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Detection of DNA methylation 
signatures through the lens 
of genomic imprinting
Jean‑Noël Hubert 1,7, Nathalie Iannuccelli 1,7, Cédric Cabau 2, Eva Jacomet 1,3, Yvon Billon 4, 
Rémy‑Félix Serre 5,6, Céline Vandecasteele 5, Cécile Donnadieu 5 & Julie Demars 1*

Genomic imprinting represents an original model of epigenetic regulation resulting in a parent‑of‑
origin expression. Despite the critical role of imprinted genes in mammalian growth, metabolism and 
neuronal function, there is no molecular tool specifically targeting them for a systematic evaluation. 
We show here that enzymatic methyl‑seq consistently outperforms the bisulfite‑based standard 
in capturing 165 candidate regions for genomic imprinting in the pig. This highlights the potential 
for a turnkey, fully customizable and reliable capture tool of genomic regions regulated by cytosine 
methylation in any population of interest. For the field of genomic imprinting, it opens up the 
possibility of detecting multilocus imprinting variations across the genome, with implications for basic 
research, agrigenomics and clinical practice.

Genomic imprinting (GI) is an original molecular phenomenon mediated by the apposition of epigenetic marks 
(DNA methylation and/or histone marks) leading to allele-specific expression dependent on the parental  origin1. 
GI studies intersect with a broad range of biological fields, including evolution biology, developmental biol-
ogy, molecular genetics and epigenetics. GI is involved in many phenotypes in humans but also contributes to 
the variability of major agronomic  phenotypes2,3. Imprinted genes are therefore highly attractive targets and 
 biomarkers4,5, which are found isolated or as clusters across the genome, representing 1% to 2% of the total gene 
content in the best studied mammals. Parent-of-origin (PofO) expression is primarily controlled by differentially 
methylated regions (DMRs) in a parental way as  well1. Although knowledge about GI has significantly advanced 
so far, some technological bottlenecks remain to tackle challenging scientific insights.

To assess whether and how GI is involved in the variability of complex phenotypes, it is critical to (i) map 
and characterize imprinted loci across the genome and (ii) identify simultaneously the parental origin of alleles 
and their methylation status. Rigorously characterizing imprintomes would require the combination of experi-
mental designs such as reciprocal  crosses6 with whole-genome sequencing  technologies7,8. However, such cost-
consuming methods could not be used as routine molecular tools. In addition, whole-genome approaches would 
produce a large majority of unnecessary reads for detecting GI since imprinted genes and their associated DMRs 
represent a small fraction of the genome. Conversely, cheaper sequencing-based methylation profiling  methods9 
would produce insufficient resolution or an incomplete picture of known imprinted regions. Here, we optimized 
and compared capture-based methylation sequencing technologies aiming for an exhaustive detection of evolu-
tionary conserved imprinted loci across the genome.

We performed our study in the pig (Sus scrofa). The pig is particularly attractive as a major species for the 
improvement of complex  phenotypes10 and for its epigenomic features different from those of rodents and 
sometimes similar to those of humans, whose early epigenomic landscape is very  specific11. More generally, 
GI research in the pig contributes to advancing the characterization of the porcine genome, which could in the 
future provide pathophysiology models of human imprinted  disorders12. We propose here in the pig the first 
global evaluation of methylation patterns related to genomic imprinting in livestock.

The strategy implemented below may be applied to any other species with its own custom capture. We (i) 
selected 165 regions in the pig genome based on human and mouse  orthologies1,13 (https:// www. genei mprint. com 
and https:// corpa pp. otago. ac. nz/ gene- catal ogue), since GI mechanisms are quite well conserved in  mammals14, 
(ii) exploited reciprocal crosses to identify PofO  methylation6 and (iii) tested two different technologies, the 
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novel enzymatic-based Twist NGS Bioscience Methylation Detection System (TB), with two protocols (called 
TB1 and TB2), and the widely used bisulfite-based Agilent SureSelect Custom DNA Target Enrichment Probes 
(AG) (Fig. 1a and Extended Data Table s1)15.
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Results and discussion
The final designed panels from both technologies covered all the 165 targeted regions but differed slightly in 
size, with 20.5 Mb and 19.7 Mb for TB and AG technologies, respectively (Fig. 1b and Extended Data Table s1). 
Sequencing quality analysis showed lower duplication rate and higher GC percentage for TB technology in 
addition to insert size as expected (Fig. 1c-e and Extended Data Fig. s1a-h). Both target capture efficiency and 
homogeneity of panels are comparable between AG and TB after optimizing the latter, reaching excellent levels 
(Fig. 1f and g). Specificity is however more favourable in TB, with much less off-target capture than in AG (Fig. 1h 
and i and Extended Data Fig. s1g-i). Regarding methylation evaluation and conversion, the enzymatic-based TB 
technology yielded higher numbers of total and methylated CpGs, as well as less non-CpG methylation than the 
standard bisulfite-based AG technology (Extended Data Fig. s1j-o). These observations demonstrate an improved 
specificity of the enzymatic treatment for cytosine conversion and for capturing GC-rich regions such as CpG 
islands, which represent problematic sources of bias in bisulfite-based sequencing  protocols16, independently of 
region size (Fig. 1j-l). Thus, the application of the novel TB approach to GI suggests it outperforms the current 
technological standard for methylation  quantification15 (Extended Data Table 2).

Imprinted genes are regulated by CpG methylation through parental  DMRs1,17. Such hemi-methylated regions, 
expected to be methylated on one allele resulting in approximately 50% of methylation, are either somatic or 
 germinal18. Such specific DNA methylation patterns belong to the about 2% of CpG exhibiting intermediate 
DNA methylation values, including parental DMRs, as well as allele- and strand-specific DNA methylation and 
stochastic DNA  methylation19. Here, we identified approximately 38,000 hemi-methylated CpGs per individual, 
clustered in at least 600 hemi-methylated regions fulfilling stringent criteria that are distributed in 123 out of 
the 165 candidate regions for GI (Fig. 2a–c). Interestingly, the IGF2-H19/KCNQ1-CDKN1C region, carrying a 
mutation affecting muscularity in  pigs20 and hosting some of the best-characterized Imprinting Control Regions 
(ICRs) in humans and  mice21, is the top candidate after scanning for GI methylation patterns. Two clusters with 
more than 100 hemi-methylated CpGs were detected in the region. The first one is located upstream of the 5’ 
UTR of H19 and the second one is located upstream of the 5’UTR of KCNQ1OT1 that is not annotated in the 
pig reference genome (Fig. 2e–h).

Our strategy relies on next generation sequencing technology that allows the detection of genotypes and 
CpG methylation simultaneously. Reciprocal crosses were used to phase variants and determine unambiguously 
the parental inheritance of alleles (Fig. 2i–l and Extended Fig. s2a). We demonstrated, in blood, the paternal 
specific methylation for the DMR located upstream of the 5’ UTR of H19 and the maternal specific methyla-
tion for the DMR located upstream of the 5’ UTR of KCNQ1OT1 (Fig. 2m and n and Extended Fig. s2a-c). This 
result was confirmed on a sperm sample in which the first region was totally methylated while the second one 
was totally unmethylated (Fig. 2m and n). Both germline DMRs showed similar properties than ICR1 and ICR2, 
which are known to regulate in humans and mice the IGF2-H19 and KCNQ1-CDKN1C imprinted domains, 
 respectively1,22,23.

Altogether, we demonstrated and harnessed the potential of enzymatic methyl-seq to provide a molecular 
tool adapted to the specific needs of GI. Such a novel tool especially allows detecting PofO methylation, which 
paves the way to the systematic and routine evaluation of the contribution of GI in both the variability of livestock 
complex  phenotypes5 and the diagnosis of human imprinting disorders 2,7.

Materials and methods
Animals and samples
The study included 10 pigs, 8 pigs were bred at the INRAE experimental farm (https:// doi. org/https:// doi. org/ 
10. 15454/1. 55724 15481 18584 7E12) and 2 pigs come from breeding organizations in accordance with the French 
and European legislation on animal welfare. The animals belong to the same family, except for one LW animal. 
Animals were produced in a reciprocal cross design between Large White and Meishan pig breeds.

Ten biological samples were used in the experiment. Nine of them are blood samples collected on EDTA 
and were stored frozen nine months at − 20 °C. One biological sample is a sperm sample from dose for artificial 
insemination and was stored two years at − 20 °C. Biological samples were collected at adult developmental stage 
for all the parents (n = 5) of the reciprocal cross design while biological samples were collected at 1d after birth 
for all offspring (n = 5) of the reciprocal cross design.

Genomic DNA was extracted from blood using the Genomic-tip 100 DNA kit (Qiagen, 10,243) or using 
MagAttract HMW DNA kit (Qiagen, 67,563) following manufacturer’s instructions. Genomic DNA was extracted 

Figure 1.  Strategy and performances of technologies. (a) Schematic overview of the strategy, including the 
selection of 165 candidate regions for GI in the pig based on knowledge from humans and  mice1,13, the use of a 
reciprocal cross (n = 8) to ensure the determination of parental  inheritance6 and the tested technologies, Twist 
Bioscience (TB) vs. Agilent (AG). (b) Distribution and size of final designed panels by the two manufacturers, 
AG (green), TB (purple), and uncovered regions (grey). (c, d, e) Sequencing performances by technology, 
including insert size (c), duplication rate (d) and GC percentage (e). (f, g, h, i) Panel performances by 
technology, including efficiency, that is represented as the mean + /- standard deviation of the fraction of targets 
covered at a specific depth (f), homogeneity, that is represented as the mean + /- standard deviation of depth 
coverage for the 165 targeted regions (g), specificity, that is represented as percentage (h) and density (i) of 
off-target reads, which mapped outside of the 165 targeted regions. j, k, Correlation of the mean coverage with 
either the size (j) or the GC percentage (k) of the 165 targeted regions. For c to k, the AG classical protocol is in 
green and the two TB protocols (TB1 and TB2) are in light and dark purple. l, Feature annotation of region per 
technology.
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from sperm using standard phenol/chloroform method. DNA purity was determined using the Nanodrop 8000 
spectrophotometer (Thermo Fisher Scientific). DNA concentration was determined using the DS DNA Broad 
Range Assay kit (Invitrogen, ThermoFisher Scientific, Q32850) and was measured with the Qubit3 fluorometer 
(Invitrogen, ThermoFisher Scientific).

All the procedures and guidelines for animal care were approved by the local ethical committee in animal 
experimentation (Poitou–Charentes) and the French Ministry of Higher Education and Scientific Research 
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(authorizations n°2,018,021,912,005,794 and n°11,789–2,017,101,117,033,530). All animal and sample informa-
tion is available at the European Nucleotide Archive (ENA) as accession number PRJEB58558.

Panel design
Candidate regions for GI in the pig (Sus scrofa) were selected based on various publications available in humans 
and  mice1,13 and on two databases (https:// www. genei mprint. com and https:// corpa pp. otago. ac. nz/ gene- catal 
ogue). Sequences not annotated in the pig genome were subjected to BLAST searches against the Sscrofa11.1 
reference. A total of 165 regions ranging from 458 bp to 2.3 Mb, distributed across the 18 autosomes, the X chro-
mosome and 4 scaffolds of the pig reference, were selected. These genomic regions, targeting a total of 23 Mb, 
were submitted to the two commercial platforms, TB and AG. Each platform used its own confidential algorithm 
for panel design. The sizes of custom panels from TB and AG were 20.5 Mb and 19.7 Mb, respectively, with all 
the 165 candidate regions for GI represented.

Library preparation
The final optimized protocol has been deposited to Protocol Exchange open repository (https:// doi. org/https:// 
doi. org/ 10. 21203/ rs.3. pex- 2159/ v1). Two types of libraries were generated using AG or TB technology, the latter 
involving two experiments (TB1 and TB2). The AG and the TB1 experiments were performed at the GeT-PlaGe 
core facility at INRAE Toulouse (https:// doi. org/https:// doi. org/ 10. 15454/1. 55723 70921 30319 3E12). The TB2 
experiment was performed by Twist Bioscience company (Twist Bioscience, USA).

Library preparation and target enrichment with Agilent SureSelect Custom DNA Target Enrichment Probes
Eight library preparations were carried out using the SureSelect Methyl-Seq Target Enrichment kit (Agilent, 
G9651) following the manufacturer’s protocol (User guide: SureSelect, Agilent Technologies, version E0, April 
2018). Genomic DNA (1 µg) was first fragmented using a Covaris M220 focused ultrasonicator in micro-TUBE 
50 AFA Fiber screw cap (Covaris, 520,166) for a target insert size of 200 bp under the following conditions: peak 
power 75W, duty factor 10%, 200 cycles/bursts, 375 s, 8 °C. An additional 0.8X AMPure beads purification step 
was done to eliminate adaptor dimers.

Library preparation and target enrichment with Twist Bioscience NGS methylation detection system
Sixteen library preparations were carried out using an in-house combination of two protocols: NEB-Next Enzy-
matic Methyl-seq Library Preparation and Twist Bioscience Targeted Methylation Sequencing, using a methyl 
custom panel. The whole detailed and optimized protocol has been deposited to Protocol Exchange open reposi-
tory (https:// doi. org/https:// doi. org/ 10. 21203/ rs.3. pex- 2159/ v1). Briefly, eight library preparations were carried 
out with a first similar development protocol (TB1) in which some adjustments have not yet been made. Dif-
ferences between  protocolTB1 and  protocolTB2 are referenced in the procedure deposited in Protocol Exchange. 
All library quantifications were performed on a Qubit 3.0 fluorometer with High Sensitivity DNA Quantitation 
Assay kit according manufacturer’s recommendations (Agilent, ThermoFisher Scientific, Q32851). All library 
validations were performed on a 2100 Bioanalyzer with High Sensitivity DNA kit according to manufacturer’s 
recommendations (Agilent Technologies, 5067–4626).

Sequencing
All libraries were quantified by qPCR on QuantStudio 6 device (Applied Biosystems, ThermoFisher Scientific), 
using the Kapa Library Quantification Kit (Roche, KK4824). Agilent libraries and experiment TB1 libraries 
were each sequenced on one lane of an Illumina SP NovaSeq 6000 flow cell, using the SP Reagent kit v1.5 300 
cycles (Illumina, 20,028,400), according to the manufacturer’s recommendations. The loading concentration was 
2 nM 25% phiX. Experiment TB2 libraries were sequenced on Illumina P2 NextSeq 2000 flow cell, using the SP 
Reagent kit v3 300 cycles (Illumina, 20,046,813), according to the manufacturer’s recommendations. The loading 
concentration was 1000 pM 5% phiX. All sequences are available at ENA under study accession PRJEB58558.

Figure 2.  Hemi-methylated CpGs, regions and PofO methylation. Results showed here come from the TB2 
protocol. (a) Detection, methylation and classification of CpGs. The methylation at CpGs was considered hyper/
hypo/hemi when methylation was < 70%, > 30% and between 30–70% and 40–60%, respectively. (b) Repartition 
of hyper/hypo/hemi-methylated CpGs in the 165 candidate regions for GI. (c) Location of the hemi-methylated 
candidate regions across the pig genome. (d) Schematic representation of the IGF2-H19/KCNQ1-CDKN1C 
imprinted region located on the swine chromosome 2 with genes expressed from the paternal and maternal 
allele in blue and red, respectively. (e, f) Magnification of two regions where two clusters of hemi-methylated 
CpGs, DMRs (pink), were detected. Locally weighted running lines smoother (LOESS) were represented. (g 
to n), Screenshots from IGV browser (https:// softw are. broad insti tute. org/ softw are/ igv/) magnified in DMRs. 
(g, h) Annotation of the pig genome using Sus_scrofa.Sscrofa11.1.104.gtf showing that KCNQ1OT1 was 
missing. (i, j) Coverage. (k, l) Variants identification and informativity with parental origin in the offspring of 
reciprocal crosses. (n, m) Methylation evaluation in blood and sperm tissues and detection of PofO methylation. 
hemiR100: occurrence of ≥ 5 hemi-methylated CpGs within 100 bp; hemiR5: occurrence of ≥ 5 consecutive 
hemi-methylated CpGs.
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Methyl‑seq data analysis
Analyses were performed using the genotoul bioinformatics platform Toulouse Occitanie (Bioinfo Genotoul, 
https:// doi. org/https:// doi. org/ 10. 15454/1. 55723 69328 96116 7E12). Methyl-seq reads were processed with the 
nf-core/methylseq (v1.5)  pipeline24,25 (https:// nf- co. re/ methy lseq), using the Sscrofa11.1 pig reference and the 
 Bismark26 workflow with standard parameters. Sequencing quality analysis was performed with custom Python 
scripts for comparing AG and TB experiments. CpG calls from TB2 experiment with depth ≥ 20X were fur-
ther processed with  CGmapTools27 and inbuilt Linux commands. Cytosines with methylation levels either < 0.3 
or > 0.7 were classified as either hypo-methylated or hyper-methylated, respectively. Cytosines with methyla-
tion levels between 0.4 and 0.6, indicating potential PofO methylation, were classified as hemi-methylated. This 
subset of hemi-methylated CpGs was scanned using a sliding window approach with a custom R function to 
identify hemi-methylated regions potentially compatible with GI. The occurrence of ≥ 5 hemi-methylated CpGs 
within 100 bp was labelled as hemiR100. A subset of hemiR100, that is the occurrence of ≥ 5 consecutive hemi-
methylated CpGs, was made distinct and labelled as hemiR5. Such cutoffs on CpGs-related parameters such as 
depth, methylation levels and density aim to define hemi-methylated regions incorporating some of the most 
stringent criteria for targeting epigenetic signatures of GI from reference imprintome  studies7,28. Neighbouring 
hemi-methylated regions at a distance less than their initial definition criterion (i.e., 100 bp for hemiR100 and 
5 bp for hemiR5) were merged in a single larger region. Top hemi-methylated regions were visually inspected 
using Integrative Genomics  Viewer29, identifying when possible the parental origin of methylation in the progeny 
of the reciprocal cross. A complete list of software versions used in this study is provided in the next section.

Software used
BEDtools (v2.27.1) 30

Bismark (v0.22.3) 26

CGmapTools (v0.1.2) 27

Cutadapt (v2.9)31

nf-core/methylseq (v1.5)24,25

Nextflow (v20.01.0)32

FastQC (v0.11.9, https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/).
Integrative Genome Viewer (v2.8.13)29

MultiQC (v1.8)33

Qualimap (v2.2.2-dev)34

Preseq (v2.0.3)35

R base (v4.1.1) with dplyr (v1.0.9), ggplot2 (v3.3.6), RIdeogram (v0.2.2), scales (v1.2.1) and tidyr (v1.2) pack-
ages (https:// cran.r- proje ct. org/).

Samtools (v1.9)36

Trim Galore! (v0.6.4_dev, https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ trim_ galore/).
HISAT2 (v2.2.0)37

Data availability
The dataset generated during the current study is available in the ENA data repository (https:// www. ebi. ac. uk/ 
ena/ brows er/ home, accession number PRJEB58558).
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