

The structure of the food matrix at different length scales drives the mechanism of digestion and the nutrient bioaccessibility and bioavailability

Didier Dupont

► To cite this version:

Didier Dupont. The structure of the food matrix at different length scales drives the mechanism of digestion and the nutrient bioaccessibility and bioavailability. https://www.foodomics.org/, Feb 2024, Cesena (IT), Italy. hal-04465062

HAL Id: hal-04465062 https://hal.inrae.fr/hal-04465062

Submitted on 19 Feb2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

The structure of the food matrix at different length scales drives the mechanism of digestion and the nutrient bioaccessibility and bioavailability

Dr Didier DUPONT, INRAE, STLO, Rennes, France

Food and human health: the key role of digestion

Diet-related diseases ↑ Prevent these pathologies rather than cure them

Gut = interface between food and human body Digestion releases food components that can have a beneficial or a deleterious effect on human health

... but the mechanisms of food disintegration in the gastrointestinal tract remain unclear and the digestive process has been considered as a black box so far

By increasing our knowledge on food digestion, we will increase our knowledge on the effect of food on human health

To understand the mechanisms of breakdown of food matrices and their constituents in the gut and identify the beneficial/deleterious food components released during digestion

To determine the impact of the structure of food matrices on nutrient bioavailability

To model these phenomena in order to develop a reverse engineering approach

The digestive process

From Roger Lentle, Massey Univ. NZ

Gastric phase = a very complex but crucial step for the whole digestion process

Buffière et al. 2020 Boulier et al. 2023

Jimenez-Barrios et al. 2023 Charton et al. 2022, 2023

Peng et al. 2021

NERDT[™] : the NEar Real Digestive Tract

Xiao Dong Pro-Health Smart Digestion Suzhou University

From the protein molecular structure to the the food microstructure: The case of egg white gels

Nau F, & Dupont D. INRAE, Rennes, France

The microstructure of egg-white gels made from different types of aggregates affects the kinetics of proteolysis Microscopic scale

Peptidomics reveals significant differences in the peptide pattern released during digestion

More than 3200 individual peptides identified

Spatial-temporal evolution of pH during an *in vivo* digestion

Spatial-temporal evolution of pH during an *in vivo* digestion

Food structure as modified by processing affects the kinetics of food digestion

Le Feunteun S, Menard O, Dupont D. INRAE, Rennes, France

+ marker of the meal transit (Cr²⁺-EDTA) \rightarrow Gastric emptying half-time

The multi-canulated mini-pigs

<u>6 minipigs (20 \pm 1kg)</u>

1 catheter: abdominal aorta

6 minipigs × 6 matrices × 8 sampling times after ingestion = 288 plasma samples collected

2 cannulas: end of stomach and mid-jejunum

6 minipigs × 6 matrices × 8 sampling times after ingestion × 2 sampling sites

576 effluent samples collected

Barbé et al. Food Chem 2013

Macroscopic scale

Effect on absorption

milk gelation:

AGRO

 \rightarrow delayed proteins transit \rightarrow delayed AA absorption

maximal AA concentration in the plasma

LO

ghrelin (gastrointestinal hormone \rightarrow appetite stimulation)

Bioactive peptides released during digestion differ from one matrix to another

More than 16000 peptides identified by LC-MS-MS in the jejunum

Protein	Sequence	Activity	Reference	4	20	50	105	165	225	315
as1	1-23	EMUL	Shimizu et al. (1984)							
as1	23-34	HYP	Maruyama & Suzuki (1982)							
as1	30-45	MB	Meisel et al. (1991)							
as1	40-52	MB	Adamson & Reynolds (1996)							
as1	43-58	MB	Meisel et al. (1991)							
as1	91-100	STRE	Miclo et al. (2001)							
as1	99-109	MIC	McCann et al. (2006)							
as1	167-180	MIC	Hayes et al. (2006)							
as1	180-193	MIC	Hayes et al. (2006)							
as2	1-24	MB	Miquel et al. (2005)							
as2	124-146	MB	Miquel et al. (2005)							
as2	183-206	TRAN	Kizawa et al. (1996)							
as2	183-207	MIC	Recio & Visser (1999)							
as2	189-197	HYP	Maeno et al. (1996)							
as2	190-197	HYP	Maeno et al. (1996)							
β	1-24	MB	Bouhallab et al. (1999)							
β	33-52	MB	Miquel et al. (2005)							
β	60-80	OPI	Jinsmaa & Yoshikawa (1999)							
β	98-105	OXI	Rival et al. (2001)							
β	114-119	OPI	Jinsmaa & Yoshikawa (1999)							
β	132-140	HYP	Robert et al. (2004)							
β	192-209	IMM	Coste et al. (1992)							
β	193-202	IMM	Kayser & Meisel (1996)							
β	193-209	IMM	Coste et al. (1992)							
κ	18-24	HYP	Lopez-Exposito et al. (2007)							
κ	106-116	THR	Jolles et al. (1986)							
β –lg	32-40	HYP	Pihlanto-Leppala et al. (2000)							
β –lg	92-100	MIC	Pellegrini et al. (2001)							
β –lg	142-148	HYP	Mullally et al. (1997)							

Protein	Sequence	Activity	Reference	4	20	50	105	165	225	315
as1	40-52	MB	(1996)							
as1	43-58	MB	Meisel et al. (1991)							
as1	99-109	MIC	McCann et al. (2006)							
as1	167-180	MIC	Hayes et al. (2006)							
as1	180-193	MIC	Hayes et al. (2006)							
as2	1-24	MB	Miquel et al. (2005)							
as2	189-197	HYP	Maeno et al. (1996)							
β	33-52	MB	Miquel et al. (2005)							
β	166-175	HYP	Hayes et al. (2007)			_				
β	193-202	IMM	Kayser & Meisel (1996)							
β –lg	92-100	MIC	(8))							
β –lg	142-148	HYP	(9))							

Rennet Gel

- More bioactive peptides identified during digestion of acid gel than rennet gel
- Nature of peptides is identical (clearly defined by the digestive enzyme specificity)
- Kinetics of release are different

Barbé et al. 2014 **Food Res Int**

LIQUID

SOLID

Differential behaviour of acid/rennet gels in gastric conditions

Acid/Rennet gel: identical composition, similar pore size

- \checkmark \neq Time of residence in the stomach (Acid 148 min /Rennet 352 min)
 - How can we explain this difference? Dynamic in vitro digestion of the 2 gels () I

Ménard et al. Food Chem 2014

- Pepsine

- HCI

DIDGI®

StoRM[®] software

Stomach

Small intestine

- Pancreatin
- Bile
- Simulated intestinal fluid
- NaHCO₃

Emptying: Elashoff's model

Behaviour of acid and rennet gels in the stomach during *in vitro* dynamic digestion

Barbé et al. Food Chem. 2014

Formation of a strong coagulum with rennet gel \rightarrow slow down the gastric emptying of caseins

The structure that a food adopts in the stomach is essential to understand its digestion

Can we estimate plant protein digestibility with *in vitro* digestion models?

Le Feunteun S, Menard O, Dupont D. INRAE, Rennes, France

In vitro/ in vivo correlation for protein digestibility measurement

Sousa et al. 2023

Nau et al. unpublished

Overall, good correlation are observed but some differences between studies persist

Protein digestibility with a dynamic in vitro digestion model

Study of 4 plant-based foods: 2 solids / 2 liquids

Tofu

Seitan

Soymilk

Pea Emulsion

Dynamic in vitro digestion DiDGi®

Reynaud et al. 2021

Food Chem. 341

In vitro digestibility (%)

In vivo data are needed to program the digestion simulator Evolution of gastric pH

In vivo data are needed to program the digestion simulator Gastric emptying

Reynaud et al. 2020 Food Res Int, 128

Comparison between pig and in vitro data

Model	Digestibility	Tofu	Soymilk			
	True	97.1 ± 4.8%	99.4 ± 2.2%			
	Apparent	56.5 ± 7.8% ^b	71.3 ± 2.5% ^a			
in vitro	Apparent simulated	63.7 ± 3.5% ^b	72.7 ± 1.4% ^a			

Comparison of the gastric peptidome

Improving DHA delivery by encapsulation and design of functional foods

Wang J, Pedrono F, & Dupont D. INRAE, Rennes, France

General strategy

DHA bioavailability, accretion and metabolism

DHA oil encapsulation

DHA bioaccessibility

DHA oil in emulsion and omelet

In emulsion

Center

In omelet

Non-encapsulated DHA oil

> Encapsulated DHA oil

Encapsulated DHA oil with heatdenatured WPI

DHA oil stained with Nile Red and proteins stained with Fast Green.

The particle size of heat-denatured WPI on average is 42 nm.

Distribution of non-encapsulated and encapsulated DHA oil in omelets.

Lipidomics allows to assess the bioaccessibility of DHA from different lipid species during digestion

Non-encapsulated DHA oil -

The evolution DHA from different lipid species during digestion.

In gastric phase (pepsin and RGE):

DHA oil was not hydrolyzed in gastric phase.

In intestinal phase (bile salt and pancreatin):

Hydrolyzed TAG and released FFA encapsulation > unencapsulation □ Larger interaction area between DHA oil and pancreatic lipase made by emulsification (Maljaars, 2012).

Encapsulated DHA oil

 Around 10-25% and 40-70% of ingested TAG can be hydrolyzed in gastric and intestinal phase, respectively (Bauer et al; Carriere et al., 1993).

Deglaire A., Menard O., De Oliveira S., Bourlieu C. & Dupont D.

INRAE, Rennes, France

Human/ bovine milk / Infant Formula Lipid globule structure

Bovine milk

Native milk fat globule

AGRO OUEST (Lopez, 2010)

Lipid droplets

Infant formulas: can we create lipid structures biomimetic on the native fat globule? Formula Formula Formula T2 Т3 Т1 Interface 100 % Proteins Interface 100 % phospholipids Interface 100 % phospholipides 100% vegetable oil 100% vegetable oil 40% vegetable oil + 60% milk fat Natural milk fat globules $(0.2 - 10 \mu m, \text{ mean diameter} \sim 4 \mu m)$ 4-10 nm Cholesterol Xanthine oxidase Phospholipids Glycolipid Glycosylated Butyrophilin Lopez, (2007) polypeptide Milk fat globule membrane (MFGM) ζ potential: -11 to -13 mV .032 AGRO

UALIMEN1

CAMPUS

Can the composition of infant formula modulate the physiological response of the neonate?

Microbiota by DHPLC

D7 & D28

The composition/structure of the infant formula « orientates » the microbiota

More Proteobacteria with milk fat / More Firmicutes with plant oil

Bourlieu et al. Eur J Lipid Sci Technol 2016

D28

What happens when they become older (140 d)?

If animals are submitted to a nutritional stress (high fat/sugar diet), some differences remain in:

- * the microbiota composition
- * the fecal metabolome with different metabolites (including propionate)
- * the immune system with a reduced susceptibility to inflammation with milk lipids

Conclusion

The structure/composition of food regulate the kinetics of protein digestion in the gastrointestinal tract and the release of amino acids in the bloodstream

Omic technologies (proteomics, peptidomics, lipidomics...) are great tools to identify the molecules that are released in the gut during digestion and assess the bioaccessibility of nutrients

Being able to design food structures for controlling the kinetics of hydrolysis of macronutrients will allow to obtain food particularly adapted to specific population

The Bioactivity & Nutrition team at INRAE Rennes

Scientists

Amélie DEGLAIRE – Lecturer Didier DUPONT- Senior Scientist Catherine GUERIN - Lecturer Steven LE FEUNTEUN – Senior Scientist Vincent Mathieu – Senior Scientist Martine MORZEL – Senior Scientist Françoise NAU – Professor Frédérique PEDRONO – Lecturer

Isuri JAYAWARDA- Post-doc Mathilde CANCALON- Post-doc Rozenn LE FOLL – Post-doc Anaïs LAVOISIER – Post-doc

PhD students Jiajun FENG Eleonora LOFFREDI Vibhu MISHRA Simon POGU Tanguy SAVIARD

Technicians Severine CHEVALIER Gwenaële HENRY Yann LE GOUAR Engineers Marie-Françoise COCHET Julien JARDIN Olivia MENARD Jordane OSSEMOND

Masters students

Improving health properties of food by sharing our knowledge on the digestive process

International Network

Dr. Didier DUPONT, Senior Scientist, INRAE, France

INFOGEST

Main objective: understanding the mechanisms of food digestion

- Develop new *in vitro, in vivo* and *in silico* digestion models including some for specific populations (infant, elderly)
- Harmonize the methodologies and propose guidelines for performing experiments
- Validate *in vitro* models towards *in vivo* data (animal and/or human)
- Identify the beneficial/deleterious components that are released in the gut during food digestion
- Determine the effect of the matrix structure on the bioavailability of food nutrients and bioactive molecules

7 Working Groups running in parallel

Brodkorb

Some outputs

In vitro gastrointestinal digestion Consensus INFOGEST protocol Minekus et al. 2014 Food & Function, 5, 1113-1124 **3125 citations**

We are pleased to announce the next 8th International Conference on Food Digestion

in Porto, Portugal, 9-11 April 2024