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ABSTRACT High pathogenicity avian influenza viruses (HPAIVs) H5Nx of clade 2.3.4.4b 
have been circulating increasingly in both wild and domestic birds in recent years. In 
turn, this has led to an increase in the number of spillover events affecting mammals. 
In November 2022, an HPAIV H5N1 caused an outbreak in a zoological park in the 
south of France, resulting in the death of a Tibetan black bear (Ursus thibetanus) and 
several captive and wild bird species. We detected the virus in various tissues of the bear 
and a wild black-headed gull (Chroicocephalus ridibundus) found dead in its enclosure 
using histopathology, two different in situ detection techniques, and next-generation 
sequencing, all performed on formalin-fixed paraffin-embedded tissues. Phylogenetic 
analysis performed on the hemagglutinin gene segment showed that bear and gull 
strains shared 99.998% genetic identity, making the bird strain the closest related 
strain. We detected the PB2 E627K mutation in minute quantities in the gull, whereas 
it predominated in the bear, which suggests that this mammalian adaptation marker 
was selected during the bear infection. Our results provide the first molecular and 
histopathological characterization of an H5N1 virus infection in this bear species.

IMPORTANCE Avian influenza viruses are able to cross the species barrier between 
birds and mammals because of their high genetic diversity and mutation rate. Using 
formalin-fixed paraffin-embedded tissues, we were able to investigate a Tibetan black 
bear's infection by a high pathogenicity H5N1 avian influenza virus at the molecular, 
phylogenetic, and histological levels. Our results highlight the importance of virological 
surveillance programs in mammals and the importance of raising awareness among 
veterinarians and zookeepers of the clinical presentations associated with H5Nx virus 
infection in mammals.

KEYWORDS influenza, zoonotic infections, epidemiology

T he genetic and antigenic diversity of influenza viruses is considerable: 16 and 
nine hemagglutinin (HA) and neuraminidase subtypes, respectively, circulate in 

wild waterfowl, which were considered the reservoir of influenza viruses (1). Following 
the acquisition of a mutation in the sequence encoding the HA cleavage site, viruses 
belonging to the H5Nx and H7Nx subtypes are capable of acquiring a high pathogenic
ity phenotype in poultry. The tropism of low pathogenicity avian influenza viruses is 
mainly restricted to the digestive and respiratory tracts, while high pathogenicity avian 
influenza viruses (HPAIVs) can replicate systemically (2).

For a long time, HPAIVs circulating in domestic birds were considered unlikely to 
return to the wild compartment (3). However, in recent years, this paradigm has been 
shaken: HPAI H5Nx viruses, which initially appeared in the domestic compartment, have 
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succeeded in becoming endemic in wild birds (4). More importantly, these viruses have 
managed to cross the species barrier between mammals and birds on several occasions.

H5Nx HPAIVs’ circulation, particularly those of clade 2.3.4.4b, has significantly 
increased in recent years: viruses of this clade are spreading in wild bird populations 
more rapidly than ever since their emergence in 1996 (5). Thus, the occasions on 
which mammals have been exposed to the virus have become more frequent in turn. 
Infection generally occurs following the exposure to contaminated feces or water or 
animal carcasses (6). Sporadic infections of wild mammals have been described in the 
past but have never been as frequent as in recent years. Numerous domestic and wild 
animals have been contaminated, including various species of seals, sea lions, foxes, cats, 
raccoons, skunks, and bears (7–12).

These sporadic infections are not always dead ends (13), and every time an avian 
influenza virus manages to infect a mammal, there is a risk that adaptive mutations will 
appear (1). When enough genetic changes accumulate, the result can be the emergence 
of a virus more efficiently transmitted between mammals. Ultimately, a novel influenza 
virus able to sustain transmission between humans could cause a pandemic (14).

In November 2022, a Tibetan black bear (Ursus thibetanus)  from the Sigean Zoo 
in France was reported dead. Although infection with an avian influenza  virus was 
not initially suspected, post-mortem analyses revealed the presence of clade 2.3.4.4b 
HPAIV H5N1 in various organs and blood. Over the following fortnight, several 
influenza-positive  birds were also found dead near the bear enclosure, suggesting 
a bird-to-bear transmission. Using formalin-fixed  paraffin-embedded  (FFPE) tissue, 
we conducted molecular and histopathological investigations to characterize this 
outbreak.

RESULTS

Outbreak detection

In early November 2022, a 12-year-old male Tibetan black bear (U. thibetanus)  was 
found dead in its enclosure at the Sigean Zoo, in France. A few days before, 
zookeepers had noticed a slight decline in general condition, while the day prior 
to its death, the bear presented marked dyspnea, hyperthermia (rectal tempera
ture: 39°C),  lateral decubitus, and diarrhea. Blood analyses carried out by the 
zoo’s veterinarians the day before the bear’s death showed severe leukopenia and 
hypercreatininemia, consistent with acute renal failure (File S1).  Over the following 
days, several zoo and wild birds (two pelicans, one jackdaw, and one gull)  died 
and tested positive by reverse-transcription quantitative PCR for clade 2.3.4.4b HPAIV 
H5N1, one of the carcasses being found in the bear’s enclosure: a black-headed gull 
(Chroicocephalus ridibundus),  which the zoo veterinarians also necropsied. In the days 
following the bear’s death, other bears of the same species housed in the same 
enclosure displayed mild to moderate clinical respiratory signs but could not be 
sampled to be analyzed as part of this study. Interestingly, none of the bears in the 
nursery (i.e.,  not in this enclosure and without access to the outdoors),  at this time, 
developed clinical signs. A summary of animals affected  by this epizootic is available 
in Table S1.

The possibility that the bear might have been infected by an H5N1 virus of clade 
2.3.4.4.b was subsequently suspected and confirmed by molecular analysis of biological 
samples sent to the French reference laboratory for high pathogenicity avian influenza, 
which deposited the viral genome sequence on GISAID (isolate ID EPI_ISL_17233426). 
After initial routine screening at a diagnostic histopathology laboratory (Vet Diagnostics, 
France), FFPE tissues from the bear and gull were then sent to the National Veterinary 
College of Toulouse (ENVT) Laboratory for further investigation.
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Pathological examination of the infected bear and black-headed gull

The bear necropsy revealed hemorrhagic lesions (petechiae and suffusion) on the 
epicardium and liver, severe congestion of lungs, kidneys and intestines, and finally, 
a necrotic tracheal mucosa. Importantly, no bird remains were found in the digestive 
tract. Histopathological examination of the bear revealed acute, marked multifocal to 
coalescing fibrino-necrotizing lymphadenitis and splenitis, associated with vasculitis and 
hemorrhages (Fig. 1); marked pulmonary edema and congestion; moderate suppura
tive tracheitis with concurrent submucosal vascular thrombosis; and severe, multifocal 
necro-suppurative hepatitis. Marked acute hemorrhages, involving the subepicardium 
and renal interstitium, were also present, while the gastrointestinal tract appeared 
unremarkable (Fig. S1).

The gull necropsy revealed a marked pulmonary and splenic congestion, while 
the histopathological assessment showed acute necrotic-inflammatory  changes in 
the majority of the organs examined. Mild to marked encephalitis,  pancreatitis, 
splenitis,  hepatitis,  nephritis,  and thyroiditis lesions exhibited variable amounts of 
viral antigen and RNA highlighted by immunohistochemistry (IHC) and RNAscope in 
situ  hybridization (RNAscope ISH),  respectively (Fig. S2 and S3).

Viral antigen and RNA detections of the bear are detailed in Table S2. Briefly, viral 
antigen and RNA were frequently detected in a visceral lymph node, multifocally, within 
perivascular tissue (leukocytes) adjacent to foci of necrotizing vasculitis (Fig. 1). In the 
lung, viral antigen was sparsely detected within bronchoalveolar luminal debris and 
perivascular and interlobular interstitium (mesenchymal cell) admixed with non-specific 
background. Viral RNA was similarly detected in terms of distribution, although the signal 
appeared more widespread within the pulmonary parenchyma, also involving alveolar 
epithelial cells, subpleural mesenchymal cells, and mesothelial cells (Fig. 1). In the kidney, 
viral antigen was rarely observed within a few glomeruli (mesangial and endothelial 
cells), while viral RNA detection was negative (Fig. S1). Additionally, RNAscope ISH 
revealed sparse viral RNA within myocardial endomysium and perimysium (mesenchy
mal cells), gastrointestinal and tracheal mucosa and submucosa, and splenic red pulp. 
Other findings included focal atherosclerosis and mural mineralization involving the 
coronary arteries of cardiac sections, with no evidence of related myocardial ischemic 
changes.

Viral antigen and RNA detection of the gull are detailed in Table S3. Viral antigen 
detection appeared widespread in the optic lobe, cerebellum (neurons, glial cells, 
Purkinje cells, and neuropil), and pancreas (acinar cells), frequent and multifocal in the 
heart (cardiomyocytes), pulmonary capillary bed, and kidney (tubular nephrocytes). The 
spleen, intestine, liver, and trachea were negative. Viral RNA detection exhibited a similar 
pattern, in terms of distribution, in the optic lobe, cerebellum, and kidney with additional 
positive staining in a renal nervous ganglion.

Phylogenetic and genetic analyses

We performed next-generation sequencing on several bear samples (lymph node, lung, 
and liver) and one gull sample (brain), using an Element AVITI sequencer (Element 
Biosciences, San Diego, CA, USA) and a 2 × 150-bp paired-end protocol. We found 
H5N1 virus reads in all samples, in sufficient numbers to reconstitute whole-genome 
consensus sequences. The H5N1 virus was the only pathogen detected by next-genera
tion sequencing. Details of the viral (>100 reads) and bacterial (>1,000 reads) species 
identified by metagenomics can be found in File S2.

Phylogenetic analysis performed on HA gene segment showed that viruses found 
on both animals belonged to clade 2.3.4.4b. The HA sequence of the bear-derived virus 
shared 99.998% genetic identity with the HA of the strain detected in the gull, making 
the bird strain the closest related strain (Fig. 2). This finding was further confirmed by 
the phylogenetic analysis performed on the other viral segments, which showed that 
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both strains were closely related to strains circulating in Belgium at that time (Fig. S4). 
The whole-genome analysis revealed that both strains belonged to the AB genotype 

FIG 1 Histopathology, viral antigen, and RNA detection in tissues obtained from infected bear. (a) Visceral lymph node: necrotizing vasculitis (arrowhead) 

with thrombosis and hemorrhages. H&E stain. (b) Visceral lymph node: viral antigen is observed associated with vasculitis and extending to the surrounding 

lympho-nodal parenchyma. Anti-nucleoprotein influenza A IHC (anti-NP IHC). (c) Visceral lymph node: viral RNA is intralesionally detected within areas of 

vasculitis. M gene RNAscope ISH. (d) Trachea: thrombosis (arrowhead) and perivascular leukocytic infiltration are observed within the mucosa and submucosa. 

The overlying epithelium is sloughed (arrowhead) (H&E stain). (e) Trachea: no viral antigen detection is observed (anti-NP IHC). (f ) Trachea: positive viral RNA 

detection is observed in the interstitium of mucosa and submucosa (RNAscope ISH). (g) Lung: diffuse congestion and edema (H&E stain). (h) Lung: IHC shows 

moderate non-specific background staining with no significant detection of viral antigen at low magnification (anti-NP IHC). (i) Lung: viral RNA is widely 

distributed within the lobular and interlobular interstitium (RNAscope ISH). Intestine: autolytic changes are present in the mucosa, including cell sloughing 

(arrowhead). The submucosa, tunica muscularis, and serosa appear within normal limits. The myenteric plexus (insert and asterisk) is readily identifiable and also 

normal (H&E stain). (j) Intestine: no viral antigen detection is observed (anti-NP IHC). (l) Intestine: viral RNA is focally associated with the myenteric plexus nerve 

trunk and connective tissue (insert) (RNAscope ISH). Scale bars: 50 (d–f), 100 (a–c and g–i), and 200 µm (j–l).
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(H5N1-A/duck/Saratov/29–02/2021-like), the main circulating genotype at that time in 
Europe (6).

Viral sequence analysis revealed the presence of several mammalian adaptation 
markers, listed in Table 1, in both bear and gull viruses, most of them also found in the 
genomes of other phylogenetically related avian viruses. The PB2 E627K mutation was 
only found in the bear virus according to the consensus sequences, but variant calling 
analysis revealed that a tiny proportion of gull viruses also had this mutation (File S3). 
More specifically, in the gull, over 99% of reads coded for an E and <1% coded for a K, 
while in the bear, 37.3% coded for an E and 62.7% coded for a K at position 627, both in 

FIG 2 HA maximum likelihood phylogenetic tree. Bear- and gull-derived sequences are labeled in red and blue, respectively. Bootstrap support values > 90 are 

shown at branches. Scale bar: number of nucleotide substitution per site.

TABLE 1 Mammalian adaptation markers found on the gull- and bear-derived viral sequencesa

Protein Amino-acid position Gull Bear Reference

PB2 627 E K Hatta et al. (15)
PB1-F2 66 S S Varga et al. (16)
HA 149 A A Yang et al. (17)

170 N N Wang et al. (18)
172 A A

M1 30 D D Fan et al. (19)
215 A A

NS1 42 S S Jiao et al. (20)
92 D D Seo et al. (21)
103 F F Kuo and Krug 

(22)106 M M
aHA sequence numbering was performed including the peptide signal.

Research Article Microbiology Spectrum

Month XXXX  Volume 0  Issue 0 10.1128/spectrum.03736-23 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

23
 F

eb
ru

ar
y 

20
24

 b
y 

14
7.

10
0.

17
9.

23
3.

https://doi.org/10.1128/spectrum.03736-23


the liver and lung samples. Although the sequencing depth at this position was around 
1,400 reads, no sequence encoding an E at position 627 was found in the lymph node 
sample.

DISCUSSION

We revealed the presence of clade 2.3.4.4b H5N1 virus in various tissues of a Tibetan 
black bear and a black-headed gull, using histopathology, two different in situ detec
tion techniques, and next-generation sequencing. Sequence analysis revealed that the 
viruses found in the bear and gull were phylogenetically very close and that variants 
with the PB2 E627K mutation had become predominant in the bear. Our findings do not 
allow us to determine with any certainty how the bear became infected, especially as the 
gull was found dead several days after the bear. The most plausible hypothesis is that 
the virus circulated undetected for several days in the zoo’s wild and captive avifauna 
and that the bear was either in direct contact with an infected bird (dead or alive) 
or in contact with water or food contaminated by avian droppings. The fact that the 
other bears in the enclosure successively developed clinical signs suggests inter-bear 
transmission, but since they were not sampled for PCR testing, this is speculation. 
Interestingly, the PB2 E627K mutation was present in very small amounts in the gull 
sample, whereas it was predominant in the bear lung sample. We, therefore, believe 
that it did not arise in the bear through de novo mutations, but that the bear’s infection 
was seeded by an inoculum containing PB2 627E variants and a few PB2 627K variants, 
which were then selected because of their selective advantage (15). Interestingly, the 
bear lymph node sample contained no PB2 627E variants. This suggests that the PB2 
627K variant was selected in the respiratory tract, from which it then spread systemically.

When an animal is necropsied outside a research facility, improper preservation of 
samples is a frequent issue, especially if the carcasses cannot be refrigerated and if 
the analysis cannot be performed quickly. One of the advantages of FFPE specimens is 
that they can be stored at room temperature for years, if not decades, and are shipped 
easily (23). Although this process degrades the nucleic acids to some extent, methods 
for extracting DNA and RNA of sufficient quality are now available (24). This is how we 
managed to use FFPE tissues to reconstruct an H5N1 avian influenza virus outbreak in 
a zoological park through molecular investigations, despite the absence of fresh tissue 
samples.

One limitation of our study is that the bear’s brain was not examined and sampled. 
Collecting this organ would have been technically challenging, and since the zoo’s 
veterinary service did not suspect an infection with an avian influenza virus at the time 
of the necropsy, the cranium was not opened. However, the involvement of the central 
nervous system has been frequently identified in both birds and mammals infected 
with an H5Nx virus of clade 2.3.4.4b, with neurological disorders sometimes being the 
only clinical signs observed (25). For this reason, highlighting the presence of the virus 
and concurrent histopathological lesions in the brain of our bear would have been 
of particular interest. However, the bear was not affected by neurological disorders, 
contrary to what was reported in Canada in black bears (Ursus americanus) (12).

In zoological parks, many animal species may reside in close proximity to one another, 
and avoiding contact with wild birds is difficult, if not impossible, when animals are 
not kept in cages, but in open spaces, as it is the case with bears in the Sigean Zoo. 
Zookeepers visited the bears’ enclosure on a daily basis, but both the enclosure’s size 
and the density of the vegetation made most biosecurity measures virtually impractical. 
On a broader level, zookeepers should receive proper training in biosecurity and made 
aware of the threats posed by avian influenza viruses toward mammals. This aspect 
is important, not only for protecting animals, particularly in the case of endangered 
species, but also for preventing epizootic flare-ups. As the RNA polymerase of influenza 
viruses is prone to errors during viral genome replication, better-adapted variants may 
appear when a mammal is infected by an avian influenza virus (26). When such a 
virus spreads from mammal to mammal, the risk of a more transmissible variant being 
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selected increases considerably, and chains of transmission must be avoided as much 
as possible (27). By raising awareness among veterinarians and zookeepers of the 
clinical presentations associated with H5Nx virus infection in mammals, the number of 
undetected epizootics should be reduced, with zoological parks thus acting as sentinels.

In conclusion, biosecurity and surveillance programs are essential to deal with 
epizootics caused by clade 2.3.4.4b H5Nx viruses and the zoonotic spillovers that 
are becoming increasingly frequent. In particular, active and passive surveillance of 
mammals, including wild, captive, and domestic, will be invaluable in anticipating the 
emergence of H5Nx viruses with pandemic potential (28).

MATERIALS AND METHODS

Histopathology

Tissue samples were placed in 10% neutral buffered formalin. For the bear, available 
tissues included the trachea, lung, heart, visceral lymph node, spleen, intestine, stomach, 
and kidney. For the gull brain, trachea, lung, heart, spleen, pancreas (splenic lobe), 
thyroid gland, liver, intestine, and kidney were collected. After fixation, tissues were 
routinely processed in paraffin blocks, sectioned at 3 µm, stained with hematoxylin and 
eosin (H&E), and examined by light microscopy.

Immunohistochemistry

To assess viral antigen tissue distribution within the bear and gull tissues, IHC was 
performed on FFPE tissue sections, using a monoclonal mouse anti-nucleoprotein 
influenza A virus antibody (Biozol BE0159, pronase 0.05% retrieval solution, 10 min at 
37°C: antibody dilution 1/2,000, incubation overnight at 4°C). The immunohistochemical 
staining was revealed with horseradish peroxidase (HRP)-labeled polymer (EnVisio + Dual 
Link System HRP, K4061, Agilent) and the diaminobenzidine HRP chromogen (DAB + 
liquid, K3467, Agilent). Negative controls included sections incubated either without the 
primary antibody or with another monoclonal antibody of the same isotype (IgG2).

RNAscope in situ hybridization

To determine the presence of avian influenza A virus RNA and assess its distribution 
within the bear tissue sections, RNAscope ISH was performed as previously described 
(29). Briefly, we used probes targeting M1 and M2 genes (V-InfluenzaA-H5N8-M2M1 
probe), H5 HA gene (V-InfluenzaA-H5N8-HA-O1 probe) of clade 2.3.4.4b HPAIV H5, and 
an RNAscope 2.5 high-definition red assay, according to the manufacturer’s instructions, 
including mild pretreatment conditions (15-min incubation with protease digestion for 
antigenic retrieval) and hematoxylin counterstaining. A probe targeting the dihydrodipi
colinate reductase (dapB) gene from the Bacillus subtilis strain SMY served as negative 
control.

Next generation sequencing

Three bear samples and one gull sample were selected for the metagenomics analysis on 
the RNA fraction: lymph node (bear), lung (bear), liver (bear), and brain (gull). One bear 
sample (liver) was selected for the metagenomics analysis on the DNA fraction.

The nucleic acids were extracted from the FFPE tissue sections using the Nucleospin 
total RNA FFPE XS (Macherey-Nagel). RNA-sequencing libraries were prepared using the 
NEBNext Ultra II Directional RNA Library Prep Kit (New England Biolabs), and the DNA 
library was prepared using the NEBNext Microbiome DNA Enrichment Kit (New England 
Biolabs). The sequencing run was then performed on the Element AVITI sequencer 
(Element Biosciences, San Diego, CA, USA) using a 2 × 150bp paired-end protocol.
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Bioinformatics analysis

The metagenomic data analysis was performed with Kraken2 (30). We set a threshold 
at 100 and 1,000 reads for the abundance of the viral and bacterial species, respec
tively. The reads were then mapped on an H5N1 reference genome (GISAID isolate ID: 
EPI_ISL_17233426) with minimap2 (31), and the consensus sequences were generated 
using iVar (32).

Phylogenetic analysis

Consensus sequences of each viral gene segment detected in black bear were compared 
with the most related sequences available in GISAID (https://www.gisaid.org/). We then 
added H5N1 sequences corresponding to the strains that circulated in France and 
performed an alignment with MAFFT version 7 (https://mafft.cbrc.jp/alignment/server/
index.html). After identification of the most suitable model for the analysis, maximum 
likelihood phylogenetic trees were generated using the IQ Tree software, version 1.6.12 
(http://www.iqtree.org/), with 100,000 replicates using ultrafast bootstraps. Phyloge
netic trees were then visualized by using FigTree version 1.4.2. (http://tree.bio.ed.ac.uk/
software/figtree/).
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