonstrating differ-
ent ways to compute them) and compared them to optimal
enzyme levels. Here we summarize this briefly; details can
be found in electronic supplementary material, section 5.

— Michaelis–Menten rate law. In metabolic pathways with irre-
versible rate laws, the first reaction has usually full flux
control and therefore a flux control coefficient of 1, while
the remaining reactions of no flux control and therefore
flux control coefficients of 0. But under an optimization,
this changes. All metabolite levels go to infinity and all elas-
ticities go zero. Mathematically, the optimal state does not
exist (because infinite concentrations are not real numbers),
but even if we assume that enzymes could be saturated
completely, any enzyme variation would break the steady
state. This means that the control coefficients are not
defined, and so the enzyme-control rule does not apply
(see electronic supplementary material, section 3.1). To
obtain meaningful results, we therefore studied an optimal-
ity problem with additional metabolite constraints. In this
case, metabolite levels remain finite and the control coeffi-
cients remain defined.

— Thermodynamic rate law. For pathway models with the
thermodynamic rate law, we derived a simple formula for
the flux control coefficients that contains only the enzyme
levels, the kcat values, and the flux. Even if we do not
have a closed formula for the flux as a function of
enzyme levels, we can obtain a closed formula for the
flux control coefficients by using a trick. From the rate
law, we first obtain a relationship between enzyme levels,
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Figure 5. A growing cell described as a chain of reactions. Top: Inspired by
the cell model in [9] explaining ‘bacterial growth laws’, we assume a fixed
protein budget consisting of a fixed protein fraction and variable fractions for
transporters, metabolic enzymes, and ribosomal proteins, but with a fixed
sum. The proportions of the variable fractions are chosen to maximize
growth. Bottom: The growing cell is described as a chain of reactions,
each catalysed by one of the protein fractions. For a constant biomass
production, the three reactions must be in steady state.
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external metabolite levels, kinetic constants and flux:

Yn
i¼1

1� J
1ikcati

� �
¼ sn

s0

1
Keq
tot

ð2:34Þ

(see equation (S31) in electronic supplementary material,
section 5.2.1, for the derivation). While we cannot solve
this for the flux J directly, we can obtain the response coeffi-
cients RJ

1l
¼ @J=@1l by implicit differentiation. This yields

the flux control coefficients (derivation in electronic sup-
plementary material, section 5.3.2):

CJ
l ¼

ð1l kcatl � JÞ�1Pn
i¼1ð1i kcati � JÞ�1 : ð2:35Þ

The control coefficients are proportional to ð1l kcatl � JÞ�1

and normalized to a sum of 1 as required by the summation
theorem. For didactical reasons, we checked the connec-
tivity theorem (electronic supplementary material, section
5.3.1) and the enzyme-control rule (electronic supplemen-
tary material, section 5.3.4).

— Mass-action rate law. With the reversible mass-action rate
law, we can analytically compute the flux control coeffi-
cients and verify that they satisfy summation and
connectivity theorems. To verify that the enzyme-control
rule is satisfied in the optimal state, we use the explicit
formula (2.26) for the steady-state flux and take
derivatives to obtain the flux control coefficients:

CJ
l ¼

gl=1lP
j g j=1 j

, ð2:36Þ

with γl defined as above (derivation in electronic sup-
plementary material, section 5.4.2). The coefficients sum
to 1 as required by the summation theorem. Again, we
verified the connectivity theorem (electronic supplemen-
tary material, section 5.4.4) and the enzyme-control rule
(electronic supplementary material, section 5.4.5) for
didactical reasons.

2.5. A cell model with enzyme kinetics and metabolite
constraints

As an illustrative example, we now apply our formulae to a
simple model of growing cells, describing transport proces-
ses, metabolism and macromolecule synthesis, respectively,
by lumped reactions. Obviously, none of the rate laws
considered throughout this work can fully capture the
dynamics of growing cells. For example, having only one
single reaction representing metabolism is a gross oversim-
plification (and likewise for transport and translation).
Nevertheless, we might still be able to draw insights from
this model if we make the right assumptions. This approach
has been successful in the past: by considering simple cell
models and assuming that enzyme efficiencies are constant
(i.e. completely independent of growth rate and metabolite
concentrations), Basan et al. [10] were able to show how
overflow metabolism in E. coli corresponds to a proteome-
efficient allocation of enzymes. Here we ask how the predic-
tions would change by accounting for enzyme kinetics.
Instead of assuming that enzyme efficiencies are constant
and given, we consider a model in which protein allocation
and metabolite concentrations are always optimized in
order to maximize the growth rate.
In our simple cell model (figure 5), production processes
are represented by an unbranched chain of reactions, describ-
ing overall transport, overall metabolism, and protein
synthesis. The steady-state fluxes are proportional to the
cell growth rate and optimized under a constraint on the
sum of enzyme levels (1tot) and another one on metabolite
levels (stot). For convenience, in this section we will replace
the pathway flux J* with the standard symbol μ for growth
rate. It should be noted that dilution of the intermediate com-
pounds is ignored even though in reality some of them can
have a high total concentration (e.g. the precursors in S2)
and thus a considerable growth dilution rate which affects
protein allocation strategies.

For our model, we chose to use the Michaelis–Menten
approximation, which gives the most realistic results
(although we also discuss the two other analytical solutions
at the end of this section). Metabolite concentrations (as
extra variables) can be adjusted and become part of the
optimization problem. We then apply the formulae derived
in the previous sections of this paper to find the optimal allo-
cation of enzymes and thereby maximize the growth rate of
the cell. Importantly, all calculations are completely based
on analytic expressions.

In §2.3.1, we derived a formula for the optimal allocation
and maximal flux in the case where all metabolite levels are
free variables (including s0, which is denoted here by ssugar).
However, since in this cell model ssugar represents the concen-
tration of an external nutrient that is not subject to
optimization, we would like to treat it as a constant system
parameter (and later show how the optimum responds to
changes in it). Fortunately, adding this assumption changes
the optimal solution only slightly, as described in electronic
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supplementary material, section 5.1.4. The optimal growth
rate as a function of ssugar can be written in the following
simple form:

m ¼ mmax � ssugar
ssugar þ KMonod

, ð2:37Þ

where we define

mmax ; 1tot

1=kcatt þ1=kcatm þ1=kcatr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KM;m=kcatm

p
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KM;r=kcatr

p� �2
=stot

and KMonod ; KM;t=kcatt

1=kcatt þ1=kcatm þ1=kcatr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KM;m=kcatm

p
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KM;r=kcatr

p� �2
=stot

:

9>=
>;

ð2:38Þ
As implied by the symbol for KMonod, this form corresponds
to empirical observations by Monod [19] (and further
followed up by others [30]) who stated that growth rate
increases with the nutrient concentration until reaching a
saturation level where growth is fastest. Interestingly, the
value of KMonod (e.g. the level of ssugar for which growth
rate is half of its maximum) is not determined solely by the
kinetic parameters of the transporter.

To better understand how changes in the model par-
ameters affect cell growth, we considered a toy example
where all constants are set to a default value of 1 (except
for KM;m = 2). In figure 6, we plot the value of μ as a function
of ssugar (based on equations (2.37)–(2.38)), each time
changing one of the parameters. In almost all cases, we find
a trade-off between growth and binding affinity, namely
that improving the kinetics (or relaxing a constraint)
improves the maximal growth rate while also increasing
KMonod (i.e. making it worse since higher KMonod means
higher a concentration of sugar is required to reach the
same growth rate). The three exceptions are the response to
changes in 1tot which only affects μmax, in Kt which only
affects the KMonod, and in kcatt which can improve both
growth parameters at the same time. Indeed, by observing
the formulae in equation (2.38), one can see that μmax

and KMonod are proportional, with a ratio given by
1tot=ðKM;t=kcatt Þ. Hence, all parameters that are only in the
denominator should affect μmax and KMonod in the same
fashion (which leads to a trade-off ), while the three par-
ameters in the numerators have each their own unique effect.

This result might have implications for the design of opti-
mal enzyme regulation. As the rate of sugar transport is not
affected by any of the metabolite concentrations inside the
cytoplasm, the transport reaction acts as an information
buffer in the sense that any changes in the external sugar con-
centration do not affect the optimal allocation of enzymes
(and metabolites) within the cytoplasm. The only thing that
changes is the relative abundance of the transporter versus
all other (cytoplasmic) enzymes. This rule becomes clear
when plotting the optimal enzyme allocations as a function
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of the pathway flux (i.e. the growth rate), as shown in
figure 7. The two cytoplasmic fractions (metabolic enzymes
and ribosomes) change proportionally and appear as straight
lines that cross the axis origin. Since 1tot is a constant, the
remainder (i.e. the level of the transporter) also decreases lin-
early with growth rate. These three straight lines extend only
up to a point (where μ = μmax). This limit represents the fully
saturated transporter, which has an efficiency of kcatm and
therefore an optimal abundance of mmax=kcatm . Higher concen-
trations of ssugar would not generate any further benefits.

In fact, the principle described above can be shown to be
true in a much more general case. As long as one section of
the metabolic network is ‘isolated’ from the rest (i.e. con-
nected only by irreversible steps), changes in the upstream
parameters will affect the incoming flux, but would not
change the optimal allocation of enzymes (and also not the
metabolite concentrations). Curiously, in such cases our
results predict, based on an underlying kinetic model, that
the optimal protein efficiencies are independent of the exter-
nal glucose concentration and, as a consequence, protein
fractions vary linearly. Thus, our model predictions are
very similar to ones from previous proteome allocation
models that are based on empirical observations.

A series of irreversible steps is only one option for a simple
model of cell growth. Alternatively, one might consider cells
living in an environment that provides high metabolite concen-
trations, albeit a limited overall thermodynamic driving force. In
this case, applying our thermodynamic rate law with the
approximation from equation (S46) in the electronic supplemen-
tary material, section 5.3, yields another simple growth formula:

mðssugarÞ ¼ mmax 1� A
ssugar

� �B
 !

and mmax ; 1tot
X
i

1=kcati

 !�1

,

9>>>>>=
>>>>>;

ð2:39Þ

where A ; snK
eq
tot and B ; ðPi 1=k

cat
i Þ=ðPi 1=

ffiffiffiffiffiffiffi
kcati

p Þ2. Again,
the curve parameters depend on all the kcati values. In contrast
to the Michaelis–Menten based growth formula in equation
(2.38), this formula is also sensitive to product concentrations
(sn). This may become important close to chemical equilibrium,
where product accumulation can decrease growth in a way that
cannot be bypassed by any regulatory mechanisms. In this case,
our cells would profit from the presence of a ‘cleaner’ strain that
removes the accumulating product, which has been proposed as
a general mechanism that would encourage symbiosis [31].

Finally, the last option to consider for an analytical cell
growth model is based on the mass-action rate law. However,
from equation (2.27) we can immediately see that in this case
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the optimal enzyme fractions are direct functions of the kin-
etic parameters and do not depend on s0 or sn. Therefore,
when changing the sugar concentration, enzyme allocation
will remain constant. Furthermore, the growth rate will be a
linear function of ssugar, without any saturation behaviour.
This means there is no way to define μmax and KMonod for
the mass-action case.

3. Discussion
In this study, we addressed the enzyme allocation problem
in unbranched pathways analytically by considering a
number of different rate-law approximations. Along the
way, we learned that each approximation comes with its
own idiosyncrasies. For instance, a model with Michaelis–
Menten kinetics requires an extra metabolite constraint to
obtain a valid optimal state, and the ‘thermodynamic’ rate
law requires inverting a function in order to find the value
of the Lagrange multiplier. Fortunately, there is a very good
approximate solution that works well across the entire
range of driving forces.

For historical reasons, we solved the optimality problem
under the assumption that there is a bound on the sum of
enzyme abundances—

P
i 1i � 1tot—without explicitly specify-

ing the units. The common interpretation would be that 1i are
molar concentrations (where the symbol kcati represents the
turnover numbers in units of 1 over time). However, the
total mass concentration of all pathway enzymes may be a
better proxy for cost, since crowding effects in the cytoplasm
are often limiting the total mass concentration of all soluble
proteins, including most enzymes. Furthermore, fast-growing
cells are often limited by the rate of protein elongation, and
the molecular mass is nearly proportional to the gene length.
Therefore, we usually think of 1i as mass concentrations
(e.g. in g ×m−3) and of kcati as specific activities (e.g. in
mol × s−1 × g−1). Nevertheless, the analytic derivation and sol-
utions provided here are agnostic to the choice of units and are
equally valid for both these interpretations. Moreover, one
could imagine a completely different set of linear weights for
the enzyme cost function (i.e.

P
i wi 1i � 1tot, as in figure 1).

If one thinks of the weights as scaling factors for the kcat

values, the provided solutions will still hold (while making
use of the new ‘effective’ kcat values).

Previous studies focused on the ‘mass-action’ rate law,
justifying it by saying that the general reversible form derived
by Haldane can be approximated at the limit of low concen-
trations. However, it is quite rare to have all the substrates
and products of an enzyme at concentrations that are way
below their KM values [32]. Furthermore, the limit of all reac-
tant concentrations going to zero is not very meaningful
because, in the first place, Haldane derived his rate law
assuming enzymes are much less abundant than metabolites
[33]. Interestingly, just being close to equilibrium is not
enough for this approximation, since the product can still
affect the rate nonlinearly via ηsat (figure 2). Here we tried
to consider more comprehensively all the different approxi-
mations that yield an analytic solution to optimal enzyme
allocation in unbranched pathways (table 1).

One of these approximations is the Michaelis–Menten rate
law, which is widely used in enzymatic assays and metabolic
modelling of irreversible reactions. Curiously, using it for the
simple optimality problemwith linear chains leads to paradox-
ical results: the metabolite concentrations go to infinity, the
elasticities vanish and flux control coefficients are not defined.
For solving this problem,we introduced a newupper bound on
the total metabolite concentration in order to obtain realistic
results and derive analytic solutions based on this rate law.
Although it is very reasonable to assume that concentrations
of small molecules (and not just enzymes) are restricted in
cells, this fact is often ignored in metabolic models. One of
the rare cases where this constraint was taken into account is
the work of Dourado et al. [34], who found empirical evidence
to the fact that there is a balance between enzymes and sub-
strates when minimizing the total mass concentration. In
addition to an analytic solution, we also found a new
enzyme-control rule for models with a constraint on enzyme
and metabolite concentrations: in this case, the enzyme
amounts do not only reflect the flux control coefficients, but a
sum of flux and concentration control coefficients (see
electronic supplementary material, section 3.2).

Besides ‘mass-action’ and Michaelis–Menten kinetics, we
discussed a solution for one other rate lawwhichwe call thermo-
dynamic, as the rate is only affected bymetabolite levels through
the thermodynamic driving force (i.e. ignoring any saturation
effects). One advantage of this rate law is that it does not require
knowing the KM values (which are often difficult to come by).
The thermodynamic-only approximation was also used for jus-
tifying the max–min driving force (MDF) method (as described
in electronic supplementarymaterial, section 5.3.5), which simi-
larly aims to quantify the efficiency of metabolic pathways [35].
But, unlike the solution presented here,MDFdoes not explicitly
optimize a simplified version of a kinetic rate law, but rather
applies a heuristic based on the assumption that the lowest driv-
ing forces are mainly responsible for increased enzyme
demands, and the total driving force should therefore be as
evenly distributed as possible. On the other hand, the advan-
tage of the MDF method is that it takes metabolite
concentration bounds into consideration.

All throughout this paper, we only considered pathways
with uni–uni reactions (one substrate, one product, with stoichio-
metric coefficients of 1). In reality, many reactions involve
co-factor pairs or other substrates or products. Instead of deriv-
ing results for this general case, we assumed that these extra
reactants may exist, but with known concentrations. In this
case, the rate laws contain extra terms, but these terms can be
rearranged to yield the same simple formulae as in the uni–
uni case, using effective kinetic constants. We demonstrate this
for the case of two substrates and two products following con-
venience kinetics [36] in electronic supplementary material,
section 5.6. Notably, this logic also applies to reactions with
more than two substrates and products as well as to enzyme
activation or inhibition with constant activator or inhibitor levels.

This paper can be seen as an exercise in solving the enzyme
allocation problem and describing the optimal states analyti-
cally using MCA. Although some might argue that the
required approximations are not realistic, they do represent a
step forward compared to the very common approach of
assuming that metabolites have no effect on enzyme efficiency
at all. On the other hand, adding metabolite concentrations as
extra variables greatly increases the complexity of models and
typically renders them unsolvable. Therefore, the solutions
provided here might be handy, as the assumption of metab-
olite steady state combined with the optimality argument
give us analytic expressions that only depend on the initial
and final metabolites in the pathway. We demonstrated this
result using a toy example for a course-grained model of cell
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growth, and showed how the analytic solutions provide valu-
able insights about the effects of changes in each parameter—
all this without the need to simulate the metabolic network or
use nonlinear solvers. One could imagine a scenario where
metabolic engineers, while trying to improve a biochemical
pathway, have to decide in which enzyme to invest their
time. Although MCA can perfectly serve this purpose while
covering more scenarios, it requires tools and language that
can seem opaque to people lacking the proper mathematical
background. The solutions provided here should be more
approachable and serve as simple guidelines while capturing
a wider range of cases than previously explored in the litera-
ture. We hope that future studies will apply and extend this
approach to other, more complex models.
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