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Abstract

Through particle dynamics simulations and experiments, we investigate the
charging kinetics of a granular bed in a vibrating cell. The numerical method
is based on a theoretical model combining an equation for charge transfer at
the particle scale with a theoretical model of charge relaxation. Simultane-
ously, experiments are carried out to calibrate and validate the numerical
model using a vibrated cell with glass beads. Specific charge per unit mass
induced by vibrations initially increases before leveling off. Saturation spe-
cific charge and charging characteristic time decrease with increasing bed
mass. Data collapse onto a master curve is observed when normalizing spe-
cific charges and times. At the particle scale, we find that charge saturation
results from the balance between charge transfer and relaxation. Saturation
specific charge correlates with the relative rate of collisions between particles
and the vibrating plate. We introduce a simple expression for the average
ballistic time based on single-particle dynamics and a restitution coefficient
dependent on bed mass. The characteristic time is proportional to the bal-
listic time and decreases with increasing bed mass due to more inelastic
collisions between particles.
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1. Introduction

The handling of powders is crucial for the formulation of many prod-
ucts such as foods, pharmaceuticals, cosmetics, civil engineering materials,
and particle embedded composites. In addition to the inherent complexity
of granular media, electrostatic charges due to particle-particle or particle-
surface contacts generate attractive and repulsive forces that deeply modify
the mechanical behavior of powders. These interactions are at the origin of
technological issues related to the handling of powders such as agglomeration
effects, clogging and adhesion to surfaces. For example, electrostatic forces
are critical in space missions since their effects are enhanced by low gravity
and lack of moisture [1, 2]. Electrostatic discharge can occur due to charge
accumulation causing explosions of silos or flour mills [3, 4]. On the contrary,
these interactions can also be exploited in processes. Well known examples
are electrostatic separation [5, 6], coating [7, 8], and powder inks for laser
printers [9].

Although all particle flows can give rise to triboelectric charges, the ex-
changed charge level strongly depends on the materials used and their relative
position in the triboelectric series [10]. The charge migration process in the
system is driven by the particle collision dynamics. For this reason, highly
dynamic processes such as vibrated or fluidized beds, which are widely used
in industrial processes for drying, mixing, and sorting, are strongly affected
by electrostatic interactions [11, 12, 13].

Triboelectric charging can occur by electron or ionic transfer or due to a
transport of material. Several theoretical models have been introduced based
on these different types of charge transfer. However, the underlying physical
phenomenon remains poorly understood [4]. The most detailed approaches
such as quantum simulations [14] or models based on the distribution of elec-
trons according to Fermi energy [15] directly consider the atomic scale but
are hardly usable at the grain scale. Indeed, charging may also depend on
grain scale characteristics such as their size, surface roughness, and mechan-
ical loading [16, 17]. Furthermore, environmental factors such as humidity
and temperature influence the characteristic time of return to electrostatic
neutrality [18].

Several grain-scale phenomenological models have been proposed in the
past [19, 20]. These models involve the so-called work function providing the
minimal energy necessary to gain or lose an electron, and were introduced
for the first time in the seminal paper of Gallo et al. [21]. This work function
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should be calibrated experimentally. For example, the charging of a single
sphere as a function of the number of collisions was investigated using various
materials [22] and relative humidity and temperature [23].

To simulate the charging of a collection of particles, particle dynamics
methods based on Discrete Element Models (DEM) can be efficiently used
with the advantage of accounting for particle motions, interactions between
particles, and collective effects such as arching, wall effects, force chains, and
inelastic cooling. However, although most DEM-based simulations of electro-
static charging include a description of triboelectric charging at the particle
scale based on the work function [24], they usually neglect the charge relax-
ation occurring during particle collisions. Various engineering applications
were studied using DEM such as, for example, charge generation during
mixing in vibrated granular beds [18, 25], triboelectric charging of particles
rolling on inclined planes [26], and the pneumatic conveying [27].

In this paper, we focus on the modeling of triboelectric charging of a bed
of particles subjected to vertical vibrations. This configuration is particu-
larly important for the characterization of charging efficiency of a powder
bed in contact with a plate of given material. We introduce a model of pair-
wise charge exchange between particles, which relies both on the equation
of Laurentie et al. [24] for charge transfer and on the theoretical framework
of Matsuyama and Yamamoto [28] for charge relaxation. We also calibrate
and validate our numerical setting with experiments in bed charging under
vertical vibrations. As we shall see, charge relaxation plays a key role in
triboelectric charging. We apply this model to investigate the evolution of
the specific charge for increasing bed mass and we analyze the origins of the
saturation charge and and charging rate at the particle scale.

In the following, we first briefly describe in Section 2 the principles of
the implementation of our DEM-based model for electric field and triboelec-
tric charging. Then, we present in Section 3 our experimental electrostatic
charging setup and tests performed on granular beds of different masses in
order to calibrate the physical parameters of the numerical model. Section
3 describes the results of experiments performed to validate the charging ki-
netics for different masses of granular beds. A detailed numerical parametric
study is presented with a broad range of values of granular bed mass. The
calibrated numerical model is then used in Section 4 to investigate the charg-
ing kinetics for increasing bed mass. In Section 5, we introduce a scaling of
the charging curves and a simple model based on single-particle assumption
to clarify the role of particle-particle and particle-plate collision dynamics on
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the charging regimes. We conclude with a summary of the main findings of
this work and its possible extensions.

2. Modeling of triboelectric charging of particles

In this section, we describe our numerical model of particle charging.
We first detail the theoretical model of charge transfer at the contact scale.
Then, we propose an implementation of this model in the framework of the
code that we developed for the simulations based on the Discrete Element
Method (DEM).

2.1. Charge transfer at contact scale

Matsuyama and Yamamoto [28] proposed one of the first models of par-
ticle electrification due to contact and collisions. In this model, it is assumed
that charge transfer between two particles i and j occurs only when they
undergo a mechanical contact and it depends on a characteristic length δc
called tunneling distance, which defines their maximum interaction distance.
The particle pair behaves as a capacitor in which the electric charges are
transferred by tunneling effect from one surface to the other. For simple
shapes such as spheres, the corresponding surface of transfer S is explicitly
known through the contact force law. To account for material properties
such as chemical composition, particle size, and surface state, Matsuyama
and Yamamoto used the so-called work function introduced in the earlier
seminal paper of Gallo et al. [21]. The work function φ is the minimal en-
ergy necessary to extract one electron from an initially chargeless surface. It
was theoretically evaluated for spherical particles [21]. In experiments, φ can
be determined by photoemission [29] and Atomic Force Microscopy [30].

In the absence of an external electric field, for two particles i and j with
different materials, the increment of charge gained or lost per unit time during
a collision is [31, 32]

∆qij
∆t

= Cij(φi − φj), (1)

with [24]

Cij =
εrε0
4πδc

∆Sij
∆t

, (2)

where ∆Sij/∆t is the contact area change rate, e is the absolute value of the
electron charge, ε0 is the dielectric constant of void, and δc is the tunneling
distance between two particles for charge transfer. This model makes it
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Figure 1: Paschen’s limit curve describing the electric potential V necessary to initiate
charge relaxation as a function of the gap δn. The bold line illustrates variation of electric
potential for a pair of particles before (a) and after (b–d) the creation of mechanical
contact leading to a variation of charge. The dashed line represents the variation of
electric potential after charge relaxation.

possible to predict the evolution of the electric potential as a function of
particle positions and to take into account the effect of their initial charge.

In the presence of an electric field ~Ec due to particle charges or an external
potential, following the work of Laurenti et al [24], the model of charge
transfer can be written as:{

∆qtij = ∆Sij
ε0
δce

(∆φij − ~Ec · ~nijδce) if ∆Sij > 0,

∆qij = 0 if ∆Sij ≤ 0,
(3)

in which ~nij is the normal unit vector from particle j to particle i. For
spheres, the contact surface area can be approximated as [33]:

Sij = πR?δnij
(4)

where R? = 2
1/Ri+1/Rj

. Hence, the variation of contact area is proportional

to that of δn.
In addition to charge transfer due to potential difference, we need a model

for charge relaxation due to micro-discharges (electric arcs). In the literature,
this effect has been modeled in different ways. For example, Chen et al. [34]
considered that the electric charge undergoes an exponential decrease with
time q(t)/q∞ = 1 − e−(1/τ+β)t where q∞ is the maximal sustainable charge,
and τ and β are relaxation parameters describing the charge transfer and the
effect of environmental conditions, respectively. Mastsuyama and Yamamoto
[22] assumed that micro-discharges occur when the gap between two surfaces
is close to the tunneling distance δc. This process is described by Paschen’s
curve, which gives the maximum potential that can sustain the surrounding

6



Figure 2: Illustration of a particle (a) coming into contact with a wall and gaining electric
charge during deformation (b). Micro-discharges occurs in the vicinity of contact for
distances ranging from a few nanometers to micrometers (c) and move apart with a residual
charge (d).

gas before a discharge occurs, as shown in Fig. 1. In this figure, we assume
that when a particle impacts a wall (or two particles collide), as illustrated
in Fig. 2, different steps should be distinguished:

1. A particle of charge qp = q0 (where q0 is the initial charge) is approach-
ing a wall. As the difference of potential is proportional to the difference
of charges between the particle and the wall, ∆V is independent of δn
at large δn. However, as the gap declines, the potential decreases and
eventually vanishes when the particle touches the plane [35].

2. During collision, charges are exchanged between the two materials,
leading to a sudden increases of |qp|. After collision, the particle moves
away and the potential ∆V between the particle and the plane in-
creases.

3. When ∆V reaches the Paschen’s limit curve, the charge relaxes due to
micro-discharges.

4. The particle moves away with a residual charge, which can be above
the initial charge (Fig. 2). Note that the minimum of the Paschen
curve occurs at the distance δc.

The charge relaxation occurs over the characteristic distance δc. In the
model of [22] the relaxation due to charge transfer through gas molecules is
assumed to be negligible compared to electric arc discharges. In this work,
we assume that charge transfer due to relaxation takes place only during
the separation phase; see Fig. 2c. We use a linear relaxation rule with the
parameter Kr defined by

∆qrij = −Kr(qi − qj). (5)

Although experimentally the charge density at the surface of a particle
may be inhomogeneous [20], considering a nonuniform charge distribution
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at the surface of each particle would lead to prohibitive computation time
in 3D. For this reason, in this work we assume that particles are uniformly
charged. For a particle i with contacts j ∈ Ci, where Ci is the set of particles
in electric contact with i, the charge of the particle at time t+ dt is given by

qi(t+ dt) = qi(t) +
∑
j∈Ci

(∆qtij + ∆qrij) (6)

2.2. DEM implementation

For the simulations, we used the Discrete Element Method (DEM) [36,
37, 38] by adding the electrostatic forces to frictional contact interactions
between particles. For time integration of the equations of motion of the
particles the velocity-Verlet scheme was used [39]. At each time step, the
forces and moments applied to all particles are calculated from particle po-
sitions and force laws. Then, using Newton’s second law, the translational
and angular accelerations of each particle are evaluated. Finally, using these
accelerations and current velocities, the positions and velocities are updated.

The mechanical contact force is ~F c = F c
n~n+ F c

t
~t, where ~n and ~t are unit

vectors defining the local reference frame at the contact between the two
particles and F c

n and F c
t are its normal and tangential components; see Fig.

3. The normal component is given by the Hertz model

F c
n = knδ

3/2
n + ηn~vij · ~n, (7)

where δn is the overlap distance, ~vij = ~vi − ~vj, kn = 4
3
E?R?1/2 with R? and

E? defined as the harmonic means of the radii and the moduli of the two
particles, respectively, and ηn is the normal damping coefficient.

The tangential component is computed using a regularized Coulomb law

F c
t = min(ktδt − ηt||~vs||, µ||~F c

n||), (8)

where δt is the cumulative tangential displacement, ηt is the tangential damp-
ing coefficient, and

~vs = (~vij − (~vij · ~nij)~nij) + (Ri
~Ωi +Rj

~Ωj) ∧ ~n (9)

is the sliding velocity and kt = 8G?R
1/2
ij is the tangential stiffness with G?

defined as the effective shear modulus computed using an harmonic mean of
the shear moduli of the two particles.
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Figure 3: The geometry of a contact between two particles.

In addition to the mechanical contact forces acting on each particle i, the
latter is subjected to gravity and electrostatic forces. The electrostatic force
~F e
i = ~Eiqi is calculated using the electric field at the center of mass of particle
i:

~Ei =
1

4πε0

∑
j 6=i

qj
rij2

~n. (10)

The damping coefficients ηn and ηt can be scaled by the characteristic vis-
cosities

√
m?kn and

√
m?kt, respectively [40]. Therefore, we set

ηn = 2αn
√
m?kn; ηt = 2αt

√
m?kt (11)

The values of αn and αt are related to the normal and tangential restitution
coefficients en and et, respectively [41]:

αn =
ln(en)√

ln2(en) + π2

; αt =
ln(et)√

ln2(et) + π2

(12)

Finally, in all simulations we set the time step ∆t = 10−6 s. With this
value, the maximum gap δn in the system is below 3 × 10−3d and each col-
lision involves at least 15 time steps. The CPU time for the simulation of
charging of several hundred particles up to the maximum charge Q∞ lasts
from a few hours to four weeks on a moderate single-CPU station, depending
on the number of particles. The simulation time is considerably longer here
than in purely mechanical simulations (without electrostatic forces) mainly
due to the calculation of the electrostatic field from particle charges in each
time step. It is noteworthy that due to the strong inhomogeneity of particle
charges during charging, it is not physically possible to cut off the electro-
static field below a few particle diameters.
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3. Charging of a bed of particles

In this section, we present the principles of well-controlled experiments
that we performed to calibrate and validate our triboelectric model. We first
describe an in-house setup used to measure the evolution of the charge of a
granular bed fluidized by means of a vibrating plate. These experiments to-
gether with DEM simulations will allow us to evaluate the tunneling distance
δc and the relaxation coefficient Kr.

3.1. Experimental setup

The experiments are similar to those carried out by Liao et al. [13]. It
consists of a bed of mass mb of single-size glass beads placed on a a vibrat-
ing plate of given material, as schematized in Fig. 5(a). The particles are
confined by a cylindrical box which vibrates with the plate. In this work, for
all experiments we used polypropylene for the plate material. As compared
to aluminium and PVC that we tested, polypropylene provides an efficient
charge transfer since polypropylene and glass are well-separated in the tri-
boelectric series based on the work function [42, 43]; see Fig. 4. Table 1
summarizes the material parameters of the glass beads and the polypropy-
lene container.

The friction coefficient and normal restitution coefficient between the
beads and with the container were determined experimentally. For friction
a tripod of three beads glued on a piece of steal was used. At the beginning
of the experiment, the tripod is placed on a glass or polypropilene plane.
Then, the plane is gradually tilted until the tripod slides. From this an-
gle the friction coefficient was found to be µb = 0.17 ± 0.02 for bead-bead
and µp = 0.23 ± 0.03 bead-polypropilene contacts. This value of bead-bead
friction coefficient is close to that (µb = 0.16) measured elsewhere [45, 46].
Regarding the restitution coefficient, we used the classical method of free
fall of a bead on a surface. We recorded the drop of particles using a high-
frame camera and we determined the drop and rebound heights. We found a
restitution coefficient of eb = 0.91± 0.02 for glass bead on glass surface and
ep = 0.6± 0.02 for glass bead on polypropilene surface.

Let us note that all parameters required for DEM simulations using the
electrostatic charging model are provided experimentally except the tunnel-
ing distance and relaxation coefficient, which are generally chosen arbitrarily
in the literature [47, 24]. As we shall see below, we use the experimental data
as compared with numerical simulations to adjust these parameters.
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Figure 4: Typical example of triboelectric series adapted from [44].
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Figure 5: Schematic diagram of experimental setup with the vibrating system.
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Glass beads [48, 49] Polypropilene box [50]
Young modulus (Pa) 4.62 1010 1.3 109

Poisson coefficient 0.24 0.46
density (kg m−3) 2500 910
diameter (m) 0.002 0.05

Table 1: Material parameters for glass beads and polypropilene box.

The box is shaken using a Brünel & Kjær 4810 mini-shaker at a frequency
ν =20 Hz with an amplitude A =1.5 mm. For these values, the relative
acceleration is A(2πν)2/g ' 2.4, leading to the fluidization of the granular
bed across all its thickness. The vibration of the box is controlled by an
amplified sinusoidal signal. The vibration amplitude was calibrated by means
of a laser position sensor.

The total mass mb of the beads and the vibration time tv were varied
and the bed charge was determined using and an electrometer and a Faraday
cage; see Fig 5b). For each value of mb and tv, at least three independent
measurements were performed. All experiments were carried out during a
short period of time of the order of a few hours to avoid potential alteration of
the results due to variations of humidity and temperature. The atmospheric
conditions during experiments were a temperature of 26.5 ± 0.1◦C and a
humidity of 60± 0.5%.

Figure 6 shows a typical example of the evolution of specific charge Q
(charge per unit mass) as a function of time for mb = 1 g. We see that Q
first increases almost linearly at a rate Q̇0, and then slows down and tends to
a steady-state value Q∞ in a characteristic time τ . This steady-state specific
charge is related to the maximum charge Qmax that a spherical particle can
carry before the electrostatic field around the particle reaches the “breakdown
field”. It corresponds to the yield potential beyond which the air molecules
are ionized and the particle charge is removed by the air charged ions. This
theoretical limit can be approximated as Qmax ' 2.64 10−54πR2p, where
p = 3εr/(εr + 2) [15]. Using this semi-empirical relation, we find Qmax ' 68
nC g−1 which is of the same order of magnitude as Q∞ ' 21 nC g−1 that we
measured for a layer with mb = 1 g of beads of diameter of 2 mm. In the
following, we will use the theoretical value Qmax = 68 nC g−1 to normalize
the specific charge.

To compare the experimental measurements with the numerical data,
we apply numerically the same boundary conditions and vibrations in both
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Figure 6: Evolution of specific charge Q as a function of time, illustrating the measured
quantities: charging rate Q̇0, characteristic time τ , and asymptotic charge Q∞.

cases. Regarding the tunneling distance and relaxation coefficient, a spe-
cific calibration procedure was necessary and it is described in the following
section.

3.2. Determination of tunneling distance and relaxation coefficient

Little information can be found on the determination of the tunneling
distance δc and relaxation coefficient Kr. The measurement of δc has been
shown to be sensitive to surface properties such as roughness [51, 52]. Arbi-
trary values have been used for different powders, such as δc = 500 nm for
millimeter-sized polyamide particles [24] and δc = 250 nm for a pharmaceuti-
cal powder [51]. Regarding Kr, to our best knowledge, no data are available
since this parameter is not generally taken into account.

Figure 7 displays the evolution of the specific charge as a function of
time for 1 g of particles and different values of δc and Kr. For a fixed value
Kr = 10−6 s−1 we varied gradually δc from 10 nm to 400 nm for 8 different
values of δc. Ten values of Kr were also tested in the range from 10−7 s−1 to
5× 10−6 s−1 for δc = 2× 10−7 m. Fig. 7(a) indicates that both the charging
rate Q̇0 and saturation charge Q∞ are strongly influenced by δc. On the
contrary, Fig. 7(b) shows that Kr only controls the saturation charge, which
decreases with increasing values of Kr.

Figure 8a shows the evolution of charging rate Q̇0 as a function of 1/δc.
Interestingly, Q̇0 is proportional to 1/δc. This is consistent with Eq. (3) for

weak values of ~Ec at the beginning of the charging process. Hence, in the
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Figure 7: Evolution of the specific charge Q for a particle bed of mass equal to 1 g as a
function of time for different values of the parameter δc (a) with Kr = 10−6 s−1, and Kr

(b) for δc = 2 10−7 m.

following we will assume

Q̇0(δc) ' 1.50 10−7/δc, (13)

independently of Kr. From this equation and the experimental data of Fig.
6 (established for a granular bed of the same mass as as in simulations), we
get δc ' 2 10−7 m. For this value of δc, Fig. 8(b) shows that Q̇0 declines only
very slightly with Kr so that its value can be considered to be practically
constant.

We also consider the evolution of saturation charge Q∞(δc, Kr) as a func-
tion of δc shown in Fig. 9. We find a clear power-law dependence for both
Q∞(δc, Kr = 10−6) and Q∞(δc = 2 10−7, Kr). Using the experimental value
of Q∞ = 21.4 nC for mb = 1 g (Fig. 6) and the data of Fig. 9b, we get
Kr ' 6 10−7 s−1.

3.3. Effect of the bed mass

With the parameters calibrated in the case of mb = 1 g, it is possible to
simulate the charging of any amount of particles. Fig. 10(a) shows that our
numerical simulations with the calibrated values of all parameters compare
very well with the experimental data for bed masses of 2 g, 3 g and 4 g. Ad-
ditional experiments were performed to evaluate the saturation charge QExp

∞
(for vibration time tv = 70 s). Figures 10(b) and (c) show the experimental
values of the saturation specific charge versus their numerical values QSim

∞
and as a function of the bed mass. We see that they agree well together up
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Figure 8: Charging rate for a granular bed of mass of 1 g (a) as a function of the
inverse of tunneling distance 1/δc with Kr = 10−6 s−1 and its linear approximation
Q̇0 = 1.50 10−7/δc; (b) as a function of the relaxation parameter Kr for δc = 2 10−7

m with its linear fit Q̇0 = −1.36Kr + 0.75 nC/s.

(a) (b)

Figure 9: (a) Saturation charge as a function of tunneling distance from numerical simu-
lations and its power-law fit Q∞ = 1.038 10−10δ−0.335c ); (b) Saturation charge as a func-
tion of the relaxation parameter Kr from numerical simulations and its power-law fit
Q∞ = 4.31 10−10K−0.271r ).

15



to a small systematic error, which may be attributed to the measurement
method of the mass or saturation charge in experiments.

(a)
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Figure 10: Comparison between experiments and simulations: (a) Specific charge (charge
per unit mass) as a function of time for different values of bed mass; (b) Saturation charge
as function of the bed mass mb. The error bars represent standard deviation over three
independent measurements in experiments; (c) Saturation charge obtained from numerical
simulations versus their experimental values.

Finally, it is worth noting that, contrary to the work of Jari [53], who
scaled the effective work function with mass, in our model the work function is
an intrinsic parameter. However, its dependence on moister and temperature
will have to be clarified in future works.

4. Charging kinetics

In this section, we use the calibrated numerical model described in the
previous sections, to perform a detailed analysis of charging kinetics mainly
as a function of the granular bed mass. Note that the influence of the bed
mass has been considered in several previous studies, but no scaling has been
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so far proposed [18, 24]. We performed a parametric study in which we varied
the bed mass from 0.1 g to 8 g for a total number of 13 simulations. The
number of particles varies from 100 to 1000. In each case, we simulated the
charging kinetics up to 90 s. We first analyze below the charging process by
distinguishing different mechanisms. Then, in the next section, we propose
a general scaling of the charging kinetics.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0 8

Figure 11: Specific charge Q normalized by Qmax as a function of time for different values
of bed mass.

Figure 11 displays the charge ratio Q/Qmax as a function of time for
all our simulations. Some of the same data were partially used in Fig. 10
for comparison with experiments. We see that, as shown previously, the
total charge in the granular bed increases almost linearly with time at the
beginning of the test and then tends to a constant asymptotic value Q∞.
As observed in Fig. 12(a), Q∞ decreases slowly and in a nonlinear fashion
with increasing bed mass mb. Note that, while the specific mass declines
with increasing mass mb, the total saturation charge Q∞mb is an increasing
function of mb. This nonlinear dependence of Q∞ on mb seems to hold only
for thin beds considered in this study since Q∞ in Fig. 12(a) tends to a
constant value with increasing mb.

Figure 11 also shows that the initial charging rate Q̇0 per unit mass
increases with mb. This is what we observe in Fig. 12(b), which displays the
initial charging rate as a function of mb. The rate increases, but a transition
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Figure 12: Asymptotic specific charge (a), initial charging rate Q̇0 (b), and characteristic
time τ (c) as a function of bed mass mb.

occurs at mb ' 5 g above which Q̇0 remains constant. Fig. 12(c) shows the
characteristic time τ as a function of mb. It declines and tends to a constant
value at highest values of mb.

This evolution of the charging characteristics reflects the dynamics of col-
lisions with the vibrating plate, which is at the origin of particle charging
due to charge transfer. At the same time, particle-particle collisions tend
to redistribute charges among particles by charge relaxation mechanism, but
they have no effect on the total charge. The overall behavior depends there-
fore on the particle bed mass, which affects the balance of the two types of
collisions and the amount of charge transfer and charge relaxation during
each collision. To quantify these processes, we focus here on the collision
rates and the transferred charges for each type of collision.

Figure 13(a) shows the evolution of the rates Npp and Npw of particle-
particle and particle-plate collisions, respectively. Both Npp and Npw increase
almost quadratically with mb due to the increase of the total number of
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Figure 13: (a) Rates of collisions Npp and Npw between particles and with the vibrating
plate, respectively, averaged over the whole period of vibration as a function of bed mass
mb; (b) Average relative rates Kpp and Kpw of particle-particle and particle-wall collisions
as a function of bed mass mb.
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Figure 14: Correlation between saturation specific charge Q∞ normalized by Qmax and
the relative collision rate Kpw between particles and vibrating plate.

particles. Since the collision rates depend on bed mass while the specific
electric charge acquired by the bed is described per unit mass, it is more
convenient to consider the ‘relative rates’ defined by

Kpp =
Npp

Npp +Npw

Kpw =
Npw

Npp +Npw

. (14)

Figure 13(b) displays Kpp and Kpw as a function of mb. We see that particle-
plate collisions prevail at low bed mass, but Kpw declines as mb increases
and beyond mb = 5 g, Kpp slightly exceeds Kpw. This transition is consistent
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Figure 15: Relative velocity vp averaged over the whole vibration period as a function of
mb.

with that observed in Fig. 12(b). It is physically plausible since the num-
ber of particles that can interact with the vibrating plate per unit time is
increasingly inhibited by collisions between particles as the total number of
particles increases. Interestingly, the decrease of Kpw with increasing mb is
also linearly correlated with Q∞ as displayed in Fig. 14:

Q∞
Qmax

' 0.33Kpw (15)

In other words, lower values of the saturation specific charge correspond to
lower values of Kpw for larger values of mb. The total saturation charge varies
therefore as Q∞mb = 0.33QmaxKpwmb.

It is also noteworthy that the average relative velocity vp between particles
and between particles and the vibrating plate declines with increasing mb due
to enhanced dissipation by inelastic collisions as shown in Fig. 15. Hence,
we have two contradictory mechanisms that affect the charge transfer during
collisions. The increase of Npw implies more charge transfer whereas the
decrease of vp leads to lower transfer of charge at each collision with the
plate.

Figure 16(a) shows the average value ∆Qt
pwb

of the charge transferred
in a collision between a particle and the vibrating plate (bottom wall) as a
function of time for different values of bed mass mb. The average charge
per collision is calculated over a mobile time interval of 3 seconds. We see
that ∆Qt

pwb
reaches a constant value in a short time interval and its steady-

state value declines as mb increases. This is consistent with the decrease of
the relative velocity vr with increasing mb due to increased dissipation as
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Figure 16: (a) Average charge ∆Qt
pwb

transferred per collision between particles and
the vibrating plate, (b) Average charge loss ∆Qr

pwb
per collision between the particles

and the vibrating plate due to charge relaxation, (c) average charge ∆Qt
pwh

transferred
per collision between particles and the lateral walls, and (d) total transferred charge per
collision between particles for different values of bed mass mb as a function of time. The
solid lines in (d) are exponential fitting functions to the data points for the largest and
smallest values of mb.
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observed in Fig. 15. This gain of charge is reduced on average by an amount
equal to ∆Qr

pwb
due to relaxation. Figure 16(b) shows ∆Qr

pwb
as a function

of time. The variation of ∆Qr
pwb

in absolute value with time is similar to that
of ∆Qt

pwb
. The net amount of charge gained by a particle varies therefore as

∆Qpwb
= ∆Qt

pwb
+ ∆Qr

pwb
.

In the same way, the collisions with the lateral walls lead to an average
gain of charge per collision ∆Qpwh

= ∆Qt
pwh

+ ∆Qr
pwh

by particle due to
charge transfer ∆Qt

pwh
and loss of charge ∆Qr

pwh
by relaxation. Figure 16(c)

displays ∆Qt
pwh

as a function time. It shows that charge transfer at the lateral
walls is an order of magnitude below that at the vibrating plate due to the
much lower values of relative velocity at the lateral walls. Furthermore, this
transfer occurs only during the transient (at most 20 s) and then drops to
zero. Hence, the total average charge gained by a particle per collision ∆Q
can be approximated by

∆Q ' ∆Qpwb
' ∆Qt

pwb
+ ∆Qr

pwb
. (16)

Figure 16(d) shows ∆Q as a function time. We see that ∆Q is initially
high, but falls off and vanishes in finite time in the steady state as a result
of balance between gain by collisions with the vibrating plate and loss by
relaxation. This falloff is exponentially fast as shown by the fits to the data
for smallest and largest bed masses mb in Fig. 16(d). The faster decrease of
∆Q with increasing mg is consistent with the observed increase of Q̇0 in Fig.
12 as a function of mb. During the transient time τ , we have

Q̇0 =
1

mbτ

∫ τ

0

Npw(t)∆Q(t) dt. (17)

Hence, the faster increase of Npw/mb overcompensates the decrease of ∆Q
with increasing bed mass and leads to the increase of Q̇0 with mb.

5. Scaling of charging kinetics

The evolution of specific charge Q with time in Fig. 11 shows that both
the charging time τ and the saturation specific charge Q∞ depend on the
bed mass. In the last section, it was shown that this evolution is mainly
controlled by the collisional dynamics of the granular bed. This suggests
that the underlying charging process is similar for all values of the bed mass.
This implies that the data must be scalable by normalizing the specific charge
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Figure 17: Specific charge Q normalized by saturation specific charge Q∞ as a function of
time t normalized by characteristic time τ for all values of bed mass mb.

by Q∞ and the time t by τ . Figure 17 shows that the normalized data do
collapse on a master curve. This scaling does not fully capture the crossover
from the nearly linear regime of rising charge to the saturation charge, which
occurs at time t ' τ , but, given the low number of simulated particles, it is
remarkably good.

According to Eq. (15), the decrease of Q∞ towards a constant value with
increasing bed mass is correlated with that of the relative rate of collisions
Kpw between the particles and the vibrating plate. However, the physical
origin of the rise time τ is not obvious. We introduce here a simple model
to quantify the time scales involved in the vibrated bed. Fig. 18 displays a
snapshot of particles and their color-encoded charges after 20 s of vibration.
We see that, although the particles collide both with the bottom plate and
with other particles, the packing fraction is low. Hence, we assume that the
dynamics is essentially collisional (for the values of vibration frequency and
amplitude used in our simulations). We consider therefore the dynamics
of a single particle and we account for collisions with other particles by
introducing an effective restitution coefficient.

For a plate vibrating vertically with amplitude A and frequency ω = 2πν,
the contact of the particle with the plate opens only if aω2 > g. When
this condition is fulfilled, the velocity of the particle initially placed on the
vibrating plate at the separation time is v0 = Aω. The particle rises while
decelerating, reaches its highest position ∆H, and falls back into the plate
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Figure 18: Snapshot of a triboelectrically charged layer of particles after a vibration time
tv = 20 s. Color level is proportional to particle charge.
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Figure 19: Bed height expansion ∆H as a function of bed mass mb from simulations and
model.
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with a velocity v0. The collision with the plate may occur while the plate is
moving upward or downward. However, the largest relative impact velocity
2v0 occurs if the particle hits the plate while the latter is at its maximum
upward velocity v0. We assume that this is the case in order to calculate the
maximum possible height of the particle. Given the restitution coefficient ep
between the particle and the plate, the relative velocity after the impact is
2v0ep and the velocity in the laboratory frame is 2v0ep + v0. More generally,
the velocity vk (in the laboratory frame) of the particle at the separation
time after k impacts is given by

vk = (v0 + vk−1)ep + v0, (18)

where vk−1 is the particle velocity at impact k−1. By iterating this relation,
we obtain the following expression for the particle velocity:

vk =
1 + ep − 2ek+1

p

1− ep
v0. (19)

Hence, since ek+1
p tends to zero with k, the largest steady-state velocity is

vmax = Aω
1 + ep
1− ep

. (20)

As a result, the corresponding maximum height reached by the particle is

∆H =
v2max
2g

=
A2ω2

2g

(
1 + ep
1− ep

)2

. (21)

Figure 19 shows the increase ∆H = H −H0 of the bed height H from its
initial height H0 as a function of bed mass mb. For the lowest mass mb = 0.1
g, where the bed contains only a single dilute layer of particles, ∆H is nearly
equal to the value (' 0.029 m) given by Eq. (21) for the numerical values
of A = 1.5 × 10−3 m, ω = 2πν with ν = 20 Hz, g, and ep = 0.6 used in the
simulations. This indicates that single-particle assumption is relevant in the
limit of low bed mass. However, ∆H declines asmb increases. This decrease is
obviously due to energy dissipation by multiple particle collisions. A simple
way to account for this additional dissipation (in addition to dissipation
due to incomplete restitution at the vibrating plate) consists in keeping the
expression (21) but replacing the restitution coefficient ep by a ‘collective’
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Figure 20: Characteristic charging time τ verus ballistic time t∗ in simulations for all values
of the bed mass. The errors bars represent the interval of confidence for the estimation of
the charging time up to the steady state.

restitution coefficient ec as a decreasing function of mb. We postulate the
following form

ec = ep(1 +mb/m0)
−α, (22)

where m0 is a characteristic mass and α > 0 is a parameter depending on the
dynamics. This collective restitution coefficient is equal to ep when mb � m0

and tends to zero when mb � m0. Hence, the bed expansion can be expressed
as

∆H(mb) =
A2ω2

2g

{
1 + ep(1 +mb/m0)

−α

1− ep(1 +mb/m0)−α

}2

. (23)

This expression is used in Fig. 19 to fit the simulation data. We see that the
fit closely follows the data points with m0 = 5 g and α = 0.75.

With this ‘calibration’ of the expression of ∆H(mb) from simulation data,
we also can express the ballistic time tb, i.e. the time taken by the particle
to fall a distance ∆H(mb):

tb =
vmax
g

=

(
2∆H

g

)1/2

=
Aω

g

1 + ec
1− ec

. (24)

Since the onset of fluidization implies the conditionAω2 > g, we haveAω/g >
1/ω. Hence, the minimum value of tb occurs for ec = 0 (infinite mass):

tbmin =
1

ω
. (25)
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We can therefore define a time scale t∗ of fluidization by subtracting tbmin
from tb:

t∗(mb) =
Aω

g

1 + ep(1 +mb/m0)
−α

1− ep(1 +mb/m0)−α
− 1

ω
. (26)

Figure 20 shows the characteristic time τ versus t∗ with α = 0.75 and
m0 = 5 g for all values of the bed mass. We see that τ is proportional
to t∗ with a prefactor ' 580. This means that, for all values of mb, the
time required for the charging of the particles up to the saturation value
corresponds to an average number of 290 collisions of each particle with the
vibrating plate. Note that the total ballistic time of a particle (rise and
fall) is 2t∗. Indeed, we expect that this number is equal to τNpw/Np, where
Np is the number of particles. For example, for mb = 8 g, this ratio (with
τ ' 10 s, Npw = 3 × 104 s−1, and Np = 1000) is 300, which is very close
to the above value calculated from the proportionality between τ and t∗.
The scaling of τ by t∗ suggests that the decrease of charging time with bed
mass reflects the decrease of ballistic time. This assertion needs, however,
further validation by means of simulations of charging for different values of
vibration amplitude and frequency.

6. Conclusion

In this study, we employed a combination of particle dynamics simula-
tions and experiments to explore the charging kinetics of a granular bed
within a vibrating cell. Our approach involved developing a triboelectric
charging model, incorporating a relaxation term, and conducting extensive
charging simulations for granular beds with varying mass. To validate our
numerical model, we calibrated its parameters through charging experiments
using glass beads on a vibrating polypropylene plate. Remarkably, our sim-
ulation results for specific charge over time aligned well with experimental
data across multiple bed masses. We used the simulations to analyze the
charging process by considering the collision rates, relative velocities, and
the transfer and relaxation of charges per particle.

A key observation was that the specific charge per unit mass increased
with time before stabilizing at a constant value. This saturation was at-
tributed to a balance between charge transfer from collisions with the vi-
brating plate and charge relaxation. Interestingly, the data showed also that
saturation specific charge decreased with increasing bed mass due to a reduc-
tion in the relative collision rate between particles and the plate compared to

27



inter-particle collisions. Another important observation was that the charg-
ing characteristic time decreased with higher bed masses. We introduced a
simple model based on single-particle dynamics, accurately predicting bed
expansion with a restitution coefficient dependent on bed mass. This model
further forecasted a diminishing ballistic time in relation to particle mass,
with the charging characteristic time effectively scaled by this ballistic time
within the studied bed mass range. Due to the underlying dynamics of the
charging process, our simulation data for specific charge over time remarkably
collapsed onto a single master curve when specific charges were normalized
by the saturation charge, and times were normalized by the characteristic
time.

The numerical model developed in this study has the potential for ap-
plication in exploring charging kinetics for larger bed masses, varying vi-
bration amplitudes and frequencies, and different particle-plate restitution
coefficients. Future investigations should assess the model’s validity under
different vibration conditions and explore its efficiency for simulating larger
particle numbers. This expansion could provide insights into how particle
dynamics and charging physics depend on system size.
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