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SeptoSympto: a precise image analysis 
of Septoria tritici blotch disease symptoms 
using deep learning methods on scanned 
images
Laura Mathieu1*   , Maxime Reder1, Ali Siah2   , Aurélie Ducasse1, Camilla Langlands‑Perry3   , 
Thierry C. Marcel3   , Jean‑Benoît Morel1   , Cyrille Saintenac4    and Elsa Ballini5*    

Abstract 

Background  Investigations on plant-pathogen interactions require quantitative, accurate, and rapid phenotyp‑
ing of crop diseases. However, visual assessment of disease symptoms is preferred over available numerical tools 
due to transferability challenges. These assessments are laborious, time-consuming, require expertise, and are rater 
dependent. More recently, deep learning has produced interesting results for evaluating plant diseases. Nevertheless, 
it has yet to be used to quantify the severity of Septoria tritici blotch (STB) caused by Zymoseptoria tritici—a frequently 
occurring and damaging disease on wheat crops.

Results  We developed an image analysis script in Python, called SeptoSympto. This script uses deep learning models 
based on the U-Net and YOLO architectures to quantify necrosis and pycnidia on detached, flattened and scanned 
leaves of wheat seedlings. Datasets of different sizes (containing 50, 100, 200, and 300 leaves) were annotated to train 
Convolutional Neural Networks models. Five different datasets were tested to develop a robust tool for the accurate 
analysis of STB symptoms and facilitate its transferability. The results show that (i) the amount of annotated data 
does not influence the performances of models, (ii) the outputs of SeptoSympto are highly correlated with those 
of the experts, with a similar magnitude to the correlations between experts, and (iii) the accuracy of SeptoSympto 
allows precise and rapid quantification of necrosis and pycnidia on both durum and bread wheat leaves inoculated 
with different strains of the pathogen, scanned with different scanners and grown under different conditions.

Conclusions  SeptoSympto takes the same amount of time as a visual assessment to evaluate STB symptoms. How‑
ever, unlike visual assessments, it allows for data to be stored and evaluated by experts and non-experts in a more 
accurate and unbiased manner. The methods used in SeptoSympto make it a transferable, highly accurate, compu‑
tationally inexpensive, easy-to-use, and adaptable tool. This study demonstrates the potential of using deep learning 
to assess complex plant disease symptoms such as STB.
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Background
Septoria tritici blotch (STB), caused by the ascomycete 
fungus Mycosphaerella graminicola (Fuckel) J. Schröt. 
in Cohn (anamorph: Zymoseptoria tritici Roberge in 
Desmaz.), is a major and persistent threat to wheat culti-
vation in temperate regions [1, 2]. It is considered as the 
most prevalent and yield-reducing disease in Europe [3], 
causing up to 50% yield losses under conditions favora-
ble for disease development [4]. The primary methods for 
controlling this disease involve the use of fungicides and 
host-resistance genes. Nearly 70% of fungicides applied 
in Europe are dedicated to controlling STB with a cost 
of up to one billion euros [5]. These strategies have lim-
ited financial sustainability and require more diversifica-
tion [6]. Therefore, understanding STB symptoms is an 
important researched topic [7] in agro-ecological disease 
management [8].

STB symptoms are complex. The necrosis and the pyc-
nidia that appear on the lesions can have diverse shapes, 
sizes, and colors. To exacerbate the complexity, these 
symptoms are highly dependent on Z. tritici isolates, 
wheat genotypes, and environmental conditions [9]. The 
latency period is another factor that makes STB symp-
toms difficult to detect. When Z. tritici infects wheat, 
leaf lesions appear only after a long symptomless period 
of more than ten days post-inoculation. It progressively 
forms necrosis that may contain pycnidia (i.e., the asexual 
fruiting bodies) [10]. This extended latency period makes 
it difficult to differentiate between the simultaneous 
development of disease symptoms and leaf senescence. 
It also makes it complicated to evaluate disease sever-
ity in an accurate manner under laboratory conditions. 
However, there are methods and tools that can be used to 
overcome these challenges.

Accurate and rapid phenotyping of STB symptoms is 
essential for studying this disease. The identification and 
quantification of pycnidia are fundamental parameters 
in the context of studying disease diagnosis and epidem-
ics. Pycnidia are a distinguishing feature to detect STB 
in field conditions. Additionally, quantifying pycnidia 
can be used as an indicator of the fungus’s reproductive 
potential and of the epidemiological development [11]. 
Accurate high-throughput phenotyping is necessary for 
carrying out genetic analyses [12], as well as for study-
ing alternative control methods (i.e., agro-ecological 
approaches). These methods have low individual effects 
on disease in most cases. When combined, they become 
interesting to produce an overall effect on the disease 
[13]. Resistance QTLs associated with the percentage of 
necrosis and pycnidium production have already been 
identified [14]. Identifying QTLs associated with small 
phenotype variations is more challenging without accu-
rate symptom detection tools. Therefore, such studies on 

the complex STB symptoms necessitate the development 
of image-based phenotyping. This type of phenotyping is 
increasingly used for experiments as it offers a solution to 
overcome the limitations of visual assessments.

Visual evaluation by raters is the most commonly used 
method to assess STB severity, especially in the field [15]. 
This type of evaluation presents challenges when quan-
tifying the disease’s severity effectively, as described 
in Bock et  al. [16]. Evaluation results are significantly 
influenced by the rater’s level of experience, making dis-
ease assessment a challenging task for young research-
ers. Various aspects are considered to account for rater 
biases, such as tools that facilitate a coordinated evalua-
tion [17] or by proposing quantitative molecular assess-
ments [18]. The ultimate goal is to achieve a standardized 
interlaboratory evaluation at the international level. The 
development of image analysis tools represents a means 
of standardizing STB phenotyping.

Among the tools available for phenotyping wheat dis-
ease symptoms, only a few methods are available to eval-
uate symptoms related to STB (Additional file  1, [19]). 
Available methods for evaluating the canopy are either 
based on hyperspectral remote sensing [20, 21] or on 
dynamic modeling and deep learning [22], aimed at dif-
ferentiating this disease from other biotic and abiotic 
stressors. Nevertheless, none of these methods allows for 
an evaluation of pycnidia production. A batch processing 
macro in ImageJ image analysis software has been devel-
oped to automatically measure lesions and pycnidia on 
leaves [11, 23, 24]. Color thresholding in the RGB color 
space allows to measure the green leaf area and there-
fore lesions. The ’Find Maxima’ function is used to iden-
tify pycnidia. Another method for detecting pycnidia has 
been developed in Python and is based on determining 
contours of constant brightness in the vicinity of each 
pycnidia [25]. More recently, a tool has been developed 
to detect the yellow halo present in lesion perimeters 
[26]. It also detects lesions based on a transformation of 
the original image into six color spaces, a random forest 
classifier for thresholding followed by a post-processed 
filter. Surprisingly, deep learning methods have not yet 
been developed to quantify STB symptoms (i.e. necrosis 
and pycnidia on leaves), despite the creation of tools to 
classify the principal foliar diseases of wheat [27, 28]. Vis-
ual analysis by experts remains the most preferred solu-
tion, although there have been efforts to create tools to 
detect STB symptoms.

The development of new tools remains necessary, as 
the tools developed so far are used by a small number 
of laboratories. They are time-consuming, difficult to 
transfer to new laboratory environment, or potentially 
inaccurate. Indeed, the tools developed to detect STB 
severity seem to be too specific to the training sets used 
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to develop them. The development of traditional image 
processing techniques is labor-intensive. Each adjust-
ment might improve results by reducing false positives 
for one image, but degrade results by introducing errors 
for another. The variability in natural samples, com-
bined with the rigidity of predefined rules, made it a 
daunting task to achieve consistent and accurate results 
across a broad dataset. These tools are unsuitable or dif-
ficult to use with other datasets obtained under different 
conditions. Therefore, it is critical to develop a method 
for quantifying STB severity that is user-friendly, rapid, 
accurate, unbiased, and easily adaptable.

Several recent methods have been developed and com-
pared for the phenotyping of plant disease symptoms. 
Assessing disease incidence (e.g. number of attacked 
plants) is relatively straightforward through visual obser-
vation. However, estimating disease severity (e.g. level 
of disease of individual leaf ) requires complex cognition 
[29]. This explains the complexity of developing accu-
rate and robust phenotyping tools, which necessarily 
rely on initial human assessment. Machine learning is a 
form of artificial intelligence capable of automatic adap-
tation with minimal human intervention. Deep learn-
ing is a subset of machine learning that employs highly 
complex neural networks. It has the potential to produce 
results comparable to expert assessments. Compari-
sons of image analysis methods for plant diseases other 
than STB have demonstrated that machine learning (a 
Support Vector Machine (SVM) classification) outper-
formed ImageJ (which employs thresholding and ROI 
mask application) in measuring the severity of cassava 
fire blight [30]. Furthermore, in Sujatha et al. [31], deep 
learning methods [i.e., Inception-v3, Visual Geometry 
Group (VGG-16 & VGG-19)] outperformed traditional 
machine learning approaches (i.e., SVM, Stochastic Gra-
dient Descent & Random Forest) in the case of citrus 
disease classification. Deep learning emerges as a highly 
promising method for plant disease phenotyping.

Deep learning could address complex problems associ-
ated with phenotyping of STB symptoms. This method 
is based on an artificial neural network, which, although 
fundamentally different, can be linked to the human brain 
for data analysis and feature learning [32]. Deep learning 
has shown very promising results in the field of computer 
vision, including object detection, semantic segmenta-
tion, image classification, etc. [33]. Indeed, convolutional 
neural networks (CNNs) stand as the most used models 
for detecting plant leaf diseases. It addresses challenges 
inherent in traditional machine learning methods, such 
as symptom variations or background interference [34]. 
Developing a deep learning tool to quantify STB symp-
toms appears to be a promising method for accurately 
distinguishing necrosis from senescence and quantifying 

pycnidia. This approach allows to enhance adaptability 
and discernment of the complexity and variability inher-
ent in biological images, while minimizing errors though 
fine-tuning model parameters. The CNNs can capture 
and represent hierarchical features allowing subtle varia-
tions and patterns to be discerned. Furthermore, despite 
the potential need for extensive training and access to 
labelled datasets, it provides greater accuracy and ease 
of adaptation compared to currently available methods. 
However, to our knowledge, deep learning has not yet 
been used for quantifying STB symptoms.

Choosing the deep learning architecture is very impor-
tant to resolve problems with high performances. Deep 
learning architectures used for plant disease detection 
[35] are based on CNNs. The U-Net architecture [36] is 
a deep learning segmentation architecture known and 
widely used for its high performance [22, 37–39]. Seman-
tic segmentation is an image analysis method that clas-
sifies each pixel of the image according to the object 
or class of objects to which it belongs. U-Net is simple 
to implement and requires a small amount of train-
ing data to be effective, which is a significant advantage 
for its application in biology. Models based on U-Net 
architectures have been shown to be effective in detect-
ing various diseases with high performance (F1 score 
greater than 0.85) [37]. The choice of this architecture 
for necrosis detection is based on its ability to accurately 
identify shapes in the form of polygons. Another notable 
architecture is YOLOv5 (You Only Look Once version 
5) architecture [40], specifically designed for real-time 
object detection. YOLOv5 is an object detection model 
that divides an image into a grid and predicts the objects 
present and their approximate position as rectangles. It 
is renowned for its speed, global optimization and end-
to-end training, collectively improving detection accu-
racy. This architecture is considered very powerful and 
efficient for object detection [41]. The YOLO architecture 
has been applied to detect tomato diseases and pests, as 
it outperforms other architectures such as Faster R-CNN, 
Mask R-CNN and SSD in terms of accuracy and detec-
tion speed [42]. The choice of this architecture for pyc-
nidium detection is based on its ability to perform fast 
and accurate detections. In this context, due to the small 
size and the large number of pycnidia to be identified, 
pycnidia are approximated by rectangles to facilitate their 
detection and annotation. Therefore, both U-Net and 
YOLOv5 architectures have the potential to enable more 
accurate quantification of objects such as pycnidia and 
polygons such as necrosis, respectively.

In this work, we tested whether deep learning tech-
niques can accurately distinguish necrosis caused by STB 
from leaf senescence symptoms and precisely quantify 
STB necrosis and pycnidia using various datasets. We 
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developed an image analysis script, named SeptoSympto 
(https://​github.​com/​maxim​ereder/​septo-​sympto). Deep 
learning models based on the U-Net and YOLO archi-
tectures were trained on small datasets to enable quick, 
quantitative and accurate phenotyping of STB symptoms 
obtained under controlled conditions.

Materials and methods
Material and image acquisition
We sourced the leaves from the third fully developed leaf 
and harvested it either 17 or 21  days after inoculation. 
To minimize sources of variability in image capture, we 
maintained consistent image resolution, employed fixed 
image backgrounds and ensured that the leaves exhibited 
no curvature. Each leaf was carefully fixed to an A4 sticky 
sheet, enclosed in a transparent pouch, and scanned. All 
the scanned images were captured at a resolution of 1200 
dpi and saved in TIFF format to ensure compatibility 
with the SeptoSympto script. SeptoSympto requires the 
leave to be scanned horizontally. In case there was text, 

we used the software XnView to remove it and to rename 
the isolated leaves.

We selected images for the datasets with the objective 
of representing a maximum diversity of symptoms, while 
maintaining an equal distribution of each wheat line 
within the datasets. Different datasets were used to train 
and evaluate the models, as outlined in Table 1. In order 
to represent a maximum of possible factors influencing 
symptom development, these datasets originated from 
three laboratories, encompassed four growth conditions, 
featured two wheat species and included a diverse set of 
Z. tritici genotypes.

Data annotation
We carried out the annotation process for individual 
leaf images on Roboflow. It is an online platform spe-
cially designed for data annotation to facilitate the train-
ing of computer vision models (https://​robof​low.​com/ or 
https://​docs.​robof​low.​com/). Two independent projects, 
one based on semantic segmentation for necrosis, and 

Table 1  Information about datasets used to develop SeptoSympto

Six different datasets were used to create (dataset 1) or evaluate (dataset 2 to 6) the deep learning models. All the scanned images contain only wheat leaves 
inoculated with Z. tritici and were taken at 1200 dpi in TIFF format. The datasets consist of different varieties, strains, growth conditions, and scans used to evaluate the 
models

Dataset Usage Leaf number Plant species Varieties Zymoseptoria 
strains

Growth conditions Scanner Institute

1 Model training 375 Triticum aestivum 19 IPO9415 Greenhouse
16 h/8 h photoper‑
iod, at 24 °C/20 °C
and 
with 250 µmol/s/m2

Epson Perfection
V370 Photo

1

2 Model evaluation 40 Triticum aestivum 19 IPO9415 Greenhouse
16 h/8 h photoper‑
iod, at 24 °C/20 °C
and 
with 250 µmol/s/m2

Epson Perfection
V370 Photo

1

3 Model evaluation 50 Triticum aestivum 13 IPO9415 Growing chamber
16 h/8 h photoper‑
iod, at 24 °C/20 °C
and 
with 250 µmol/s/m2

Epson Perfection
V370 Photo

1

4 Model evaluation 50 Triticum turgidum 18 P1A Growing chamber
16 h/8 h photoper‑
iod, at 24 °C/20 °C
and 
with 250 µmol/s/m2

Epson Perfection
V370 Photo

1

5 Model evaluation 115 Triticum aestivum 3 IPO9415 Growing chamber
16 h/8 h of photo‑
period, at 21 °C/18 °C
and 
with 400 µmol/s/m2

Epson Perfection
V750 Pro

2

6 Model evaluation 55 Triticum aestivum 1 Descendants 
of a biparental 
population (Parental 
strains: INRA09-
FS0813
& INRA09-FS0732)

Growing chamber
16 h/8 h of photo‑
period at 22 °C/18 °C
and 
with 300 µmol/s/m2

CanoScan
9000F MarkII

3

https://github.com/maximereder/septo-sympto
https://roboflow.com/
https://docs.roboflow.com/
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the other on object detection for pycnidia, were created 
to annotate STB symptoms by an expert.

A total of 375 leaves were annotated with polygon 
class labels for necrosis, while 240 leaves were annotated 
with rectangle class labels for pycnidia. The annotation 
process involved zooming in on each image to its maxi-
mum extent and selectively annotating the darkest pixels, 
which accurately represented necrosis or pycnidia. This 
meticulous approach aimed to enhance the precision of 
annotations. Since the dimensions of necrosis or pycnidia 
could vary, annotations were primarily based on their 
distinctive colors and shapes.

Two experts performed the annotation, and subse-
quently a cross-validation process to ensure accuracy 
and consistency. Following this, the annotated data were 

exported in compatible formats: binary masks in PNG 
format for the necrosis project and coordinate tables in 
TXT format for the pycnidia project.

Model training
The necrosis detection model was trained using the 
U-Net architecture [36], while pycnidium detection uti-
lized the YOLO (You Only Look Once) architecture [43] 
(Fig.  1A). All training was conducted using Python as a 
programming language on a computer equipped with an 
Intel Core i5 processor and two T4 graphics processing 
units (GPU), each with 16 GB of memory.

The necrosis models used a U-Net architecture for 
semantic segmentation, implemented with the Tensor-
flow library (https://​github.​com/​maxim​ereder/​unet). In 

Data annota on
Annotated data

with Roboflow

Annotated data
Training

with Pytorch library :
YOLOv5 architecture

Training
with TensorFlow library :

U-net architecture

Trained model

Trained model
Data annota on

with Roboflow

Image dataset

Image dataset

Necrosis

Pycnidia

Leaf1.tif

Leaf1_1. f

Leaf1_2. f

Leaf1_3. f

Leaf1_4. f

Cu ng 
& Resizing Saving

Necrosis
model

Necrosis
detection

Mask
Conversion Binary

image
Filtering Image with necrosis contours

Necrosis area
Necrosis number

Pycnidia
model

Pycnidia
detec on

Coordinates
Filtering Image with pycnidia contours

Pycnidia area
Pycnidia number

InputFile.csv OutputFile.csv

« OUT » file

« CROPPED » file

« Leaf » file
SeptoSympto.py

Criteria : color range
& minimal surface

White or black
according to
a threshold

Criteria : minimal surface
& ra o perimeter/surface

Criteria :
confidence level

A

B

Fig. 1  Overall workflow of model training and SeptoSympto script. A The images of wheat leaves inoculated with Zymoseptoria tritici were 
annotated on Roboflow in two stages: the first stage using segmentation for necrosis and the second stage using object detection for pycnidia. 
Necrosis annotated images were exported and a model was trained with the Tensorflow library in Python using the U-Net architecture. Pycnidia 
annotated images were exported and a model was trained with Pytorch library in Python using the YOLOv5 architecture. The scripts for model 
training are available on https://​github.​com/​maxim​ereder/​septo-​sympto. B To run the image analysis, a folder must contain different files 
as described below and the script SeptoSympto available on https://​github.​com/​maxim​ereder/​septo-​sympto. The images are stored in a file called 
“images_input”. A file in csv format, called “csv_input”, containing information for each image and the name of each image in the first column can 
be added. The models used for necrosis and pycnidia detection are stored in the “models” file. Using the input data, the script will first detect leaves 
according to color range and minimal surface, cut and resize each leaf. The leaves are renamed with the file name and the leaf number of the image 
and saved in a file called “cropped”. The second function predicts the probability of each pixel to be in necrosis class using the necrosis model, 
and creates a binary mask. Thresholds are applied to keep only detected ones with a minimal surface and perimeter to area ratio. The function 
returns the image with the necrosis contours drawn, the total area of necrosis and the necrosis number. The third function uses the pycnidia model 
to predict rectangles and confidence from the analyzed image, and only retains pycnidia coordinates for those with a minimal confidence level. The 
function returns the image with the pycnidia contours drawn, the total area of pycnidia and the pycnidia number. After running the image analysis, 
the output is a result csv file containing the measurements

https://github.com/maximereder/unet
https://github.com/maximereder/septo-sympto
https://github.com/maximereder/septo-sympto
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contrast, the pycnidium models adopted the YOLOv5 
architecture for object detection, implemented with the 
Pytorch library [40]. For both models, training was per-
formed on datasets consisting of 50, 100, 200 or 300 
annotated images and validation sets representing 20% 
of the largest training dataset. The input sizes of models 
were set to an image size of 304 × 3072 pixels.

We applied a data augmentation in the form of hori-
zontal and vertical reversal for pycnidia, while no aug-
mentation was employed for necrosis. During the 
training, the models processed 16 images per batch over 
200 epochs initially. Model hyperparameters predomi-
nantly adhered to default settings. The necrosis model 
used Dice Loss function, while the pycnidium model 
employed the standard YOLO loss function, encompass-
ing localization, classification and confidence scores. The 
chosen optimizer was Adam, with an initial learning rate 
at 0.0001 for necrosis and 0.001 for pycnidia. A patience 
count was employed during training to stop the process 
if the training metrics remain constant after 10 epochs. 
This count incremented with each epoch that failed 
to yield a superior validation loss compared to the cur-
rent best. We saved the models with the best validation 
performance.

We saved the resulting models in.h5 format for necro-
sis and.pt format for pycnidia. The.h5 extension aligns 
with the TensorFlow library and is commonly used to 
save machine learning models, preserving both the seg-
mentation model’s architecture and the learned weights. 
Conversely, the.pt extension is the standard format for 
saving PyTorch models, encompassing both the model’s 
architecture and weight parameters.

Image analysis
The SeptoSympto script detects necrosis and pycnidia, 
by processing individual leaf to prepare them for analysis 
using deep learning models (Fig. 1B).

To initiate the image analysis, a comprehensive guide to 
script utilization, the SeptoSympto script and the CNN 
models employed for necrosis and pycnidia detection 
(specifically, necrosis-model-375.h5 and pycnidia-model.
pt) are available at https://​github.​com/​maxim​ereder/​
septo-​sympto. Additionally, several options are available 
such as including a CSV file containing image-related 
information, with each image name listed in the first 
column.

The SeptoSympto script encompasses three main 
functions. The first function within SeptoSympto script 
detects each leaf, employing criteria such as a mini-
mum area and color range. Subsequently, it proceeds 
to cut, resize and rename the leaves. The second func-
tion focuses on predicting the probability of each pixel 
belonging to the necrosis class, resulting in the creation 

of a binary mask. This is achieved by applying thresh-
olds based on minimum area and maximum perimeter-
to-area ratio. The third function uses the pycnidia model 
to forecast rectangles and confidence scores from the 
analyzed image. It retains pycnidia coordinates that sur-
pass a predefined confidence threshold and restricts the 
maximum number of pycnidia predictions per leaf. Upon 
completion of the image analysis, the resulting outputs 
encompass cropped images, images featuring pycnidia 
and necrosis contours and measurements containing the 
leaf area, necrosis area, necrosis number, pycnidia area 
and pycnidia number.

Model evaluation
Evaluation metrics for model performance
Before implementing models in SeptoSympto script, we 
tested and compared several models trained with differ-
ent sized datasets using metrics and expert observations. 
The metrics used are precision, recall and F1 for necrosis 
and pycnidia models:

with TP: true positive, FP: false positive and FN: false 
negative.

High precision denotes minimal false positive detec-
tion, signifying that the model accurately identifies the 
majority of true positives. High recall indicates maxi-
mum true positive detection with minimal false nega-
tives, implying that the model effectively captures the 
true positives without significant omissions. The F1 score 
is the harmonic mean of recall and precision, with higher 
values indicating superior model performance.

Comparison with expert evaluations
We compared the results obtained from the best-per-
forming models to expert evaluations using Spearman 
correlation. The Spearman correlation is a non-paramet-
ric test, making it suitable to determine the significance 
of the monotonic relationship between the variables 
tested. The Spearman’s rank correlation coefficient pro-
vides insights into the intensity of the monotonic rela-
tionship, while the p-value ascertains the significance 
thereof.

Experts conducted visual assessments, quantifying 
the area of necrosis present on the total leaf surface and 

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1score = 2
Precision ∗ Recall

Precision+ Recall
=

2TP

2TP + FP + FN

https://github.com/maximereder/septo-sympto
https://github.com/maximereder/septo-sympto
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the area of necrosis containing pycnidia. The process 
adhered to standard precision practices, rounding meas-
urements to the nearest unit in alignment with common 
evaluation protocols.

Results
Script development and model validation
Before incorporating the final models into the Septo-
Sympto script, we trained a total of four models for 
necrosis and three for pycnidia, using different subsets of 
dataset 1. Three metrics were used to evaluate the mod-
els: precision, recall and F1 score.

The analysis of metrics demonstrated minimal vari-
ation across the models trained with different sizes of 
training datasets (Table 2), suggesting that the number of 
annotated leaves used for model creation could be small 
and this would not impact model performance. However, 
models N3 and P2, trained with a larger number of anno-
tated leaves, were chosen to be integrated into the Sep-
toSympto script. They may allow a better representation 
of the diverse observable symptoms, thereby facilitating 
a potential improved generalization of the models for 
inter-laboratory use.

The metrics allowed to select models and validate their 
performances. The N3 model, which is used in the Septo-
Sympto script for detecting necrosis, boasted a precision 
of 0.95, a recall of 0.85 and a F1 score of 0.90 (Table 2). 
This suggests that our model is adapted to detect necro-
sis. The loss function, which represents the cumula-
tive errors made by the model across the training set, 
reached a low value after only 20 epochs (training cycles) 

(Additional file  2). This observation underscores the 
model’s ability to minimize discrepancies between expert 
annotations and model predictions, rendering further 
training unnecessary. Conversely, the P2 model, which 
is implemented in the SeptoSympto script for detecting 
pycnidia, exhibited a precision of 0.56, recall of 0.25, and 
F1 of 0.34 (Table 2). Given the potential of a substantial 
number of pycnidia detections on leaves, the metrics 
remained low even with 183 epochs. Detecting a large 
number of objects inherently presents greater difficulty 
in achieving high metric values. Nevertheless, the loss 
function curves for both the training and validation sets 
were decreasing (Additional file 2). This shows a reduc-
tion in errors with each iteration. The best model, based 
on the parameters corresponding to the lowest loss func-
tions for both training and validation data, was therefore 
chosen.

In addition to model metrics, the observation of out-
puts is equally important to validate a model. Utilizing 
the N3 and P2 models, the observations depicted in Fig. 2 
reconfirmed the models’ ability to accurately identify and 
quantify both pycnidia and necrosis, regardless of the 
quantity (absence of symptoms, necrosis without pyc-
nidia, pycnidia density scale, necrosis size) and diversity 
(necrosis and pycnidia colors) of the symptoms present.

Script evaluation
To assess the performance of the SeptoSympto script, 
we conducted an analysis on two independent datasets. 
Both were distinct from the one used for model creation. 

Table 2  Metrics of models for necrosis and pycnidia

The model trainings were carried out on a small number of leaves and epochs. The resulting models were evaluated using different metrics: precision, recall and F1. 
High precision indicates minimal false positive detection. High recall indicates maximum detection of true positives. F1 is the harmonic mean of recall and precision. 
A Four models (N0, N1, N2 & N3) for necrosis detection were trained on training datasets of different sizes, using a segmentation based deep learning architecture 
called U-net. B Three models (P0, P1 & P2) for pycnidia detection were trained on training datasets of different sizes, using an object detection based deep learning 
architecture called YOLOv5

A Necrosis

Model Leaf number in training 
dataset

Leaf number in validation 
dataset

Epochs Precision Recall F1

N0 50 75 47 0.87 0.84 0.85

N1 100 75 42 0.95 0.80 0.87

N2 200 75 26 0.95 0.82 0.88

N3 300 75 20 0.95 0.85 0.90

B Pycnidia

Model Leaf number in training 
dataset

Leaf number in validation 
dataset

Epochs Precision Recall F1

P0 50 40 199 0.54 0.27 0.36

P1 100 40 162 0.53 0.25 0.34

P2 200 40 183 0.56 0.25 0.34
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Dataset 2 contained 40 leaves, while dataset 6 encom-
passed 55 leaves (Table 1).

Evaluation of SeptoSympto using images captured 
under same conditions as model training
The SeptoSympto script was employed to evaluate data-
set 2, alongside the assessments conducted by two inde-
pendent experts. Spearman’s correlation analysis was 
applied to examine the monotonic relationships between 
the SeptoSympto outputs and the expert evaluations 
(Table  3, Additional file  3). Our results reveled strong 
correlations between the script-generated outputs and 
the manual evaluations for both the area of necrosis pre-
sent on the total leaf surface (expert 1: ρ = 0.94, p < 0.001 
and expert 2: ρ = 0.75, p < 0.001) and for the area of 
necrosis containing pycnidia (expert 1: ρ = 0.83, p < 0.001 
and expert 2: ρ = 0.80, p < 0.001). The correlation val-
ues between SeptoSympto and the experts were within 
the same magnitude as those obtained between the two 
experts themselves (necrosis: ρ = 0.74, p < 0.001 and pyc-
nidia: ρ = 0.95, p < 0.001). This consistency was expected 
since deep learning models were trained on data anno-
tated by another independent expert (expert 3).

Comparison of SeptoSympto with ImageJ macro.
To compare the different tools available for STB pheno-
typing, we submitted dataset 6 to the tool developed by 

Steward & McDonald 2014 and Stewart et al. 2016 [23, 
24], to the SeptoSympto script and to a visual evaluation 
(Fig.  3). Correlations between the two tools were mod-
est (pycnidia number: ρ = 0.55, p < 0.001 and necrosis 
area: ρ = 0.59, p < 0.001). However, SeptoSympto exhib-
ited higher correlations with expert 1 (necrosis: ρ = 0.76, 
p < 0.001 and pycnidia: ρ = 0.94, p < 0.001) compared to 
those observed between ImageJ and expert 1 (necrosis: 
ρ = 0.45, p < 0.001 and pycnidia: ρ = 0.57, p < 0.001). It 
should be noted that expert 1 is independent from the 
expert 3, who developed SeptoSympto. Therefore, this 
observation underscores that SeptoSympto surpasses the 
previous tool [23], as a more accurate tool to quantify 
STB symptoms.

Script transfer
A major problem in phenotyping based on machine 
learning techniques is the risk of overfitting, where the 
model becomes too specific to the training set. How-
ever, the analyses presented above demonstrated that 
our script does not exhibit any overfitting. It effectively 
detects necrosis and pycnidia in datasets that were not 
part of the model training (Table 3). It is worth noting 
that dataset 2 was obtained under the same conditions 
(same varieties, strain, growing conditions and scan-
ner) as the training set. To ensure the tool’s applicabil-
ity across diverse conditions, we investigated whether 

Fig. 2  Images of Zymoseptoria tritici symptoms detected by SeptoSympto. The SeptoSympto image outputs after cutting, obtained in the “cropped” 
file, are shown on the left and the SeptoSympto image outputs after necrosis and pycnidia detection are shown on the right. The necrosis contours 
are in green and the pycnidia are red dots
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SeptoSympto performed equally well on datasets from 
different conditions, including varying species, varie-
ties, strains, growing conditions, and scanners, com-
pared to the dataset used to create the models.

Evaluation of SeptoSympto using images obtained 
from different growing conditions
We initiated the assessment by evaluating dataset 3, 
obtained under similar conditions (varieties, strain 
and scanner) but with variations in growing condi-
tions. SeptoSympto exhibited high correlations with 
expert assessments for both necrosis (expert 1: ρ = 0.95, 
p < 0.001 and expert 2: ρ = 0.90, p < 0.001) and pycnidia 
(expert 1: ρ = 0.58, p < 0.001 and expert 2: ρ = 0.81, 
p < 0.001) (Additional file  4). The correlation between 
the experts was also high (necrosis: ρ = 0.95, p < 0.001 
and pycnidia: ρ = 0.80, p < 0.001), similar to the results 
obtained with dataset 2. These findings suggest that 
SeptoSympto can effectively adapt to datasets from dif-
ferent growing conditions.

SeptoSympto evaluation using durum wheat images
To further evaluate its performance, we tested Septo-
Sympto capability on dataset 4 encompassing leaves of 
another species: durum wheat inoculated with a differ-
ent strain but grown under conditions similar to those in 
dataset 3 and scanned using the same scanner. The corre-
lations between SeptoSympto results and expert manual 
scoring remained high (Additional file  5A) for necro-
sis (expert 1: ρ = 0.96, p < 0.001 and expert 2: ρ = 0.92, 
p < 0.001; correlation between the experts: ρ = 0.88, 
p < 0.001) and pycnidia (expert 1: ρ = 0.69, p < 0.001 and 
expert 2: ρ = 0.71, p < 0.001; correlation between the 
experts: ρ = 0.89, p < 0.001). This indicates that Septo-
Sympto performs effectively across datasets from both 
bread and durum wheat species, even with different 
strains of Z. tritici.

SeptoSympto evaluation using images from different 
growing conditions and scanners
Furthermore, we assessed whether the script perfor-
mance was sensitive to image capture from different 

Table 3   Summary of correlation results for necrosis and pycnidia detection between expert evaluations and SeptoSympto outputs 
across multiple assessed datasets

Spearman correlations were used to compare expert assessments and SeptoSympto measurements of necrosis and pycnidia. The Spearman’s rank 
correlation coefficient (ρ) and the p-values (p) are given for each comparison. The datasets were obtained from various conditions as shown in Table 1

A Necrosis

Dataset Difference with the dataset 1 
used for training

SeptoSympto—Expert 1 SeptoSympto—Expert 2 Expert 1 – Expert 2

2 Same conditions p < 0.001
ρ = 0.94

p < 0.001
ρ = 0.75

p < 0.001
ρ = 0.74

3 Durum wheat p < 0.001
ρ = 0.95

p < 0.001
ρ = 0.90

p < 0.001
ρ = 0.95

4 Different growing conditions 
and scanners

p < 0.001
ρ = 0.96

p < 0.001
ρ = 0.92

p < 0.001
ρ = 0.88

5 p < 0.001
ρ = 0.83

6 p < 0.001
ρ = 0.76

B Pycnidia

Dataset Difference with the dataset 1 
used for training

SeptoSympto—Expert 1 SeptoSympto—Expert 2 Expert 1–Expert 2

2 Same conditions p < 0.001
ρ = 0.83

p < 0.001
ρ = 0.80

p < 0.001
ρ = 0.95

3 Durum wheat p < 0.001
ρ = 0.58

p < 0.001
ρ = 0.81

p < 0.001
ρ = 0.80

4 Different growing conditions 
and scanners

p < 0.001
ρ = 0.69

p < 0.001
ρ = 0.71

p < 0.001
ρ = 0.89

5 p < 0.001
ρ = 0.81

6 p < 0.001
ρ = 0.94
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laboratories. Dataset 5 was composed of 115 leaves from 
three varieties already present in datasets 1, 2 and 3, 
inoculated with the same strain as these three datasets, 
but grown under distinct conditions and scanned using 
a different scanner. The correlations obtained between 
SeptoSympto and expert 1 results remained high (necro-
sis: ρ = 0.83, p < 0.001 and pycnidia: ρ = 0.81, p < 0.001) 
(Additional file 5B). Lastly, dataset 6 comprised 55 leaves 
from the same variety, inoculated with different isolates, 
and imaged with a different scanner while maintaining 
the same resolution. The correlations between Septo-
Sympto and expert 1 did not decrease (necrosis: ρ = 0.76, 
p < 0.001 and pycnidia: ρ = 0.94, p < 0.001) (Fig.  3), indi-
cating that SeptoSympto can effectively analyze images 
from different scanners. These results emphasize that 
SeptoSympto is a robust tool for accurate analysis of STB 
symptoms under different experimental conditions.

Discussion
With the emergence of artificial intelligence, high-
throughput phenotyping is growing exponentially, 
encompassing not only visible spectrum images but 
also other spectral ranges. This approach allows the 
rapid, easy and reproducible acquisition of high-quality 

phenotyping data. However, the phenotyping of STB 
symptoms in wheat is still predominantly reliant on 
visual assessment, a labor-intensive and time-consum-
ing process that requires expertise [44]. To address this 
challenge, we have developed an image analysis script 
using deep-learning techniques. It allows precise phe-
notyping of necrosis and pycnidia caused by STB with 
pre-trained Convolutional Neural Networks. CNN 
architectures lessen the burden of image annotation 
and enable more accurate quantification of STB symp-
toms from scanned leaves of wheat seedlings, notably 
for pycnidium detection. Our script, named Septo-
Sympto, employs two models trained on small data-
sets: one model trained with the U-Net architecture for 
necrosis detection via semantic segmentation, and the 
other one trained with the YOLO v5 architecture that 
distinguishes pycnidia via object detection. High cor-
relations between expert assessments and SeptoSympto 
outputs were obtained with 6 different datasets used 
to evaluate the script. These datasets are composed of 
images obtained with 3 different scanners at 1200 dpi 
and including 38 varieties of bread wheat or durum 
wheat, inoculated with different Z. tritici strains, and 
grown under diverse conditions.

ρ = 0.57

0

2000

4000

6000

8000

0 25 50 75 100
percent of necrosis area containing pycnidia 

Expert 1

Im
ag

e 
J 

py
cn

id
ia

 c
ou

nt

0

250

500

750

1000

0 25 50 75 100
percent of leaf area containing necrosis 

Expert 1
Im

ag
e 

J 
ne

cr
os

is
 a

re
a

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
percent of leaf area containing necrosis 

Expert 1

Se
pt

o-
Sy

m
pt

o 
ra

tio
 o

f n
ec

ro
si

s 
ar

ea
 p

er
 le

af
 a

re
a 

p < 0.001 

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
necrosis area 

Image J

Se
pt

o-
Sy

m
pt

o 
ra

tio
 o

f n
ec

ro
si

s 
ar

ea
 p

er
 le

af
 a

re
a 

ρ = 0.94

0

500

1000

1500

2000

0 25 50 75 100
percent of necrosis area containing pycnidia 

Expert 1

Se
pt

o-
Sy

m
pt

o 
py

cn
id

ia
 n

um
be

r

0

500

1000

1500

2000

0 2000 4000 6000 8000
pycnidia count 

Image J

Se
pt

o-
Sy

m
pt

o 
py

cn
id

ia
 n

um
be

r

ρ = 0.55

ρ = 0.76 
p < 0.001 
ρ = 0.45 

p < 0.001 
ρ = 0.59 

p < 0.001 p < 0.001 p < 0.001 

Fig. 3  Correlations between expert ratings, Image J and SeptoSympto outputs for necrosis and pycnidia detection in dataset 6. Comparative 
analysis of expert assessments, Image J and SeptoSympto for the measurements of necrosis and pycnidia on 55 bread wheat leaves scanned 
with the CanoScan 9000F MarkII scanner was conducted using Spearman correlations. Dataset 6 was obtained under different growing conditions, 
with different Z. tritici isolates and a different variety from the dataset used for the model trainings
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SeptoSympto currently stands as the sole available labo-
ratory tool available for the phenotyping of STB, employ-
ing innovative methodologies like CNNs (Additional 
file 1). A dataset obtained by a different laboratory than 
the ones that developed SeptoSympto and the ImageJ 
macro [23] was evaluated to compare the two tools. It 
has become evident that the use of state-of-the-art CNN 
architectures improves the reliability of STB detection. 
Additionally, a recent field study on STB phenotyp-
ing [22] employed the U-Net architecture, the same one 
implemented in SeptoSympto for necrosis quantification, 
demonstrating its effectiveness in field disease detection. 
The use of deep learning models to quantify STB symp-
toms improved the accuracy compared with other image-
based tools. The SeptoSympto tool also offers advantages 
over visual assessment of STB symptoms.

Criteria such as analysis time, data storage, accuracy 
and usability are important to take into account when 
comparing a new tool with the most commonly used 
method: visual assessment. To obtain models, the time 
required to annotate the images (1  h for 10 leaves) and 
to train the model (1 to 3 h depending on the number of 
leaves) remains low for deep learning models. Smaller 
amounts of data are annotated for training. In term of 
image analysis, additional time is needed for image acqui-
sition compared to visual evaluation, as leaves have to be 
collected, pasted and scanned (60’ for 80 leaves). How-
ever, the execution time of the script for cropping the 
images and detecting necrosis and pycnidia (1′45″ for 
10 leaves) is nearly equivalent to visual evaluation time 
(2′22″ for 10 leaves). With a visual evaluation, we obtain 
quantitative data stored in a table. This requires mini-
mal storage space, but it forfeits access to raw data (the 
leaf observation). In addition, visual evaluation requires 
expertise and makes it possible to obtain only the areas 
of leaves containing necrosis or of necrosis containing 
pycnidia, but not the number of pycnidia. Conversely, 
SeptoSympto retains scanned leaf images based on the 
chosen script outputs. Moreover, this image analysis tool 
yields more precise data. The number of pycnidia may 
be a better proxy for assessing sporulation capacity com-
pared to visually assessed leaf area containing pycnidia. 
A better detection of this pycnidia number could allow 
a better evaluation of the aggressiveness of STB strains 
[45]. Detection with SeptoSympto also avoids differ-
ences of notations between experts. Variability in estima-
tion regarding the leaf area covered by pycnidia can be 
observed among experts, depending on pycnidia density 
or the size within this area. Here, the raters possess over a 
decade of expertise on STB. Using the SeptoSympto tool, 
non-experts can also accurately study the STB sever-
ity. This tool is intended to be comparable in accuracy 
to expert assessments, while also providing additional 

advantages such as user-friendliness for both experts 
and non-experts, data storage or rapid analysis, thanks to 
models adapted to the problems.

Developing deep learning models requires controlling 
source variability, as well as methodological and data-
set issues [32]. The datasets used to train necrosis and 
pycnidium detection models are composed of images 
obtained from a standardized acquisition and encom-
pass a small number of annotated data. The models can 
therefore be easily recreated. When the training dataset 
is small, it reveals the effectiveness of the chosen detec-
tion method [46]. Therefore, the architectures used were 
carefully chosen to best suit our problems. Under- and 
over-constraining the model may lead to suboptimal per-
formances. Hence, achieving optimal performance relies 
on having an adequate amount of training data. In the 
case of SeptoSympto, varying training dataset sizes did 
not result in performance improvements, indicating that 
the optimal training dataset size had been reached. Fur-
thermore, we have developed a tool that is as frugal as 
possible [47], in order to build the most accurate models 
possible with minimal resource consumption. As a result, 
SeptoSympto is an end-to-end script coded in Python 
using deep learning models. It executes quickly and offers 
several options for selecting input and output files. The 
methods used to develop the script were chosen to be 
not only the most powerful but also the most frugal and 
easy to use. Models are trained on small datasets and can 
be trained on computers with different processors and 
graphic cards to facilitate the training of new models. All 
this allows to easily annotate images and train necrosis 
and pycnidium detection models.

Key issues in deploying new phenotyping methods 
involve their transferability between laboratories and 
acceptance by the research community. The SeptoSympto 
tool was developed with the aim of being efficient across 
a broad spectrum of datasets scanned at 1200 dpi, as well 
as easily adaptable to other datasets. To avoid a com-
mon problem with deep learning models: overfitting 
[46], a kind of cross-validation to validate the models 
implemented in SeptoSympto was performed on several 
datasets with expert notations. The model metrics may 
appear modest, especially for pycnidia. However, high 
correlations between script outputs and expert ratings, 
unaffected by dataset changes, support the robustness of 
our models as well as the absence of overfitting. There-
fore, developing SeptoSympto allowed to create a precise 
tool for STB phenotyping while facilitating its adaptation 
and transferability, in order to allow standardization of 
inter-laboratory assessments of STB symptoms.

Depending on the applications -plot management, rate 
phenotyping or epidemiological surveys-, tools based on 
image analysis to detect plant diseases can be developed 
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at various detection scales: at the level of the leaf, the 
plant, or the cover in order to quantify, identify or detect 
early the disease. In the case of SeptoSympto, it is a leaf 
phenotyping tool allowing the accurate quantification of 
STB severity for necrosis and pycnidia. While our cur-
rent models for SeptoSympto offer precise detection and 
script transferability, we could create an open-access 
database with annotated data to train the models on 
larger datasets, encompassing leaves scanned by numer-
ous laboratories, to allow the use of a single script at the 
international level which is as robust as possible. In addi-
tion, the script could be adapted to detect STB symptoms 
in the field, which are very different from the symptoms 
observed under control conditions and where other dis-
eases could be observed on the same leaves. This adapta-
tion to the field data would be easily achieved by using a 
portable scanner and training new models.

Conclusion
Septoria tritici blotch (STB) is an extensively studied 
disease due to its significant and persistent impact on 
wheat cultivation. A major challenge in this context is the 
development of an automated phenotyping tool capable 
of accurately and efficiently analyzing symptoms from 
scanned images while maintaining transferability. To 
address this challenge, we developed the SeptoSympto 
tool. It is a script coded in Python that uses deep learn-
ing models to detect STB symptoms. The models were 
trained on a relatively small dataset to facilitate the tool’s 
transferability. Necrosis and pycnidia were quantified 
using the U-Net and YOLOv5 architectures. The primary 
objective behind this script development was to develop 
an easily adaptable and common tool between laborato-
ries to assess STB symptoms. Therefore, we have devel-
oped a tool capable of accurate and rapid quantification 
of necrosis and pycnidia on durum and bread wheat 
leaves inoculated with different strains, grown in differ-
ent conditions and scanned with different scanners.
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Additional file 1. Comparison of image analysis methods for detection 
and quantification of STB. Comprehensive overview of published tools 
employed for STB phenotyping and their key differentiating factors. These 
factors include the growth conditions of captured images, the approach 
for image acquisition, the techniques for STB detection and quantification, 
as well as the capacity to detect or quantify necrosis and pycnidia.

Additional file 2. Loss curves of model training by epochs for necrosis 
and pycnidia. (A) Loss curves by epochs obtained for training the N3 
necrosis model, with 300 leaves in the training dataset (red dots) and 
75 leaves in the validation dataset (blue dots). (B) Loss curves by epochs 
obtained for training the P2 pycnidia model, with 200 leaves in the train‑
ing dataset (red dots) and 40 leaves in the validation dataset (blue dots).

Additional file 3. Correlations between expert ratings and SeptoSympto 
results for necrosis and pycnidia detection in test dataset 2. Comparative 
analysis of expert assessments and SeptoSympto for the measurements of 
necrosis and pycnidia on 40 bread wheat leaves scanned with the Epson 
Perfection V370 Photo scanner was conducted using Spearman correla‑
tions. Dataset 2 was obtained under the same growth conditions, with 
the same Z. tritici strain and varieties as the dataset used for the model 
trainings.

Additional file 4. Correlations between expert ratings and SeptoSympto 
results for necrosis and pycnidia detection in dataset 3. Comparative 
analysis of expert assessments and SeptoSympto for the measurements of 
necrosis and pycnidia on 50 bread wheat leaves scanned with the Epson 
Perfection V370 Photo scanner was conducted using Spearman correla‑
tions. Dataset 3 was obtained under different growing conditions, with 
the same Z. tritici strain and 13 same varieties from the dataset used for 
the model trainings.

Additional file 5. Correlations between expert ratings and SeptoSympto 
results for necrosis and pycnidia detection in datasets 4 (A) and 5 (B). 
A Comparative analysis of expert assessments and SeptoSympto for 
the measurements of necrosis and pycnidia on 50 durum wheat leaves 
scanned with the Epson Perfection V370 Photo scanner was conducted 
using Spearman correlations. Dataset 4 was obtained under different 
growing conditions, a different Z. tritici strain and 18 different varieties 
from the dataset used for the model trainings. B Comparative analysis of 
expert assessments and SeptoSympto for the measurements of necrosis 
and pycnidia on 115 bread wheat leaves scanned with the Epson Perfec‑
tion V750 Pro scanner was conducted using Spearman correlations. 
Dataset 5 was obtained under different growing conditions, with the 
same Z. tritici strain and 3 same varieties from the dataset used for the 
model trainings.
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