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Abstract  19 

The behaviour of an animal is closely linked to its internal state. Various metrics can be calculated from 20 

activity data. Complex patterns of activity within or between individuals, such as cyclic patterns and 21 

synchrony, can inform on the biological functioning, the health status, or the welfare of an animal. These 22 

patterns are now available thanks to sensors that continuously monitor the activity of individual animals 23 

over long periods. Data processing and calculations, however, should be clarified and harmonised across 24 

studies for the results to be comparable. We present metrics describing activity patterns, we discuss their 25 

significance and relevance for behavioural and welfare studies and their limits, and we detail how they 26 

can be calculated. Four groups of metrics are distinguished: metrics related to overall activity (e.g., time 27 

spent in each activity per unit of time), metrics related to fluctuations around mean activity, metrics 28 

related to the cyclicity of activity, and metrics related to the synchrony between animals. Metrics may 29 

take statistical approaches (e.g., average and variance) or modelling approaches (e.g., Fourier Transform). 30 

Examples are taken essentially from cattle for which individual activity sensors are easily available at 31 

present. The calculations, however, can be applied to other species and can be performed on data 32 

obtained from sensors as well as visual observations. The present methodological article will help 33 

researchers to obtain the most benefit from activity data and will support the decision of which metric 34 

can be used to address a given purpose. 35 

  36 
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Introduction 37 

The behaviour of an animal can inform about the internal state of that animal, in relation to biological 38 
functioning, health and welfare. Activity measurements have long been used to identify differences in 39 
walking behaviour to detect lameness (Pastell et al., 2009) or differences in the amount of activity to detect 40 
oestrus (Saint-Dizier & Chastant-Maillard, 2012) or periparturient disorders (Rutten et al., 2017; Rutten et 41 
al., 2013; Weary et al., 2009). Additionally, comparing the activity of a focus animal to its baseline or to pen-42 
mates allows identification of deviations that potentially indicate a change in internal state, e.g., an animal 43 
becoming ill (Kok et al., 2023). The continuous measurements of activity allow for complex patterns to be 44 
highlighted, such as circadian components and regularity, and these patterns can be used to identify 45 
animals at risk of diseases (van Dixhoorn et al., 2023; Van Dixhoorn et al., 2018; Wagner et al., 2021).  46 

Ethologists, and other researchers usually calculate several metrics from activity data to characterise an 47 
animal's behaviour, e.g., time spent on each activity, fragmentation of activity, 24-h patterns or proportion 48 
of animals engaged in the same activity. However, the way these metrics are calculated vary between 49 
studies. For instance, the synchrony between animals, that reflects the functioning of a group, can be 50 
calculated at individual level as the percentage of animals performing the same activity as the focus animal, 51 
then at group level as a mean of that percentage or using concordance indices such as Kappa coefficients 52 
or overdispersion index (Raussi et al., 2011; Tuomisto et al., 2019; Veissier et al., 1990). The pros and cons 53 
of each metric are rarely explained.  54 

The activities can be documented by observers, from direct observation or from video recordings, or 55 
obtained using sensors. Direct observation allows precise activities to be recorded. For instance, lying can 56 
be divided into lying head down versus head up with corresponding arousal levels inferred (Veissier et al., 57 
2001). Direct observation (both real time or from video recordings) requires a high workload and data at 58 
night are often missing due to difficulties in observing animals in the dark. The last ten years have seen a 59 
boom in the development of sensor technologies, which can provide data along time series more easily 60 
than direct observation. Activities (especially in large domestic animals like cattle) can now be recorded 61 
continuously on individual animals and for very long periods with little workload, using accelerometers, 62 
image analysis from videos, or Real Time Locating System (RTLS) (Buller et al., 2020). Most of the 63 
commercially available sensors that monitor cattle activity show excellent performance in validation studies 64 
(Lee & Seo, 2021). They usually provide information on gross activities such as lying, standing, moving, 65 
feeding, and ruminating or the position of animals in the barn. From the organisation of these activities, 66 
specific patterns can be detected, especially those indicative of animal malaise due to illness or stress 67 
(Wagner et al., 2021) or related to the social organization of animal groups (Rocha et al., 2020), allowing 68 
new insight into animal behaviour. However, to date the flood of data obtained from sensors seem under-69 
utilised (Koltes et al., 2019).  70 

Access to data on activity is not only facilitated for ethologists, but also for researchers from other 71 
discipline, e.g., animal health and animal production and for non-scientists like users of precision farming 72 
systems that are not necessarily used to process data on behaviour (Borchers et al., 2016). It is thus crucial 73 
to provide harmonised metrics to analyse behaviour and to discuss what they are supposed to measure and 74 
their limits. This would allow comparisons between studies, help the interpretation of results, extend the 75 
use of activity data beyond ethologists, and ease the re-use of datasets.  76 

In the present paper, we consider the metrics that describe different aspects of behaviour from data 77 
collected by sensors or by direct observations (Figure 1). We consider metrics describing 1- overall activity, 78 
2- fluctuations around mean activity, 3- cyclicity of activity, and 4- synchrony between animals. For each of 79 
these four groups of metrics, we identify the main metrics in use, the calculation methods, the limitations 80 
or the difficulties that can be encountered to calculate them, and their biological meaning (i.e. what it 81 
implies for animal welfare or health or the functioning of social groups). Examples are taken essentially 82 
from cattle, for which individual activity sensors are easily available at present. The calculations, however, 83 
can apply to datasets from other species (including other animal-specific activities) and can be performed 84 
on data coming from sensors as well as from observation. This paper does not focus on the validation of 85 
the sensors or the observers (to assess inter or intra observer variation) but on the processing of the data 86 
acquired by the sensors or observers.  87 

We believe such a methodological review is pivotal and timely given the boom of activity data obtained 88 
by sensors. The review will hopefully support researchers by improving the use of activity data to answer 89 
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their research questions. In addition, it should facilitate the consideration of animal behaviour by non-90 
ethologists especially in Precision Livestock Farming (PLF), with a view to help phenotyping animals for 91 
selection, monitoring them for the detection of changes due to specific states such as oestrus, disease, or 92 
stress, or evaluating housing conditions and management aspects.  93 

 94 

Figure 1 - Visualisation of the data acquisition and processing proces. The scope of this paper focusses 95 
on the possible calculations of the data that describe the four metrics: overall activity, fluctuations 96 
around the mean activity, cyclicity of activity and synchrony. The calculations can be done on data 97 
that is acquired by obbservations and/or with sensors. 98 

 99 

The data  100 

In the present paper, we focus on gross activities such as feeding behaviour (including eating and 101 
drinking), active behaviour (apart from eating or drinking) including walking, running or other movements, 102 
or inactive behaviour including standing still and lying. More specific activities include grazing and 103 
ruminating in ruminants (e.g., cattle, sheep, goats), rooting in pigs, and foraging behaviour in poultry. All 104 
these activities are characterised by lasting for some time. They are sometime referred to as ‘states’, as 105 
opposed to brief behaviours (e.g., interactions between animals) that are referred to as ‘events’.  106 

Observers can perform focal (and continuous) sampling i.e., they note changes in activity with reference 107 
to the time of the change occurrence. Alternatively, observers can perform scan sampling i.e. they note the 108 
animal’s activity as detected at first glance at regular intervals (Bateson, 2021). Examples of the continuous 109 
and scan sampling data are shown in the supplementary materials. A mix of the two is also possible: the 110 
activity is recorded continuously and at the end of each interval (e.g. 5 min) the observer notes the 111 
predominant activity; the format of data will then be similar to that of scan sampling. Sensors generally 112 
produce a signal that is nearly continuous; the data on gross activity is usually delivered as time spent in 113 
each activity per time intervals (e.g. minutes per hour or per 15 min) or as predominant behaviour per time 114 
interval. The metrics that can be calculated, depend on the formats of data (see next sections).  115 

  116 



4 

 

Metrics to address overall activity 117 

Definitions  118 
The overall activity refers to the time spent performing specific activities during a certain time period. 119 

Each activity such as feeding, drinking, walking, standing idling or lying, can be characterised by the duration 120 
it is performed, the number of bouts (where a bout is defined by the continuous expression of an activity), 121 
and the average duration of bouts. The overall fractioning of activity refers to how many bouts of activity 122 
are noticed, in other words how often the animal changes of activity. The level of activity reflects how much 123 
an animal is active, that is walking, running, or feeding rather than lying or standing immobile. The time 124 
period on which these metrics are calculated varies between studies, e.g. an hour or a day. The term ‘time 125 
budget’ is specifically used to describe how an animal divides its day (or shorter period) into the various 126 
activities.  127 

Calculations 128 

Proportion of time spent in an activity.  129 
The proportion of time spent in a given activity a in a collection of activity bouts B (whatever the 130 

activity) is calculated as follows:  131 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑂𝑓𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑎
𝐵 = ( ∑ 𝐷𝑏

𝑏∈𝐵,   𝐴𝑏=𝑎 

) ∑ 𝐷𝑏

𝑏∈𝐵

⁄ (1) 132 

where Db is the duration of the bout b and Ab is the activity in bout b. 133 
In case of scan sampling, the time spent in an activity is estimated from the number of scans per 134 

activity, multiplied by the interval between scans - although what the animal has done between scans 135 
remains unknown -. The proportion of time spent in an activity a in a period P can be calculated as follows: 136 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑂𝑓𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑎
𝑃 = ( ∑ 𝐿𝑝

𝑝∈𝑃,𝐴𝑝=𝑎 

) ∑ 𝐿𝑝

𝑝∈𝑃

⁄ (1) 137 

where p a subperiod of P, Lp is the length of the subperiod p, and Ap is the activity in the subperiod 138 
p. 139 

Duration of activities (or proportion of time spent in activities) can be calculated for each activity 140 
separately and whatever the time period. If the experimenter decides to group two activities (e.g., lying 141 
ruminating and standing ruminating), the duration/proportion of the new activity (here ruminating) is 142 
obtained by summing up those of the individual activities. 143 

 144 

Number and duration of activity bouts.  145 
Continuous and scan sampling also allow detecting when the activity changes, so that the number 146 

of activity bouts can be obtained, and the mean duration of bouts can be calculated. The average bout 147 
duration of activity a in bouts collection B is calculated as: 148 

𝐴𝑣𝑔𝐵𝑜𝑢𝑡𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑎
𝐵 = ( ∑ 𝐷𝑏

𝑏∈𝐵,𝐴𝑏=𝑎

) 𝑁𝐵(𝑎)⁄ (2) 149 

 150 
where Db is the duration of the bout b and NB(a) the number of bouts of the collection B where the 151 

activity equals a. 152 
Sensor-based systems, however, sometimes provide the time spent in each activity per time period 153 

and not the exact timing of a change if any; in this case, the number and the duration of bouts of activity 154 
remain unknown.  155 

Calculation of the number of bouts of an activity and of the mean duration of the bouts requires 156 
that the recording is done on long periods to avoid edge effects. Indeed, when the monitoring starts, the 157 
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animal is observed in a given activity, but one does not know for how long the animal has been performing 158 
the activity. It is common practice to remove the first and the last activity bout observed during the time 159 
period studied. The time period must thus be long enough so that several entire bouts of activity can be 160 
recorded. In practice, the number of bouts and their mean duration are often calculated per day (see for 161 
instance Veissier et al., (2004)). 162 

Assessing the total number of activity bouts in a day, in other words the number of times an animal 163 
changes of activity, requires that the ethogram consists of activities described with the same level of details, 164 
so that the number of bouts does not depend on what activity an animal performs most during the day. 165 
The gross activities detected by sensors are usually adequate. This is not necessarily the case with direct 166 
observations. For instance, to answer a specific question, an experimenter may want to sort activities into 167 
lying, standing inactive, feeding (all of these lasting for minutes or hours) and other activities, that can 168 
consist of walking, running, exploring the environment, interacting with other animals or self-directed 169 
activities (all of them lasting for few seconds or minutes). In that case, the number of times an animal 170 
changes of activity will largely depend on whether the animal performs the short-lasting activities 171 
frequently. The grouping of activities into gross activities should be done before the total number of activity 172 
bouts is calculated. Indeed, in the example given above on ruminating while lying or standing, the number 173 
of ruminating bouts during a day cannot be calculated by adding the number of lying-ruminating bouts and 174 
that of standing-ruminating bouts, because the two activities can be performed in the same bout.  175 

Duration and number of bouts also largely depend on how bouts are defined. The most common 176 
practice is to consider each change of activity as the beginning of a new bout. For example, with continuous 177 
observations the number of lying bouts of a cow can be assessed by the number of times the animal lays 178 
down; with scan sampling, an eating bout can be defined when eating is observed on at least one scan 179 
(Tucker et al., 2009). When scan sampling is used, the interval between scans should be smaller than the 180 
duration of activities to not miss bouts. An animal switching from an activity to another can still be 181 
considered in the same bout if it returns quickly to the initial activity. One needs to define how long the 182 
animal must stop an activity between two instances of that activity so that separate bouts are identified 183 
(Yeates et al., 2001).  184 

For instance, eating bouts are usually combined into meals if the interval between successive eating 185 
bouts is less than the meal criterion. The minimum interval between bouts can be determined by different 186 
methods (Tolkamp et al., 1998, Yeates et al., 2001, Dado & Allen, 1993), for example, using log-survivorship 187 
and log-frequency analysis (see Tolkamp et al., (1998), for a description of these methods). 188 

 189 

Activity level.  190 
The overall activity of an animal can be summarised into an activity level by assigning a weight to 191 

each activity, the weight expressing the contribution of the activity to the arousal of the animal (Veissier et 192 
al., 2001). The level of activity of the period P is calculated by the sum of the time spent in each activity 193 
multiplied by the weight of the activity: 194 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙𝑎
𝑃 = (∑ 𝑇𝑎𝑝 ∙ 𝑊𝑎

𝑝∈𝑃
𝑎∈𝐴

) (3) 195 

where Tap is the time spend on activity a in period p, Wa is the weight of activity a, the summations 196 
are over subperiods p in period P (and over all activities in A). 197 
The weights can be assigned a priori by the experimenter or elicited from observations. Veissier et al. (2001) 198 
performed a Factorial Analysis of Correspondence (FAC) on the number of instances (scans x calves) of each 199 
of five activities per hour; the first axis - that summarises most of the variations between the 24 hours of 200 
the day - brought decreasing weights to feeding (1.438), walking (0.763), standing immobile (- 0.085), lying 201 
head up (- 0.261), then lying head down (- 0.541), ordering the activities as one would intuitively do to 202 
express the decreasing arousal. The FAC is based on associations between activities and therefore, the 203 
outcome of the FAC strongly depends on the level of detail of the activities that are included. Experience 204 
told us that the ethogram should not be split in too many (short lasting) activities to elicit meaningful 205 
weights.  206 
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Biological meaning 207 
The time budget of animals depends on their living conditions and the farm management. Cows 208 

spend about half of the day lying but this can vary from 8 h to 13 h (reviewed by Tucker et al., 2021). Lying 209 
time is reduced in case of uncomfortable lying areas (poorly designed or too hard, wet, small, hot) or not 210 
enough resting places for the size of the herd (Tucker et al., 2021). Cow may nevertheless spend more time 211 
lying in case of short cubicles preventing them to stand properly in a cubicle and thus forcing them to lie 212 
down as soon as they enter a cubicle (Veissier et al., 2004). The time spent feeding and walking also largely 213 
depends on housing and management conditions: cows grazing at pasture spend much more time eating 214 
and walking than cows kept indoors and fed herbage harvested from the same pasture (527 min/d eating 215 
and 311 min/d walking at pasture vs. 398 min/d and 133 min/d indoor (Dohme-Meier et al., 2014)); bulls 216 
and sheep spend less time eating when the diets contain a large proportion of fibre than when the diets 217 
contain a large proportion of starch (- 67% in bull fed a 45% starch diet and - 18% in sheep fed a 38% starch 218 
diet, compared to animals fed diets with less than 20% starch (Commun et al., 2012; Mialon et al., 2008)). 219 
The effects described in the above paragraph are typically observed on all animals from a herd. 220 

Modifications are also observed between individuals in a herd. The overall activity of an animal 221 
varies over time due to its physiological state. Young cows are often more active and change more often of 222 
activity than adult ones (Solano et al., 2016). At the time of oestrus, cows are agitated, spending less time 223 
eating but more time active in other ways (more walking, less lying) (Reith & Hoy, 2018). Changes are also 224 
observed due to gestation and parturition: the time spent lying by cows decreases from one month before 225 
to one month after calving and slowly increases thereafter up to end of lactation, with 2 h of amplitude of 226 
variations in multiparous cows (Hut et al., 2022). The changes in activity are generally well marked and short 227 
lasting around oestrus but less marked and gradual around calving, making calving detection from gross 228 
activity more difficult than that of oestrus (Benaissa et al., 2020). 229 

The overall activity of an animal can also change due to a pathological state (e.g. due to 230 
inflammation (Dittrich et al., 2019). These modifications are called sickness behaviour, characterised – 231 
among others – by a low activity of the animal (Weary et al., 2009). Metabolic disorders (e.g., hypocalcemia, 232 
ketosis, acidosis) are generally accompanied by an increase in the time spent lying and a corresponding 233 
decrease of the time spent active and feeding (Weary et al., 2009; Belaid et al. 2021). These modifications 234 
are more marked in hypocalcemia than in other metabolic diseases, hence the name ‘downer cow’ 235 
syndrome for hypocalcemia (Wadhwa & Prasad, 2002). Acidosis can be accompanied by a higher fractioning 236 
of activity: sheep suffering from acidosis often change their posture from lying to standing (Commun et al., 237 
2012), as if they do not feel comfortable in either of these postures. Infectious diseases are also associated 238 
with an increase in time spent lying down and a decrease in time spent feeding (Weary et al., 2009). Mastitis 239 
however may result in a decreased time spent lying down, compensated by an increased time spent 240 
standing (Fogsgaard et al., 2015; Medrano-Galarza et al., 2012), presumably due to the pain on the udder 241 
which is increased by the pressure on it when the animal is lying. Lameness is also accompanied by sickness 242 
behaviour and a specific pattern of lying behaviour with less lying bouts but of longer duration (Solano et 243 
al., 2016, de Mol et al., 2013). Sick cows, whatever the origin of the disorders, usually spend less time 244 
ruminating (Calamari et al., 2014).  245 

Stress is another factor affecting the activity of animals. Stressed animals usually spend less time 246 
lying down and change more often of activity. For instance, suckling calves separated from their dam and 247 
moved from pasture to a barn respond to these changes by spending less time lying down, more time 248 
standing still or walking, and by fractionating their activities to a larger extent (Veissier et al., 1989). These 249 
modifications fade within days or weeks, indicating habituation to the new environment. Similar changes 250 
are observed when primiparous cows join the lactating herd. Around calving, primiparous cows decrease 251 
their time spent lying to a larger extent than multiparous cows (Hut et al., 2022) and we suspect that this is 252 
due to the many changes undergone by them around calving: they are milked for the first time and they 253 
are introduced to the lactating herd and so exposed to social partners and a pen, both novel to them.  254 

Monitoring the overall activity can thus help to check if the animals are managed adequately and 255 
to detect physiological states (especially oestrus), pathological states, or stress. Feeding, ruminating and 256 
lying seem especially sensitive to variations in the animal or its environment. Lying is generally reduced in 257 
case of stress or an uncomfortable lying area, so it is often considered that a prolonged time spent lying 258 
indicates good welfare (Piñeiro et al., 2019a, 2019b). However, lying time is often increased in case of 259 
disease too. In any case, the value obtained for duration and frequency of activities should be interpreted 260 
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considering the context in which they are obtained, for instance the type and management of feeding, the 261 
housing or grazing conditions, and the timing in relation to calving.  262 

Metrics to address fluctuations around the mean activity 263 

Definition 264 
The activity of an animal varies within and between days (Hut et al., 2022). The variations are 265 

described by metrics calculating how far values, obtained on a given time period, are spread around the 266 
mean value across several time periods. The calculations are generally applied to the duration of activities 267 
or the level of activity, less often to the number of bouts or their duration, with all values obtained at animal 268 
level. The time period is often the hour within the day (Mialon et al 2008 (eating duration in bulls), Lardy et 269 
al., 2023 (level of activity in cows)) or the day within a period of at least several days (Hut et al., 2022 270 
(duration of each activity); Solano et al., 2016 (number of bouts)).  271 

Calculations  272 
The metrics used to describe variations of an animal activity across time periods (e.g., hours within 273 

a day) are similar to those traditionally used in descriptive statistics except that they are applied at 274 
individual level (to characterise the variability of the activity of a given animal and not the variability 275 
between animals): 276 

Minimum (Min) refers to the minimum value observed/recorded 277 
Maximum (Max) refers to the maximum value observed/recorded 278 
Range corresponds to the difference between Min and Max  279 
 280 

Quantiles  281 
Quantiles re cut points dividing the dataset into continuous intervals with equal probabilities. The 282 

most commonly used quantiles are quartiles, which divide the number of data points into four parts, where 283 
the first quartile (Q1, 25th percentile) is the maximum value on the 25% of the dataset that obtained the 284 
lowest values, the second quartile (Q2) corresponds to the median, and the third quartile (Q3, 75th 285 
percentile) is the minimum value on the 25% of the dataset that obtained the highest values.  286 

 287 

Variance  288 
The sum of the squares of the differences between each value and the mean (see formula below); 289 

and Standard deviation (SD): the square root of the variance.  290 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥) =  
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

(4) 291 

where x is the sequence of activities (expressed for example as the level of activity) composed of N 292 
observations, xi is the ith observation, and µ the mean of the activities. 293 

 294 

Root Mean Square of the Successive Differences (RMSSD):  295 
RMSSD measures the variations from one interval to the next one. RMSSD is calculated as follows: 296 

 297 

𝑅𝑀𝑆𝑆𝐷(𝑥) =  √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥𝑖+1)2

𝑁−1

𝑖=1

2

(5) 298 

where x is the sequence of activities (expressed for example as the level of activity) composed of 299 
N observations, xi is the ith observation. 300 
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Irregularity. 301 
An index of irregularity of behaviour can be calculated as proposed for feed intake (Salgado et al., 302 

2021a, 2021b). Fist a regression line of cumulative data (e.g., cumulative time spent in a given activity) is 303 
drawn, then the differences between observed values and the regression line are calculated. The sum of 304 
these differences brings the irregularity index.  305 

Biological meaning 306 
Maximum activity during the day can be relevant to identify cow states: in a study where many 307 

metrics were used for a random forest classification, Lardy et al. (2023) found that the maximum activity 308 
during the day and Quantile 90 (two metrics closely linked) were the most important features to 309 
discriminate pathological and physiological states of cows.  310 

Within-day variations of activity are well marked in healthy and non-stressed animals. For instance, 311 
lying is predominant at some times during the day whereas eating and other activities are predominant at 312 
other times. Therefore, the activity level is not constant from hour to hour during the day. Within-day 313 
variations (measured by SD and RMSSD) are less marked in sick animals than in healthy ones; this is the 314 
case for cows affected by mastitis and to a lesser extent by lameness (Veissier et al., 2017). Within-day 315 
variations are also affected by oestrus: variations rise above baseline at the beginning of oestrus then 316 
decrease below baseline for at least two days (Veissier et al., 2017). RMSSD slightly differs from SD. With 317 
the same amount of variations during the day (same SD), an activity that varies smoothly between 318 
successive hours results in a low RMSSD while an activity that fluctuates between successive hours results 319 
in a high RMSSD. In Veissier et al. (2017) the decrease in within day variations under mastitis, lameness and 320 
oestrus was more marked when assessed by RMSSD than by SD, suggesting that cows change of activity 321 
more often when diseased or in oestrus. Stress may also be associated with a reduction in within-day 322 
variation in activity, as observed in cattle moved from pasture to indoor housing (Veissier et al., 1989; using 323 
the difference between night and early morning). Spreading activities throughout the day can also be a way 324 
to adapt to specific conditions. Bulls fed fibrous diets eat in few meals during the day whereas bulls fed high 325 
starch diets spread their eating activity over the entire day, which results in a low SD of eating duration 326 
(Mialon et al., 2008). Dispersing small meals over the day seems a strategy to avoid ruminal acidosis due to 327 
high amounts of starch in a diet.  328 

Between-day variations of activity can increase when animals are disturbed. For instance, cattle 329 
and sheep affected by acidosis or ketosis have more variable activities across days than healthy animals 330 
(Commun et al., 2012; González et al., 2008). At least in case of ketosis, an effective treatment eliminates 331 
the effect (Goldhawk et al., 2009). Lame cows can also display high between-days variations in the duration 332 
of lying bouts (Ito et al., 2010; Solano et al., 2016). A quick return to normal or baseline values after small 333 
disturbances (micro-recoveries) results in low variance, and is considered as a sign of good resilience 334 
(Scheffer et al., 2018). Animals that spontaneously (i.e., apart from diseases or other challenges) have a 335 
variable activity are less prone to further diseases (Van Dixhoorn et al., 2018). 336 

 337 

Metrics to address the cyclicity of activity 338 

Definition 339 
Cyclicity indicates fluctuations at regular intervals around activity trends. The most common cycle 340 

is the circadian cycle, which is the 24-h rhythm due to the alternance of day and night.  341 

Calculations 342 
Several metrics can be used for addressing the cyclicity of activity (Kok et al., 2023). Autocorrelation 343 

and Fourier transform are basic calculations. Other indices are derived from them such as non-periodicity 344 
index (Van Dixhoorn et al., 2023; Van Dixhoorn et al., 2018) and degree of functional coupling (Berger et 345 
al., 2003; Scheibe et al., 1999).  346 

Autocorrelation.  347 
The autocorrelation measures the correlation between successive values of a signal. The 348 

autocorrelation depends on the chosen delay, e.g., for hourly data the lag-1 corresponds to the correlation 349 
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between successive hours and lag-24 corresponds to the correlation between an hour of the day and the 350 
same hour of the next day, therefore depending on the circadian cycle. For a sequence x of size N, the 351 
autocorrelation with a lag l is calculated as following: 352 

 353 

𝐴𝐶𝐹(𝑥, 𝑙) =  
1

(𝑁 − 𝑙)𝜎2
∑(𝑥𝑖 − 𝜇)(𝑥𝑖+𝑙 − 𝜇)

𝑁−𝑙

𝑖=1

(6) 354 

 355 
Where σ is the variance of the sequence x, μ is the average value of the sequence x and xi the ith 356 

element of the sequence x. 357 

Non-periodicity.  358 
Non-periodicity is calculated by plotting the correlogram of the raw data (which is a graphical 359 

display of a correlation matrix of the data) over a sinusoid with an amplitude of 0.25 and a 24-hour cycle 360 
and assessing the difference between the correlogram and the sinusoid by calculating the mean squared 361 
error (Figure 2) (Van Dixhoorn et al., 2023; Van Dixhoorn et al., 2018). The value of an amplitude of 0.25 is 362 
chosen as it gave the best fit and might be adjusted in other situations where the autocorrelation shows a 363 
circadian rhythm. 364 

𝑁𝑜𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦(𝑥) =
(∑ (𝐴𝐶𝐹(𝑥, 𝑙) − 0.25 ∙ 𝑐𝑜𝑠(2𝜋 ∙ 𝑙 24⁄ ))2

𝑙=1…100 )

100
(9) 365 

 366 
where x is a variable measured at hourly (or other chosen time interval) time intervals, ACF(x,l) is 367 

the autocorrelation function for variable x at lag l (ranging from 1 to 100), 0.25∙cos(2π∙l/24) is the cosine 368 
function with a 24-h cycle and an amplitude of 0.25 that is used as a fit function.  369 

Fourier transform.  370 
Fourier transform represents the sinusoids that compose the original variations. Each sinusoid is 371 

defined by a frequency and an amplitude. The contribution of each sinusoid to explain the original variations 372 
is expressed in absolute or relative power, usually referring to the frequency of the sinusoid or to frequency 373 
bands. For instance, the contribution of the circadian cycle and of ultradian cycles can be calculated. When 374 
variations within 24 h time series are analysed by Fourier transform, the fundamental (h0) refers to the 375 
average activity during 24 h, harmonic 1 (h1) refers to variations following a 24 h cycle; h2, to a 12 h cycle; 376 
h3, to an 8 h cycle; h4 to a 6 h cycle, etc. The main cycle is the circadian one; the activity of an animal can 377 
therefore be modelled by its overall activity (mean during 24 h) and the variations around overall activity 378 
following a 24 h cycle, in other words into h0 and h1. The Fourier-based approximation with thresholding 379 
(FBAT) method was developed to compare such models obtained on successive time series (Wagner et al., 380 
2021). An alternative to the Fourier transform is the Cosinor method. Cosinor and Fourier are analogous in 381 
formulation, but differ in operation (see (Chkeir et al., 2019), for a comparison of the two modelling 382 
approaches). An example of Fourier transform is visualised in Figure 2. 383 

Degree of functional coupling (DFC).  384 
The degree of functional coupling is obtained by calculating autocorrelations, then applying Fourier 385 

transform to the correlogram, extracting the significant harmonics and calculating the power of each 386 
significant harmonics out of the power of all significant harmonics (DFC). More specifically, the relative 387 
power of the harmonic corresponding to a 24 h cycle expresses how much the variations are due to the 388 
circadian cycle: when DFC equals 100%, the variation in activity follows strictly a circadian cycle vs. when 389 
DFC equals 0%, the activity not at all depends on the 24 h cycle (Berger et al., 2003). 390 

In theory, data on 24 h only can be used to identify a circadian cycle. In practice, activity data usually 391 
contains noise, i.e., erratic fluctuations so that more than one day is necessary to identify correctly cyclic 392 
components. The number of days required depends on the amount of noise vs. cyclic components. 393 

In general, the activity of an animal peaks several times during the day, e.g., depending on the 394 
timing of feeding or milking, whereas the activity stays low during whole night. Autocorrelations and Fourier 395 
transform hardly take the dissymmetry between day and night activity into account. Wavelet methods 396 
could be used to overcome this problem (discussed in Wagner et al., 2021). 397 

https://en.wikipedia.org/wiki/Sine_wave
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Biological meaning 398 
Daily periodicities are influenced by internal clocks (endogenous driven biological cycles) and 399 

external factors such as temperature, light, humidity, feeding time (exogenously driven biological cycles) 400 
(Saper et al., 2005). Internal clocks generate a rhythm of about 24 h period. In mammals, the central internal 401 
clock situated in the brain (suprachiasmatic nuclei) coordinates peripheral clocks in the body (Honma, 402 
2018). Among external cues (or “Zeitgebers), light is known to be the most powerful one, impacting both 403 
on behaviour and physiological functions (Honma, 2018). For instance, cows are typically diurnal animals: 404 
they eat essentially between dawn and dusk and they predominantly rest at night (DeVries et al., 2003; 405 
Hafez et al., 1969). Variations can nevertheless be observed between cows in the cyclicity of their 406 
behaviour. Competition for resources (e.g. feed, lying area), due to overstocking or ambiguity in the ranking 407 
order because of frequent change in group composition, can cause a misalignment with the circadian 408 
rhythm (McCabe et al., 2021; Van Dixhoorn et al., 2023; Van Dixhoorn et al., 2018; Van Erp et al., 2020). 409 

Cows that have more marked circadian patterns of activity seem more resistant to health disorders. 410 
For instance, cows with marked cyclicity of eating, walking or lying before calving are less affected by post-411 
partum health disorders (including inflammatory and metabolic problems (Van Dixhoorn et al., 2023; Van 412 
Dixhoorn et al., 2018)). Indeed, dairy cows need to have their physiological mechanisms fine-tuned to be 413 
able to produce large quantities of milk while avoiding nutritional and metabolic deficiencies (negative 414 
energy balance or mineral deficiencies such as hypocalcemia). We hypothesise that good cyclicity, aligned 415 
with circadian rhythm can help to avoid such dysfunctions, especially in the high-risk postpartum period. 416 

Any change of the internal state of an animal - due to stress, disease or some specific reproductive 417 
status (parturition, oestrus) – can in turn affect the cyclicity of activities. For instance, the difference 418 
between activity during the day and at night is less marked in heifers experiencing a large change in their 419 
environment – weaning and turning from pasture to indoors – and in cows affected by mastitis or lameness 420 
(Veissier et al., 1989; Veissier et al., 2017). Variations during the day can be modelled, e.g., thanks to Fourier 421 
transform in the FBAT method. The distance between models obtained on successive 24 h series increases 422 
when cows are stressed, diseased, in oestrus or about to calve, expressing a change in daily patterns 423 
(Wagner et al., 2021). These effects may be due to the release of glucocorticoids during stress, disease or 424 
even calving. Indeed, glucocorticoids, the secretion of which follows a circadian pattern, help to coordinate 425 
peripheral clocks with the brain pacemaker (Dumbell et al., 2016).  426 
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 427 

Figure 2 - Examples of non-periodicity of eating behaviour visualised through correlograms (top), and 428 
Fourier transform pattern (bottom) (frequency of activity performed per day). In the correlograms, 429 
dotted lines represent the expected cyclicity of the specific behaviour, while the solid lines indicate 430 
the observed behaviours. Non-periodicity is assessed by calculating the RMSE of the correlogram as 431 
compared to the sinusoid. In the Fourier transform pattern the amplitude is given per frequency, 432 
expressing the strengh of the cycles in activity for that frequency. The peak at frequency 1 shows that 433 
this cow has a strong circadian pattern. The sum of the amplitudes at frequency 1, 2, 3 and 4 434 
represents the strength of the cycles in activitities with a 24, 12, 8, and 6 h cycles and is used a a 435 
measure of the cyclicity of the cow.  436 
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Metrics to address the synchrony between animals  437 

Definition 438 
The synchrony measures the extent to which animals of a given group perform the same activity at 439 

the same time. The synchrony can be assessed between two animals, between an animal and the group it 440 
belongs to, or at the group level. 441 

Calculations 442 
The synchrony is to be assessed based on what animals do at certain points in time spaced at 443 

regular intervals. Collecting data using scan sampling therefore is appropriate for calculations of synchrony 444 
metrics. In case of continuous observations, which is changes in behaviour are noted for each animal exactly 445 
when they occur, a pre-processing of data is necessary: at each time interval the instantaneous activity of 446 
each animal of the group need to be extracted (resampling procedure). When data are expressed as main 447 
activity of each animal during a certain interval, as often done with sensors, synchrony can only be 448 
approximated: if the intervals at which the activity is noted are short enough (e.g. 5 min) then it may be 449 
considered that the animal kept the same activity during the whole interval, and the data can then be 450 
processed as scan sampling. 451 

Several metrics can be found in the literature to calculate synchrony. We cite here the most 452 
common ones. 453 

(a) The synchrony between two animals is calculated as the proportion of the scans during 454 
which they are engaged in the same activity (see example in Veissier et al., 1989): 455 

𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑦 =  
1

𝑛
∑ 𝑆𝑖

𝑛

𝑖=1

(7) 456 

 457 
where n is the number of scans, Si equals 1 if the two animals have the same activity at scan i and 458 

0 if they do not. 459 
The synchrony of a focus animal with the rest of the group or a certain sub-group of animals in the 460 

group can be calculated as: 461 

(b) the average of the proportion of animals from the group or the sub-group performing the 462 
same activity as the focus animal across scans. This also corresponds to the average of synchrony indices 463 
(a) obtained for a focus animal and any other animal from the herd or the sub-group (Veissier et al., 1989):  464 

𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑦 =  
1

𝑛(𝑚 − 1)
∑ ∑ 𝑆𝑖𝑗

𝑛

𝑖=1

𝑚−1

𝑗=1

(8) 465 

where n is the number of scans, m is the number of animals in the group, Sij equals 1 if the focus 466 
animal and the other animal j have the same activity at scan i and 0 if they do not. 467 

(c) the proportion of scans during which the focal individual performs the same activity as 468 
most individuals of the rest of the group (Ruckstuhl, 1999). The calculation is similar to that for the 469 
synchrony between two animals given in (a) above but with Si equals 1 when the focus animal has the same 470 
activity as most of the group and 0 when it does not. 471 

At group level, the synchrony can be calculated with several indices: 472 

(d) The proportion of scans where all animals of the group perform the same activity; Again, 473 
similar calculations as for (a) are used with Si equals 1 if all animals perform the same activity and 0 if not. 474 

(e) The average of metrics (b) (Veissier et al., 1989) or (c) (Asher & Collins, 2012).  475 

The metrics presented above depend largely on the number of activity categories and the number 476 
of animals in the group (especially metrics (d)): when the group is large and the number of activity 477 
categories is high, there is little chance that animals perform the same activity at the same time. Asher and 478 



13 

 

Collins (2012) thus recommend comparing the distribution of activity observed with the one obtained at 479 
random. This can be done with: 480 

(f) Kappa coefficient of agreement. For instance, the proportion of pairs of animals observed 481 
with the same activity is calculated (Rook & Penning, 1991): 482 

𝑃(𝑂) =  
1

𝑛𝑝
∑ 𝑆𝑖

𝑛

𝑖=1

(9) 483 

where n is the number of scans, p is the total number of pairs of animals in the groups, and Si the 484 
number of pairs of animals performing the same activity at scan i.  485 

The expected proportion of pairs that would perform the same activity by chance is then 486 
calculated: 487 

𝑃(𝐸) =  
1

(𝑛𝑚)2
∑ 𝐶𝑘

2

𝑙

𝑘=1

(10) 488 

where n is the number of scans, m is the group size, l is the number of activity categories, and Ck 489 
the frequency of observation of activity category k (i.e., total number of scan x animals occurrence of the 490 
activity).  491 

Then  492 

𝐾𝑎𝑝𝑝𝑎 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑃(𝑂) − 𝑃(𝐸)

1 − 𝑃(𝐸)
(11) 493 

The Kappa coefficient equals 1 if all animals always perform the same activity at the same time (full 494 
synchronization). It equals 0 when animals are not synchronised more than at random.  495 

(g) Other methods can be found in the literature to compare the synchrony observed to that 496 
expected on a randomised dataset: calculating a dispersion index (Raussi et al., 2011) or applying Monte-497 
Carlo methods (Whitehead, 1999). These two options are rarely used in the literature on behaviour (e.g., 498 
we did not find studies using the dispersion index apart from that of Raussi et al. (2011)). In most case, they 499 
actually may not have added value compared to the Kappa coefficient of agreement.  500 

The activity categories should be carefully chosen. If there are too many categories (e.g., detailing 501 
precisely what the animals do when standing active: walking, scratching, interacting with each other), the 502 
animals will seem little synchronised whereas if there are too few categories (e.g., active vs. inactive) they 503 
will seem very synchronised. Asher and Collins (2012) recommend using 5 activity categories in laying hens. 504 
It must be considered whether we expect that there can be or not social facilitation of an activity (that is an 505 
animal engaging in an activity encourages the other to do so). In ruminants, ruminating appears as a reflex 506 
activity, ruminating thus should not be used as a separate category but rather included in lying and standing 507 
idling (i.e., postures when ruminating can occur) because we do not expect social facilitation of ruminating.  508 

To be interpreted in terms of positive relationship, the synchrony needs to be estimated between 509 
animals that have about the same time budget (i.e., same amount of time spent in each activity per day). 510 
For instance, although a cow has a strong bound to its new-born calf, the apparent synchrony between 511 
them may be low because the cow spends lot of the time foraging whereas the calf spends more time lying 512 
(Veissier et al., 1990). 513 

Biological meaning 514 
Animals may be synchronised because the activity of an animal is influenced by that of other 515 

animals. Social facilitation has been described in many species and contexts (Clayton, 1978). Animals may 516 
be synchronised also because they adopt a similar rhythm of activity: activities follow a circadian rhythm 517 
triggered at least in part by external cues such as light or timing of food distribution (or milking in dairy 518 
cows) so if animals are subjected to the same cues, their activity will tend to be similar (Flury & Gygax, 519 
2016).  520 



14 

 

The synchrony between two animals (fighting excluded) gives us an estimate of how closely (and 521 
positively) they are related to each other. Two animals bound by a positive social relationship have more 522 
chances than unrelated animals to express the same activity at the same time. For instance, when calves 523 
stay with their dam after weaning they keep preferential relations that are shown by proximity, exchanges 524 
of positive interactions, and also synchrony (Veissier et al., 1990). 525 

Synchrony at the group level reflects social cohesion, i.e. the strength of the bonds between the 526 
animals in the group (Clayton, 1978). Groups newly formed are usually less cohesive, animals exchanging 527 
aggressive interactions and being less synchronised (Mounier et al., 2005). The synchrony can also decrease 528 
if there is competition for the access to a resource, e.g., food and lying places. For instance, in cows and 529 
sheep, synchrony of lying decreases when lying space is limited (Bøe et al., 2006; Winckler et al., 2015). The 530 
synchrony between an animal and the rest of its group reflects its familiarity with the group: synchrony may 531 
be low in case of newly introduced animals until the organization of the group is stabilised (Arey, 1999; 532 
Boyle et al., 2013). A variation in synchrony can also be caused by a health disorder: the activity of an animal 533 
is modified in case of disease (Dantzer et al., 2008), so that it can depart from the rest of the group (e.g., a 534 
cow isolates and stay standing idling or lying for longer when ill (Proudfoot & Habing, 2015; Proudfoot et 535 
al., 2012). 536 

 537 
  538 



Table 1 - Summary of metrics to describe the activity of animals with their condition of use 539 
 540 

Category Metrics Raw data Purpose Limitations Reference 

Overall activity Proportion of time spent in an activity Collection of activity bouts 
with duration 

Detection of physiological states 
(e.g., oestrus), pathological states 
(lameness), or stress 

Depends on their living 
conditions and the farm 
management 
Modifications are also 
observed between individuals 

Veissier 2004  

Number and duration of activity bouts Collection of activity bouts 
with duration 

There is a need to : 
- record on long periods to 
avoid edge effects. 
- describe activity with similar 
details 
- have a clear determination 
of when a new activity starts 

Tucker et al., 2009. 
Ledgerwood et al., 2010. 
Yeates et al., 2001 

Activity level Time spent on activities Weights of each activity to be 
elicited. 

 

Fluctuations 
around the mean 

Min/max/range/quantiles/variance/RMSSD Timeseries To identify pathological or 
physiological states of cows 

 Hut et al., 2022; Lardy et 
a;. 2023; Mialon et al. 
2008. 

Irregularity Continuous sampling  Salgado et al. 2021a&b 
Cyclicity Autocorrelation Continuous sampling  Detection of physiological states 

(e.g., oestrus), pathological states 
(lameness), or stress.  
To predict resilience. 

Recording on long periods 
(longer than the cycle to be 
detected) 

Dixhoorn et al., 2023, 
2018;  
Chkeir et al., 2019 

Non-periodicity Continuous sampling 
Cosinor method Continuous sampling 
Fourier transform Continuous sampling 
Degree of functional coupling (DFC)  Berger et al., 2003; 

Scheibe et al., 1999 
Synchrony 
between 
individuals 

Proportion of animals from the group or the sub-group 
performing the same activity as a focal individual. 

Scan sampling Bonds between animals and / or 
availability of resources 
 
 
 

Depends on the number of 
animals and number of 
activity categories 

Veissier et al., 1989 

Proportion of scans during which a focal individual 
performs the same activity as most individuals of the 
rest of the group 

Scan sampling  Inclusion of an animal in a group.  
Detection of health disorder 

Ruckstuhl, 1999 Asher & 
Collins 2012 

Synchrony at 
herd level 

The average of metrics taken at individual level. Scan sampling and 
continuous sampling 

Social cohesion 
Competition for resources 

Veissier et al., 1989; Stoye 
et al. 2012 
Arsher and Collins, 2012 

The proportion of scans where all animals of the group 
perform the same activity 

  Arsher and Collins, 2012 
Stoye et al., 2012 

Kappa coefficient of agreement   Rook and Penning, 1991 

 541 

 542 



Discussion 543 

In this review we present metrics that can be calculated from data on gross activity and identify 544 
their conditions for use (summarised in Table 1). We divided the metrics into four groups that all represent 545 
a different aspects of animal behaviour: the overall activity, the fluctuations around the mean activity, the 546 
cyclicity and the synchrony between animals.  547 

The overall activity is the most often studied aspect. It represents the total duration and 548 
organisation of the activity in bouts. The fluctuations of activity during the day or across days and the 549 
organisation of these fluctuations according to (circadian) cycles are less often addressed but are gaining 550 
attention in research. Synchrony between animals is generally used to study the social organisation of a 551 
group of animals, but is also more and more used as specific indicators (e.g. diseases or evaluation of the 552 
management) and constitutes also a promising indicator of positive welfare (Keeling et al., 2021; Napolitano 553 
et al., 2009).  554 

These four groups of metrics can be used to analyse the impact of housing and management 555 
procedures. In that case, the values at herd level are evaluated, all animals within the herd are taken into 556 
account. In most cases, the average herd level values per metric are expected to not vary much in time, 557 
unless management or housing change.  558 

These metrics can also be used to compare animals within a herd individually (with same 559 
management and housing). Animals are usually consistent with time, so that the data can be used to 560 
phenotype them (Bacher et al., 2022; Poppe et al., 2022). In turn the behavioural phenotype can inform 561 
about other traits. For instance, a cow that shows low regularity in activity is likely to be more susceptible 562 
to post-partum diseases, when she has to cope with metabolic constraints (van Dixhoorn et al., 2023). 563 

Transient changes in activity can be observed under certain circumstances at animal level, 564 
especially when an animal is sick, in a specific physiological state (oestrus, calving), or stressed. When such 565 
transient changes are observed on most animals of the herd and at the same time, it is likely that the herd 566 
has been disturbed by external events (e.g., handling to apply a treatment, hoof trimming, period of heat 567 
stress). When the transient change is observed in only one or few animals, it is more likely an individual 568 
case of disease or a reproductive event.  569 

Combining several behavioural metrics is usually necessary to have a comprehensive overview of 570 
the internal state of an animal. For instance, to infer the internal state of a cow (diseased, in oestrus, about 571 
to calve, or stressed), metrics on overall activity, fluctuations and cyclicity are necessary to be able to classify 572 
the cows into the corresponding state (Lardy et al., 2023).  573 

In this paper, only metrics describing overall activity, fluctuations around mean activity, cyclicity 574 
and synchrony between animals are described and discussed. The data can nevertheless be further 575 
processed to extract more information. For instance, a network analysis could be performed with links 576 
between individuals of a group estimated from their synchrony. Such an approach could probably be 577 
applied to study group effects such as social facilitation, leadership, or cooperation among individuals. 578 
Markov chains can be used to analyse sequences of activities to better understand of the organisation of 579 
activities (Rugg & Buech, 1990; Schafer et al., 2020). Machine learning applied to metrics describing activity 580 
can also help to classify animals according to their phenotype or to detect changes in activity on specific 581 
animals and days (Lardy et al., 2023; Wagner et al., 2020, Debauche et al., 2021). 582 

In conclusion, activity data provide the raw material for the calculation of several metrics that 583 
describe animal behaviour. The choice of which metrics to use, depends on the research question or 584 
potential application. A clear research question helps to select the metrics that best characterise an animal 585 
behaviour in relation to the research or applied question. We believe that clarification of the metrics and 586 
on how they should be calculated will help to standardise these metrics, making them easier to use and 587 
allowing comparisons between studies.  588 

 589 
 590 
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