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A B S T R A C T   

To be efficient, locust swarm control must focus on the place where eggs are laid and hopper bands may appear. 
But swarms travel a lot and among all the places likely to host them, there is a need to predict to which exactly 
they will fly. It is then essential to consider movement dynamics to anticipate any displacement that may lead to 
a further reproduction of locust swarms. Swarms mostly fly downwind and sometimes upwind. We designed an 
agent-based model to explore swarm displacements depending on the direction of the wind and the possibility for 
the swarms to realise upwind flights. A primary objective was to assess how upwind flights can improve the 
replication – and prediction – of documented migratory paths. We looked at the effects of using upwind flight on 
the swarm ratio arriving in expected (i.e. historically known) areas. Our simulations clearly showed that using 
upwind flight helped for a better replication of Schistocerca gregaria migrations than not using upwind flight. Not 
using upwind flight reduced swarm dispersion and reduced the range of migrations. Hence, prevailing winds 
alone cannot explain locust swarm migrations. Food intake must also be considered to regulate movement dy-
namics and vegetated areas seem to be more attractive to locusts than expected. Our simulations did not perfectly 
reproduce the general patterns of migrations in some scenarios, but this invites further investigations and the use 
of other types of field data to calibrate the model. Nonetheless, our results highlighted the importance of upwind 
flight and showed the major role of wind and temperature on swarm displacement.   

1. Introduction 

Locusts are an old concern for agriculture around the world. The 
Bible’s Exodus itself referred to a locust invasion as the eighth plague of 
Egypt (Uvarov, 1944; Kritsky, 1997). Much more recently, swarms of the 
Desert Locust (Schistocerca gregaria Forskål, 1775) invaded Eastern Af-
rica in 2020 (Sultana et al., 2021). Such plagues appear because of a 
biological specificity of locust species called phase polyphenism (Pener 
and Simpson, 2009). Under a specific population density threshold, lo-
custs live with solitarious behaviours and do not cause any issue. 
However, in some conditions, the population is more successful in its 
reproduction, the density increases, individuals change behaviour and 
as gregarious the adults start forming swarms. In the Desert Locust, it is 
when density reaches values between 200 and 1200 adults per hectare 
depending on vegetation cover, that locusts switch phase from solita-
rious to gregarious (Cissé et al., 2013). This phase change, or gregari-
zation, is expressed in behavioural, colour, morphological, 
physiological, and life history changes (Pener and Simpson, 2009). 
Once, in the gregarious phase, the insects become much more active and 

eat and devastate all vegetation on their way. 
A good knowledge of the biotopes favourable to population upsurge 

and phase change is essential for preventive management (Piou and 
Marescot, 2023). To prevent crises in their early beginning, and because 
swarms are much harder to eradicate once formed, control measures 
mainly focus on preventing the apparition of swarms (Magor et al., 
2008). Unfortunately, many of the areas where gregarization happen are 
subject to remoteness such as isolated parts of Sahara or are even in war 
such as Somalia and Yemen, or insecurity such as some countries in the 
Sahel, the horn of Africa or the Arabic Peninsula (Showler, 2003). In 
addition, these countries often suffer from a lack of funds to organise the 
necessary monitoring despite international assistance through the FAO 
(Katel et al., 2021). The main consequence is that the Desert Locust still 
stays one of the major pests in Africa. Because crises still occur, there is a 
real need to better understand swarm displacement. 

Once the swarms are formed, it is essential to forecast their move-
ments in order to anticipate future reproductions that may lead to 
worsen crisis situation. In addition, the climate change could lead to 
unexpected and spontaneous migrations towards environments still 
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known to be hostile to locusts (Meynard et al., 2017; CN 2020). Swarm 
migrations were thus recorded and studied, but available documenta-
tion is quite old. Most of the existing scientific articles have been written 
in 1940s-1980s and were cited in Uvarov’s second volume of “Grass-
hoppers and locusts” (Uvarov, 1977). From these, it is known that the 
locusts’ migratory behaviours are strongly influenced by environmental 
conditions such as wind, vegetation, sunshine and landscape structure 
(Kennedy, 1951). Intrinsic locust characteristics such as the level of 
gregarization (gregariousness) and the average age of swarms play also 
important roles (Kennedy, 1951). Swarms mostly fly downwind but also 
sometimes upwind (Draper, 1980). These upwind flights often defeat the 
usual forecasts. Hence, a major challenge in forecasting migration routes 
of locusts is to consider the role of these upwind flights. 

Several agent-based models have been developed to understand 
phase polyphenism and marching behaviours of hoppers of locusts 
(Collett et al., 1998; Romanczuk et al., 2009; Yates et al., 2009; Ariel and 
Ayali, 2015; Dkhili et al., 2017). Some density-based partial differential 
models were also used to simulate the dynamics of swarms (Topaz et al., 
2008; 2012). However, only one model was developed so far with the 
objective to be able to predict flight direction of swarms in response to 
environmental conditions: an adaptation of HYSPLIT, an atmospheric 
particle diffusion model (Stein et al., 2015). The swarm version of this 
model was not published in the scientific literature and lack an evalu-
ation process. Moreover, upwind flights were not considered nor the 
specificities of the swarms or their interaction with the vegetation. To fill 
these gaps, agent-based modelling can be a very interesting approach to 
simulate swarm migrations considering the swarms characteristics and 
their interaction with the environment. Such agent-based models built 
on general concepts and empirical knowledge can bring solid scientific 
answers especially if they are supported by simulations reproducing 
field data in a pattern-orientated modelling approach (Grimm et al., 
2005). With the development of free and near real-time meteorological 
and remote sensing data, agent-based models using such environmental 
data can become very realistic and descriptive of real-world problem 
(Edmonds and Moss, 2004). 

Following this approach, our study objective is to design an agent- 
based model dealing with locust swarms’ migration phenomenon. We 
wanted to study and consider the cases when swarms can fly upwind. 
Hence, we developed the model considering downwind and upwind 
flights as well as the relative frequencies of flying and feeding behav-
iours depending on the swarm status. During Desert Locust crises in West 
and North-West Africa in 2004 (Ceccato et al., 2007), and in East Africa 
and the Horn of Africa in 2019–2020 (Sultana et al., 2021), noticeable 
swarm movements were documented. Hence, we aim at reproducing the 
spatial patterns of swarm occurrence observed in these two regions 
during 8 periods of 2 months, in 2004 and in 2019–2020. The replication 
of the routes observed during these different periods was a way to 
compare model versions and parameterisations. Finally, in addition to 
studying and understanding swarm movement, the present model could 
become a tool to anticipate migration routes and to adapt control op-
erations accordingly. 

2. Material and methods 

2.1. Model description 

The SANDMAN (Swarm migrAtion uNder winD, teMperature and 
vegetAtion iNfluence) model description follows the ODD (Overview, 
Design concepts, Details) protocol designed for agent-based and 
individual-based modelling (Grimm et al., 2006, 2010,2020). 
SANDMAN was implemented with Netlogo (Wilensky, 1999), our code 
is available at: https://doi.org/10.18167/DVN1/1UIN2P . 

2.1.1. Purpose and patterns 
SANDMAN aims to explore under which wind (direction and speed), 

temperature and vegetation conditions the swarms of Schistocerca 

gregaria can fly. The aim is to reproduce the migration routes of swarms 
observed in West and East Africa respectively in 2004 and 2019–2020. 
The migration routes shall emerge from the interaction of the swarms 
with their environment. 

2.1.2. Entities, state variables and scales 
Entities: SANDMAN consists of two types of entities: the swarms of 

Schistocerca gregaria and the cells representing the environment. Table 1 
presents their state variables or attributes. 

The swarms are characterised by their geographic coordinates, their 
surface in km2 (Swsize), their age in days, and their quantity of available 
energy (E) in kcal. These agents are keeping track of their status during 
the days through some other characteristics: the delays in flight delay1 
and delay2 are respectively proportions of time not flying due to feeding 
and unavailable food, H is the height of flight, dist is the travelled dis-
tance and flightspeed is the flight speed. The energy states of a swarm are 
kept in En (energy needs), Em (energy dedicated to movement), Ep 
(energy dedicated to physiological maintenance), Es (energy which can 
be stored), and swarmasfood (energy given by a swarm as a resource in 
case of cannibalism, expressed in kcal). Additionally, a storage vector of 
experienced temperature Vt per day allows to compute the minimal air 
temperature at take-off the next day, also stored at the swarm level 
(ATD). 

The cells correspond to 10 km by 10 km areas, characterised by air 
temperature in ◦C (T), wind speed in m/s (WS) and wind orientation in 
degrees (windorient: 0◦ to 360◦, clockwise, northward = 0◦). The quan-
tity of vegetation present on these 100 km2 is materialised through a 
value of NDVI (Normalised Difference Vegetation Index) that corre-
sponds to the difference between the visible red band and the near- 
infrared band, sensitive to the vigour and quantity of vegetation (Pet-
torelli et al., 2011). This value is regularly converted as kcal under the 
name Ev (energy resource represented by the vegetation, see § 2.1.7). 

Spatial scale: SANDMAN is spatially explicit, in a 1000×450 cells 
space with finite boundary conditions (non-toroidal world). This envi-
ronment geographically corresponds to the whole of northern Africa and 
part of western Asia extending eastwards to India (Fig. 1). 

Time scale: The model includes two types of processes, at two 
different scales. The main time step represents one day, exactly 21 h. 
Inside, for the second temporal level, we consider 7 periods of 3 h each 
corresponding to a possibility of displacement. As swarms do not fly by 
night, the 8th period is not used, because it corresponds to the middle of 
the night at the intertropical longitudes represented by the model. The 
typical time horizon of the simulations is 60 days. The 3-hour steps were 
chosen from the climatic data availability (see § 2.1.6). 

2.1.3. Process and scheduling 
From this point, the sub-models are abbreviated SM and associated 

information can be found in Section 2.1.7. The processes are described 
in Fig. 2. At the beginning of the day and then every 3 h, a process 
updates the environment cells in terms of wind and temperature, and 
eventually vegetation (SM1). For a swarm, during a period of 3 h, six 
functions are called. The first two ones estimate the food requirements of 
the swarm (SM2) and the resource availability of the cell (SM3). The 
feeding process only starts when the swarm is hungry. Depending on the 
previous functions output and if vegetation is available, the swarm feeds 
(SM4) if vegetation is available. If not, the swarm begins a cannibalism 
process (SM5) that reduces its size. Sub-model SM6 checks if the con-
ditions are met for take-off and computes in which direction the swarm 
should go depending on temperature and wind speed. Then, all results of 
the previous blocks are computed (SM7) in terms of delay due to 
feeding, orientation and flight speed to determine the actual displace-
ment. All swarms are actualised following these six processes every 3 h. 
Also, the day temperature is stored for each swarm every 3 h in a list Vt. 
Once the first seven 3 h-periods have passed, Vt is used to compute the 
minimal air temperature at departure for the next day (SM8). Finally, 
the age of the swarm increases by 1 day. 

M. Sorel et al.                                                                                                                                                                                                                                   

https://doi.org/10.18167/DVN1/1UIN2P


Ecological Modelling 489 (2024) 110622

3

2.1.4. Design concepts 
Basic principles: The model was tuned to reproduce real-world 

observations of 8 periods, named hereafter “scenarios” (Table 2). For 
2004, specific time of the year were considered to focus on large scale 
movements. 

Emergence: the trajectories travelled by the swarms emerge from 
interaction with environment, and from their movements. 

Sensing: swarms perceive the attributes of the environmental cell 
where they are located: vegetation, temperature, wind speed and wind 
direction. 

Interaction: swarms interact with cells by feeding on available 
vegetation and thus reduce it. They do not interact with other swarms. 

Stochasticity: at initialisation, swarms are generated with random 
coordinates within a given area. It is the only source of stochasticity in 
the model. 

Observation: every day, the swarms’ new computed coordinates 

Table 1 
Parameters and selected values.  

Name Type Value Description Sub- 
Model 

Remarks 

age Swarm 
state 

0–60 Swarm age in 
days 

2  

dist Swarm 
state 

Variable Distance 
travelled by a 
swarm 

7  

delay1 Swarm 
state 

propdelay, 
1 

Proportion of 
the potential 
distance 
travelled by a 
swarm 

4 Delay due to 
time lost for 
feeding 

delay2 Swarm 
state 

Variable Proportion of 
the potential 
distance 
travelled by a 
swarm 

4 Delay due to 
lack of 
resources in 
the cell 

E Swarm 
state  

Global energy 
state of a 
swarm in kcal 

2, 4, 
5, 7  

En Swarm 
state 

Variable Energy needs 
of a swarm 

2 Energy 
needed to 
perform an 
average 3 h- 
trip 

Em Swarm 
state 

Variable Moving part of 
the energy 
needs 

2  

Ep Swarm 
state 

Variable Physiological 
part of the 
energy needs 

2  

Es Swarm 
state 

Variable Energy stock 
possibly made 
by a swarm 

3  

flightspeed Swarm 
state 

Variable Flight speed of 
a swarm 

7  

H Swarm 
state 

Variable Swarm 
distance from 
the ground in 
m 

7  

Swsize Swarm 
state 

Variable Swarm size in 
km2 

2, 5 Value set to 
2.8 km2 for 
initialisation 

Vt Swarm 
state 

Variable Vector of 
experienced 
temperature 
over the last 24 
h 

8 Contains 8 
values 
experienced 
by the swarm 

Ev Cell 
state 

Variable Available 
energy on a 
patch in kcal 

3, 4 Conversion of 
the vegetation 
quantity from 
NDVI 

comvbiom Global 400 Conversion 
factor to 
convert 
biomass (kg) 
into kcal 
Source: Weis- 
Fogh & Uvarov 
(1952) 

2, 3 Mean 
computed 
within the 
interval [300, 
500] 

density Global 50 000 
000 

Mean number 
of individuals 
per km2 within 
a swarm 
Source: Rainey 
(1963) 

2, 5  

meanspeed Global 4 m/s Mean flight 
speed fixed for 
swarms 
Source: Roffey 
& Magor 
(2003) 

2, 7 Air speed, 
mean 
computed 
within the 
interval [3.8, 
4.3] 

maxspeed Global 10 m/s Maximal 
swarm flight 
speed 

7   

Table 1 (continued ) 

Name Type Value Description Sub- 
Model 

Remarks 

NDVI Global 0.0–1.0 Quantity of 
vegetation 

3, 4 Updated 
every 10 or 16 
days 

WS Global Variable Wind speed in 
m/s 

6, 7 Updated 
every 3 h loop  

Fig. 1. Netlogo’s graphical interface of the SANDMAN model. Pixels in green 
correspond to the vegetation index (NDVI). Pink arrows are the swarms dis-
played with their trajectories. Validation areas are represented in purple (see 
§ 2.2). 

Fig. 2. Organisation of the 8 sub-models. The blue boxes represent the entities, 
the orange diamonds the Boolean sub-models in which information is stored, 
and the grey boxes the action sub-models updating variables or making the 
swarms move (see § 2.1.7). 

M. Sorel et al.                                                                                                                                                                                                                                   



Ecological Modelling 489 (2024) 110622

4

trace the displacements. These trajectories allow to compare the results 
of the simulations with the real-world field surveys at the corresponding 
periods. To do so, we plotted arrival polygons from field observations 
and we counted the swarms that reached them after a 10-day period (see 
Appendix A). This allowed us to assess the performance of our model 
and validate it. During the displacements, an output variable was 
tracked (inrealD) as a goodness of fit score of the model. It corresponded, 
each day, to the proportion of simulated swarms present in the places 
where locusts were observed at the same period (= the expected areas) 
among the total number of simulated swarms. The higher inrealD, the 
better the model. By construction, inrealD varies between 0 and 1. The 
maps illustrating field observations were generated with the field survey 
data stored in the FAO’s (Food and Agriculture Organization of the 
United Nations) datasets (see § 2.1.6). The values of inrealD were used 
for the two phases of analyses of the model: a calibration phase where 
we looked for the parameter values optimising this score for 4 chosen 
scenarios of two alternative model versions (with and without upwind 
flight) (§ 2.2), and an exploration phase where we analysed the ability of 
the best model version (with upwind flight) to reproduce 8 scenarios. 
The parameters for this model version were chosen according to the 
calibration phase. During the exploration phase, we also looked at the 
ratio of upwind flights over the total number of flights performed by the 
simulated swarms. 

2.1.5. Initialisation 
The initialisation of the model depends on which of the 8 scenarios 

we try to reproduce, in two periods of outbreak: years 2004 and 
2019–2020. 50 swarms are randomly generated on a given region 
delimited by a square of minimum and maximum longitude and latitude 
(Table 2). Swarms have an initial age of zero day, and have an energy 
reserve to ensure physiological needs for the next 3 h. Their size is set to 
2.8 km2, which is an average swarm size computed on the FAO dataset 
(O’Neill, 2020). 

2.1.6. External inputs 
Wind, temperature: wind data (speed and orientation) at about 200 

m above ground level (air layer between 1000 hPa and 985 hPa) and air 
temperature were downloaded and prepared from the MERRA-2 project 
(Modern-Era Retrospective analysis for Research and Applications, 
Version 2) (Gelaro et al., 2017) of the American National Aeronautics 
and Space Administration (NASA). The MERRA-2 portal is hosted at 
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2. Every day and every 
3 h steps, these data are entered into the model from raster files. 

NDVI: in order to obtain estimates of vegetation biomass we chose 
NDVI data at 1 km resolution. We used a 10 day-average product: 
“PROBA-V S10 TOC NDVI 1 KM: Decadal NDVI synthesis of S1’s as 
Maximum Value Compositing” (Roujean et al., 2018) for years 
2019–2020. For year 2004, the NDVI was derived from the NOAA 
MOD13A2 product (Didan et al., 2015) with a temporal resolution of 16 
days. 

Validation areas: The data used to validate the scenarios were real- 
world swarm presence maps. These maps contained polygons that we 

interpolated from the coordinates of swarm recorded during field sur-
veys (see Appendix A). Those polygons delineated the areas with high 
probability of swarm presence, that we call expected areas. These data 
were extracted from FAO’s Locust-Hub database that stores the national 
field teams’ survey and control results (O’Neill, 2020). Records range 
from 1985 to 2021; we worked only with the 2004 and 2019–2020 data. 

2.1.7. Sub-models 
The SANDMAN model includes 8 sub-models. 
SM1: Environment update. This first sub-model updates the envi-

ronmental variables: temperature, wind strength, wind direction and 
vegetation quantity (NDVI). Temperature and wind data are updated 
every 3 h. NDVI is updated every 16 days (2003–2013) then 10 days 
(2014–2020). The maps of expected areas displaying real-world swarm 
presence are imported every 10 days. 

SM2: Hungry? A swarm with not enough energy to move needs to 
eat. Then, in order to estimate a swarm’s hunger, we need to calculate 
the swarm basic energy needs En. We were inspired by the Dynamic 
Energy Budget theory that identifies the allocation of resources in 
different typical compartments (Kooijman et al., 2008). We considered 
two requirements: the need for physiological maintenance Ep, and the 
need for movement Em, for a 3 h-duration. 

En = Ep + Em (1) 

Ep was obtained by monitoring the food quantity consumed by 
Schistocerca gregaria as a function of age (Davey, 1954): up to day 5, the 
amount of biomass consumed increases with age. Day 6 and after, this 
quantity is fixed at 1 g/day, following Davey’s observations: 

food quantity =

{
0.409 + 0.141 × age, if age < 6

1, if age ≥ 6 (2) 

Then, the quantity of food required for physiological maintenance is 
transformed from g/individual/day to kcal/swarm/3 h: 

Ep =
food quantity × 0.001 × Swsize × density × convbiom

4
(3)  

where Swsize is the swarm size, density is the number of individuals per 
km2 (in a medium swarm) and convbiom is the conversion factor from kg 
of biomass to kcal. Because it is considered that a swarm cannot fly more 
than 12 h, the formula is divided by 4, to be related to the 3 h-time steps. 

The energy required for the movement Em is calculated indepen-
dently of age, by using the metabolic rate. Weis-Fogh (1952) gave a 
metabolic rate estimated as proportional (factor 9.8287) to the square of 
the mean flight speed and expressed in kcal/kg/h. Thus, we convert it to 
be comparable with Ep using this equation: 

Em = 9.8287 × meanspeed 2 × 0.002 × Swsize × density × 3 (4)  

where 0.002 kg is the average weight of an adult locust (Pélissié et al., 
2016). The value is reported to a full swarm as in the previous equation. 
The factor 3 represents the 3 h-time steps. For a given swarm, when the 
energy needs En is higher than the current state of energy E, the Boolean 

Table 2 
List of the real-world observation periods, hereafter named "scenarios". The regions are either Western Africa (WA) or Eastern Africa (EA).  

Scenario # Year Start date End date Region Coordinates of initialisation* 

1 2004 January 1 February 29 WA (− 14, − 11, 20, 24) 
2 2004 March 1 April 30 WA (− 13, − 11, 22, 28) 
3 2004 June 1 July 31 WA (− 9, − 6, 27, 31) 
4 2004 September 1 October 31 WA (− 16, − 7, 15, 18) 
5 2019 October 1 November 30 EA (44, 49, 8, 10) 
6 2019–2020 December 1 January 31 EA (44, 49, 7, 11) 
7 2020 February 1 March 31 EA (36, 39, − 1, 6) 
8 2020 April 1 May 31 EA (35, 41, − 1, 8) 

*Initialisation of swarms within a square given by these four coordinates in degrees as: minimum longitude, maximum longitude, minimum latitude 
and maximum latitude. 
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hungry? is set to true. 
SM3: NDVI? Here we check the resources available for a swarm to 

increase its energy. We first check if there is any vegetation in the cell. 
To do so, NDVI is converted into energy available for consumption, 
expressed in kcal, using the following formula, based on Meneses-To-
var’s works (2011): 

Ev =
(
3× 10− 8 ×(NDVI × 128 + 128)4.2473)

× 107 × convbiom (5) 

In this equation NDVI value is converted to tons of biomass per 
hectare (first part of the equation), and then converted to kilograms with 
the factor 107 and kilocalories using convbiom. Vegetation is available 
when Ev > 0, and the result is stored in the Boolean variable NDVI? 

When feeding, locusts can build up food reserves and store energy 
(Es) for their physiological needs over 2 time periods (6 h overall), plus 
their movement over the current period: 

Es = Ep × 2 + Em (6) 

When Ev is higher than Es, the swarm can build up reserves. If not, all 
the biomass in the cell is consumed. Information about the available 
quantity of vegetation for feeding is stored in a Boolean variable enough? 

SM4: Greenfood. This sub-model updates the swarm and the cell 
state variables representing the food intake on vegetation, and considers 
the consequences on the displacement. We first set delay1 as propdelay 
(Tables 1, 3 and 4), as swarms fly for less time because of the time they 
take to eat. Then, we refer to SM2: if enough? is true, the swarm eats its 
part, then Ev and E are actualised (by removing Es from Ev and adding Es 
to E). If enough? is false, the swarm eats all the vegetation, E is updated 
(by adding Ev) but Ev is set to 0. In this case, we also compute delay2. 
Because the swarm does not eat according to its needs, it only flies the 
distance made possible by partial feeding. Thus, delay2 is calculated as 
follow: 

delay2 =
E
En

(7) 

Finally, the new Ev value is converted into NDVI by the inverse 
function of Eq (5), presented in SM3. 

SM5: Cannibalism. This sub-model updates the energy state E and 
swarmasfood when locusts eat each other. When no vegetation is avail-
able, locust caloric requirements to move remain the same. Cannibalism 
was already observed in adults of Schistocerca gregaria in the case of 
nitrogen deficiency (van Huis et al., 2008). Thus, locusts can eat each 
other to achieve sufficient energy to move. An equivalence of the 
swarm’s number of locusts is then transformed in kcal as follow: 

swarmasfood = 1790 × 0.002 × density × Swsize (8)  

where we use the factor 1790 to convert a locust in kcal/kg (Van Huis, 
2013; Elagba, 2015; Kouřimskáa and Adámkováb, 2016; Mariod, 2020). 

Contrasting with SM2 that considers energy storage, cannibalism is 
the last resort for feeding. Thus, the swarm will only absorb the amount 
of energy needed for the flight, i.e. the difference between the needed 
energy En and E (actual energy available for a given swarm). We then 

compare this quantity with swarmasfood. If the swarm is enough 
regarding the need (swarmasfood > En - E), swarmasfood is reduced by 
the amount of energy required (En – E). This loss is then reflected in 
Swsize, in the same proportion as energy loss (Swsizet+1 = Swsizet −

En− E
swarmasfood× Swsizet), and E is updated. If the swarm is not enough, or if its 
size is smaller than 1 km2, it dies. 

SM6: Takeoff? This submodel first checks if the required conditions 
to take off are reached. Swarm’s take off mainly depends on the local 
solar time computed from the longitude of swarm’s position. Swarms 
cannot fly at night, between 9:00PM and 9:00AM. The minimum tem-
perature for take-off corresponds to ATD (Air Temperature at Departure) 
(see SM8). In addition, local temperature needs to be higher than a 
minimum activity threshold (Table 3) and wind may not be too strong 
(Table 3, below WSmaxAct) to allow take off. Temperature and wind 
conditions also define swarm orientation. Swarms are considered to fly 
downwind, except in specific situations when temperature is not too 
high (Table 3, below Tmax), and wind is not too strong (Table 3, below 
WSmaxFlt). These parameters are explored in order to adjust flight be-
haviours during swarm flights (Table 3 & §2.2). 

SM7: Fly. Here we compute the results of the previous sub-models in 
order to define the real distance travelled by the swarms and then make 
them move. If take off is allowed, swarm flight speed must be calculated 
and depends on wind orientation. 

flightspeed =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

meanspeed − WS, if upwind flight

0.9071 × WS − 0.199 × WS2+

0.0049 × H − 3.7373, if downwind flight
(9) 

When swarms fly upwind, we use the average flight speed meanspeed 
(Table 1) and the wind speed WS. When swarms fly downwind, they are 
borne by the wind. Their speed depends on that of the wind, and also on 
height and temperature. Based on Rainey’s works (Rainey, 1963), we 
used a formula where height (H) is computed as a function of temper-
ature obtained by relating height measurements to temperature records 
(Tr) of the same period, obtained from the Berkeley Earth database 
(Rohde and Hausfather, 2020): 

H = 76.867 × (Tr − 20) (10) 

We set flight speed between 0 and a maximal speed maxspeed 
(Table 1). flightspeed is then transformed in km/h with the factor 0.36 
and multiplied by 3 flight hours and delays (delay1 and delay2) from the 
feeding process to obtain an estimate of the distance dist travelled during 
this flight: 

dist = flightspeed × 0.36 × 3 × delay1 × delay2 (11) 

Swarms finally travel a distance dist downwind, or upwind using the 
information windorient, in a deterministic way (flight orientation =
windorient or windorient + π respectively). The energy required to 
perform this flight is then subtracted from E. 

Table 3 
Parameters explored to perform an upwind flight.  

Name Description Explanations Tested values 

Tmin Minimal temperature ( ◦C), allowing activity When temperature is lower, the swarm is cold and cannot move, take off or fly. [15, 17, 19, 21, 
23] 

Tmax Maximal temperature ( ◦C), allowing upwind 
flight 

When temperature is higher, the swarm rises too high, and must be carried by the wind. Thus, it 
cannot fly upwind. 

[25, 30, 35, 40, 
45] 

WSmaxFlt Maximal wind speed (m/s), allowing upwind 
flight 

When wind speed is higher, the swarm cannot fly upwind. When upwind flight is impossible this 
variable is set to 0. 

[2, 3, 4, 5, 6] 

WSmaxAct Maximal wind speed (m/s), allowing activity When wind speed is higher, the swarm cannot take off or fly because of turbulence. When 
upwind flight is possible, this variable is set to be ≥ WSmaxFlt + 2 

[3, 4, 5, 6, 7] 

propdelay Proportion, giving its value to delay1 in SM4 
and applied to dist in SM7 

Represents the proportion of the distance that is actually travelled because of delay for feeding [0.1, 0.25, 0.5, 
0.75, 0.9]  
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SM8: ATD. This sub-model stores daily air temperature every 3 h in a 
list Vt. At the end of the day, it points out the maximum and the mini-
mum and then computes the air temperature at departure ATD that will 
be used the next day, based on the work of Waloff and Rainey (1951): 

ATD = 5.6 +

(

0.74×
min(Vt) + max(Vt)

2

)

(12)  

2.2. Simulations 

As explained in “Basic principles”, we used 8 scenarios to adjust and 
explore the model’s outputs (Table 2). As seen in SM6, the parameters 
related to flight possibility and direction were explored to evaluate the 
role of upwind flights in locust migration (Table 1). Other factor 
explored was the delay due to feeding propdelay. 

We used two versions of our model SANDMAN in order to determine 
if upwind flights affect the quality of the predictions. In a first version 
(IUF, Impossible Upwind Flight), we prevented any swarm movement 
against the wind by deactivating the process of upwind flight: parame-
ters WSmaxFlt and Tmax were set to 0. Conversely, in the PUF (Possible 
Upwind Flight) version, these two parameters were activated, so swarms 
could fly against the wind. In this last version, we constrained the 
exploration by forcing a difference of 2 m/s between WSmaxFlt and 
WSmaxAct to unsure that actual upwind flights could be possible. 

In a calibration phase, for each version of the model, we simulated 
five replicates for 4 real-world scenarios (scenarios number 3 and 4 in 
2004, and 6 and 7 in 2019) using combinations of 5 values per param-
eter (Table 3). For each run we recorded inrealD values (see § 2.1.4) for 
the last 10 days of the scenarios to focus on the arrivals of flights after 60 
days. We kept the parameter values which maximised the inrealD score 
in two different ways. In the first way (thereafter called “Compr.”), we 
allowed the best compromise across the whole set of scenarios, trying to 

maximise the inrealD score as a mean of the results across all scenarios. 
In the second way (thereafter called “Best”), we used the parameters that 
maximised the scores for each tested scenario. We compared the inrealD 
scores between both versions of the model, by type of maximisation 
method and scenarios. 

In the exploration phase, we evaluated the efficiency of SANDMAN 
as a migration simulator for the 8 scenarios using the PUF version with 
the set of parameters values obtained with the compromise method 
(Compr.) in the calibration phase. We extracted the coordinates of the 
swarms every 10 days. We sorted these coordinates using 5 randomised 
simulations by scenario as previously, for every scenario. These co-
ordinates were reported on a map with the R software (The R Project for 
Statistical Computing, n.d.), with the positions recorded in the FAO 
dataset at the same periods. This visualisation allowed to compare the 
simulations and the real positions recorded across time, and to evaluate 
them as regards of typical migration patterns (Waloff, 1966). To eval-
uate the importance of upwind flights, we recorded the ratio of upwind 
flights over the total number of flights performed by the simulated 
swarms in the 8 scenarios. 

3. Results 

3.1. PUF and IUF calibration and comparison 

We looked at the effects of upwind flight on the swarm ratio in the 
expected area at the end of the simulation by comparing Possible up-
wind flight (PUF) and Impossible upwind flight (IUF) model versions. 
Focusing on the optimisation by scenario (Best in Fig. 3), the possibility 
of upwind flight (PUF) always reached higher or equivalent results than 
IUF. The proportion of simulated swarms found in the areas where they 
actually were present in both PUF and IUF models are close in Sc. 3 and 

Table 4 
Parameters obtained during the calibration phase on 4 scenarios (see Table 3 for parameter description) for the two model versions (PUF = Possible Upwind Flight; IUF 
= Impossible Upwind Flight).  

Name Tested values Best Sc. 3 Best Sc. 4 Best Sc. 6 Best Sc. 7 Compr. Compr.   
PUF IUF PUF IUF PUF IUF PUF IUF PUF IUF 

Tmin [15, 17, 19, 21, 23] 19 19 17 23 23 17 23 23 23 19 
Tmax [25, 30, 35, 40, 45] 45 0 45 0 40 0 45 0 45 0 
WSmaxFlt [2, 3, 4, 5, 6] 5 0 2 0 4 0 2 0 3 0 
WSmaxAct [3, 4, 5, 6, 7] 7 6 4 3 7 5 4 3 5 3 
propdelay [0.1, 0.25, 0.5, 0.75, 0.9] 0.25 0.1 0.9 0.25 0.9 0.25 0.5 0.75 0.25 0.1  

Fig. 3. Swarm ratio in expected areas at the end of the 60-day simulations obtained in the two versions of the model. Possible upwind flight in green (PUF). 
Impossible upwind flight in purple (IUF). Proportions are computed under two sets of parameter values: one optimised across all scenarios (Compr., dark green and 
dark purple boxplots) and one optimised for each scenario (Best, light green and light purple boxplots). Scenario 3 started in Jun. 2004, Sc. 4 in Sep. 2004, Sc. 6 in 
Dec. 2019 and Sc. 7 in Feb. 2020 (Table 2). 
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7, and clearly higher in Sc. 4 and 6. Focusing on the compromised 
optimisation (Compr. in Fig. 3), the proportions obtained for the PUF 
model version gave higher results in Sc. 3, 4 and 6 than the IUF model 
version. Conversely, the IUF results were higher in Sc. 7. Excepted in this 
last case, the PUF model version always gave equivalent or better results 
of swarm localisation than the IUF model version (Fig. 3). The best 
parameters for the different scenarios for PUF were often selecting the 
maximum Tmax value (45 ◦C) except in the case of scenario 6 (Table 4). 
The set of parameters to optimise all scenarios (Compr.) with possible 
upwind flight (PUF) selected the maximum Tmin and Tmax values, in-
termediate WSmaxFlt and WSmaxAct and a low value of propdelay 
(Table 4). The corresponding parameter set optimising all scenarios with 
impossible upwind flight (IUF) selected an intermediate value of Tmin 
and the lowest values for WSmaxAct and propdelay. 

3.2. Exploration by confronting the model to real data 

3.2.1. First period (Sc. 1–4, 2004) 
The first period focused on a plague that occurred in the North-West 

of Africa in 2003–2004, that is considered in scenarios 1 to 4. 
In Sc. 1 and 2, according to the real data, the swarms were not 

supposed to migrate for a long distance. The simulations did reproduce 

the expected migrations. Swarms remained present on the initialisation 
area in Mauritania throughout the whole simulation time. The model 
resulted in a very little movement only in Mauritania and Western 
Sahara, which corresponded to what was expected for these two sce-
narios (Appendix B). Conversely, in Sc. 3 and 4, real data showed sig-
nificant migration, northwards (Sc. 4) and southwards (Sc. 3). In Sc. 3, 
even if the simulated swarms did not reach the exact area where they 
were expected, the direction of the southward migration was respected 
(Fig. 4). In Sc. 4, the simulated swarms remained stuck in the initiali-
sation area in the south of Mauritania and Senegal, where records were 
present during the whole period of simulation, but they did not move 
northwards as it was expected regarding real data. 

3.2.2. Second period (Sc. 5–8, 2019–2020) 
The second period focused on a plague that affected Eastern Africa in 

December 2019 and 2020 and went on until the end of 2021, that is 
considered in scenarios 5 to 8 (Appendix C). 

In Sc. 5, the real records indicated a short migration event from the 
Horn of Africa towards the Somalian-Ethiopian border and the appear-
ance of more swarms near the Gulf of Aden. The simulated swarms 
actually moved westwards, but also southwards. In Sc. 6, the real data 
showed a large migration event from the North-East to the South-West, 

Fig. 4. Comparison map between FAO swarm records (black polygons) and SANDMAN simulated swarms (dark grey dots), run with the Possible Upwind Flight 
version using the parameter set selected with the compromise method (see §2.2). Computed from scenario 3 (Table 2). From left to right, the pictures were taken 
every 10 days, from June 1 to July 30, 2004. 
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across the area around the Ethiopian-Somalian boundary, up to Kenya. 
The simulated swarms followed this pattern, following a dispersion 
movement from East to West (Fig. 5). In Sc. 7 and Sc. 8, the expected 
migration events were short: the real data showed a dispersion from East 
to West following the trend of Sc. 7 and almost no movement in Sc. 8. In 
both cases, the simulated swarms migrated too far and too fast west-
wards, reaching areas such as the Democratic Republic of Congo (Sc. 7) 
or the South and even the North of Sudan (Sc. 8), where there was no 
record. 

The upwind-flights of swarms during the simulations of the 8 sce-
narios were ranging from 20% to 60% of the total performed flights 
(Appendix D), with more variations among than within scenarios. This 
result from the specific wind regimes and temperatures for each 
scenario. 

4. Discussion 

The objective of this study was twofold: i) build an integrative model 
from the literature on locust swarm movement and ii) evaluate its 
quality using simulations. With the development of this model, we could 
assess the influence of previously defined factors and processes affecting 
swarm movement. Our simulations clearly showed that upwind flight 
must be considered for a better replication of Schistocerca gregaria mi-
grations. Locust sometimes show such behaviours which are not pre-
vailing, so we had to integrate them into the model to reproduce reality. 
These results are consistent with the assumption that the flight routes 
are emerging from the interaction of locusts in the swarm with their 
environment in order to avoid inappropriate and dangerous areas as 
much as possible, particularly during low altitude flights (Shashar et al., 
2005). During the parameterisation process, the retained values for the 
upwind flight version of the model can be discussed in the light of desert 
locust literature. We address the importance of upwind flights in a first 
part of the discussion. In a second part, we discuss the representativity of 
the model in front of real-world observations. A third part discusses the 
large-scale constraints in modelling ecological processes. And a last part 
opens the discussion on the improvement of preventive management of 
desert locust. 

4.1. Upwind flight matters 

Desert locusts fly most of the time downwind, but they can also 
choose to fly upwind under certain conditions: light wind speed, rain in 
sight, or high ground (Draper, 1980; Symmons and Cressman, 2001). 
Even if upwind flight constitutes a small part of all flights, we added this 
ability to the model in order to better match locust behaviour. The 
comparison of the two versions of SANDMAN, computed with two 
optimisation methods, delivered either better or equivalent results when 
upwind flight was allowed, in 3 out of 4 scenarios with the exception of 
Sc. 7 (optimised with compromise). The maps of the 8 scenarios with the 
impossible upwind flight version (Appendix E) show also lower or 
equivalent quality of reproduction of the overall trajectories than with 
the possible upwind flight version (Figs. 3 and 4 and Appendices B and 
C). Not allowing upwind flights reduces swarm dispersion and reduces 
the range of migrations in SANDMAN. We also saw in our simulations 
that upwind flights could occur in SANDMAN up to 60% of the cases, 
depending on the scenarios (Appendix D). These results not only high-
lighted the importance of upwind flight in the replication of migrations, 
but also can be interpreted as a dependence on wind and temperature 
factors. We built the model’s relationship from the literature, and then 
we refined the parameter values to match the real-world patterns from 
different situations. However, we could not entirely validate the 
parameter values because of the few information available in the liter-
ature or real data. The retained values for the upwind flight version of 
the model are comparable to some old literature information. For 
example, the 5 m/s maximum wind speed allowing flight is relatively 
low in comparison to the conditions of swarm flights observed by Waloff 
(1972) of sometimes up to 7 m/s wind speed at 2 m during swarm flight. 
The 3 m/s maximum wind speed that allows upwind flight is realistic 
compared to Weis-Fogh’s (1956) tunnel assays measurements of 
maximum desert locust flight speed between 3.5 and 4.2 m/s. The 23 ◦C 
minimum temperature of activity is quite high in comparison to some 
observations of air temperature at departure below 20 ◦C by Waloff & 
Rainey (1951). Finally, the 45 ◦C maximum air temperature allowing 
upwind flight corresponds to a flight approximately at a height of 2000 
m, which has already been observed (Rainey and Waloff 1951). These 
small discrepancies between the literature and our results illustrate that 
further research in swarms’ flight conditions and on individual locust 

Fig. 5. Comparison map between FAO swarm records (black polygons) and SANDMAN simulated swarms (dark grey dots), run with the Possible Upwind Flight 
version using the parameter set selected with the compromise method (see §2.2). Computed from scenario 6 (Table 2). From left to right, the pictures were taken 
every 10 days, from Dec 1, 2019 to Jan 31, 2020. 
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flight behaviours would probably improve the realism of the model. 
In particular, we failed to reproduce the movement expected in Sc. 4 

(swarms travelling from South to North in West Africa). And yet this 
trajectory is one of the best known regarding Schistocerca gregaria 
(Symmons and Cressman, 2001; FAO, n.d.1). This area, at the relevant 
period, showed particular environmental conditions: strong warm air 
currents blowing from the Sahara, associated with an atmospheric 
depression over the western Mediterranean, helped swarm flight 
(Cressman and Stefanski, 2016). The locusts thus waited for warmer 
winds blowing from the South instead of using the prevailing cooler 
winds blowing from the North. We actually did observe such a move-
ment with SANDMAN, but during relatively short times and this was not 
enough to reproduce the swarm displacement that was observed in the 
field. One of the hypotheses we can put forward is that under those 
specific conditions, the swarms would be able to cover greater distances 
than we had anticipated. But it remains to be determined how and in 
which conditions. Another hypothesis is that locust flight is much more 
complex than current knowledge suggests. For instance, our model does 
not consider the role of thermal breezes. These coastal and local winds 
are caused by the difference in temperature between land and sea. They 
are independent of the general regime of winds and blow on a narrow 
coastal strip. At night and in the morning, they blow from the land to the 
sea, taking locusts off, then during the day from the sea to the land, 
driving them back towards the coast. According to the locust control 
services of Mauritania, this phenomenon has been observed many times, 
but was not documented and only orally spread in form of anecdotes. 
The locusts were thus able to benefit from the cyclic succession of these 
contrary winds regularly sending them in the opposite direction, to 
progress gradually northwards along the coast. This phenomenon would 
explain that the model did not reproduce in Sc. 4 the movements from 
Mauritania towards Morocco following the coast, that are yet well 
known and documented (FAO, 2004, n.d.2). Another question needs to 
be answered: apart from being sensitive to warmer temperature, what 
really motivates locusts to fly in the presence of strong headwinds? 
Could it be the perception of moisture brought by the wind? Or the sight 
of greenness? Or the perception of colours, even basic? There is a lot to 
be asked about and to launch further studies on this subject. This will no 
doubt help greatly in understanding locust movement. 

4.2. Representativity of the simulation outcomes 

The modelling of the swarm energy limits is inspired by the Dynamic 
Energy Budget theory (van der Meer, 2006; Kooijman, 2009) and allows 
to predict realistic travelled distances related to food intake. We 
confirmed that the effects of these energy limits are not artefacts, since 
swarms could move slower than expected (Sc. 4), or conversely be 
beyond the forecast (Sc. 7 and Sc. 8) where the swarms moved too fast 
and too far. The potential reasons why the model behaved differently 
(absence of swarm movement from coastal Mauritania to Morocco) from 
the empirical observations of Sc. 4 have been given earlier (§ 4.1), but 
we did not explain the scenarios in 2019–2020 when swarms moved too 
far. We talked previously about the migrations, whose main patterns 
mostly concern displacement between reproduction areas. With regard 
on this last point, our best lead explaining an excess of mobility would be 
an under-estimated attraction of the vegetated areas: in addition to 
being useful for feeding, these areas are a key element in the repro-
duction process (Roffey and Popov, 1968; Cissé et al., 2013; Maeno 
et al., 2020), which is not considered in SANDMAN. As a result, vege-
tated areas are probably much more attractive than we had modelled. In 
particular, the observed migration patterns follow the seasonality of 

vegetated areas in a way that they are synchronised with the repro-
ductive cycles (Symmons and Cressman, 2001). In order to accurately 
represent such a process, it would be necessary to integrate an additional 
layer of memory effect (i.e. the more vegetated areas a swarm finds, the 
faster it becomes able to find more), including a set of processes involved 
in the population dynamics. 

The scenarios were evaluated with maps of expected areas 
(Appendix A) but these maps could be hard to assess when looking at the 
scores if the relevant areas are too fragmented. This is why we did not 
only consider the scores but also the whole trajectory when confronting 
to real data. This way, we can have a more global evaluation of 
SANDMAN’s results, and we can also identify other explanations about 
the trajectories a bit far from what we expected. A main bias concerns 
the field observations. First, FAO dataset does not individually follow 
each swarm and does not distinguish different swarms in the same place. 
Second, SANDMAN does not include any population dynamics process, 
so we considered changes in the maps of FAO data as swarm displace-
ment. Our model also did not consider swarm reproduction while data 
actually includes young swarms that have just emerged. That means that 
we cannot know if a swarm notification concerns a new swarm that has 
just emerged or the movement of a previous one. Also, the cohesion level 
within a swarm could influence direction changes during flight (Edel-
stein-Keshet et al., 1998; Murakami et al., 2017; Yates et al., 2009). Such 
details are not given by the FAO dataset. Further analyses and consid-
eration of the different sources of uncertainties could improve the cali-
bration of SANDMAN. Dataset following specific swarms would enhance 
greatly this and could be the objective of further studies. 

4.3. Modelling large scale processes with agent-based models 

Swarm movement has already been modelled for forecasting pur-
pose, but was processed as particle diffusion, as in the model HYSPLIT 
developed by the NOAA/Air Resources Laboratory, one of the most 
widely used models to follow dispersion of atmospheric pollutants 
(Stein et al., 2015): all swarms reacted similarly to their environment, 
with no distinction. Conversely, we used here agent-based modelling in 
order to add specific history and behaviour to each swarm. We modelled 
migrations as a result of environmental data, the physical limits of the 
insects, and some biological processes reflected with the Dynamic En-
ergy Budget (Van der Meer, 2006). In this way, SANDMAN can more 
accurately predict the movement of swarms that have already been 
formed, using the same input information as other standard models. 

Large-scale individual-based models have been proposed quite early 
in the ecological modelling literature (e.g. Cary et al., 1992). Never-
theless, spatial processes at the continental scale are rarely implemented 
in agent-based models in ecology. Parry and Bithell (2012) differentiate 
two approaches to scaling up geographical processes in agent-based 
models: the super-individual approach and a multi-core hardware par-
allelisation (to increase the number of agents and/or the spatial extent). 
We used here a super-individual approach that allowed a potential gain 
of efficiency in term of computing speed and memory use. Our approach 
using remote-sensing and climatic models’ information at the scale of 
continents allowed us to focus on the interaction of the swarms as 
super-individuals to large scale climatic processes (wind, temperature 
and vegetation). Swarm behaviours are typically studied by analysing 
group movements emerging from individual interactions (e.g. Dkhili 
et al., 2017). However, the large-scale aspect of desert locust swarm 
migrations makes hard the analysis of processes at the level of the in-
dividual. Given the scale at which we need to consider our model, our 
approach is a good compromise between tractability and complexity of 
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the model. 
Agent-based models in ecology should consider individual- 

environment interactions to let emerge large-scale processes in order 
to investigate ecosystem and community ecology questions (Grimm 
et al., 2017). This approach has been widely accepted in population 
ecology and proposed by Huston et al. (1988) to unify ecological theory. 
When using a super-individual approach, we can still represent 
environment-individual interactions and demographic processes. How-
ever, the inter-individual interactions are lacking. An approach of 
comparison of small and large-scale models using respectively in-
dividuals and super-individuals could improve the realism of the 
super-individual ABMs, eventually even by calibrating these models 
with the outcomes of the small-scale models. Further efforts could be 
done in this direction, and locust questions are perfect examples of 
potentially benefiting problematic from such approaches. 

4.4. Improving preventive management 

Knowing and understanding swarm displacement is essential in 
curative locust control in general and in preventive control in particular. 
Preventive control in an upsurge context consists in anticipating where 
the swarms are going to move before they lay eggs, in order to despatch 
control teams on the spot and thus eliminate nymphs before imaginal 
moulting and further multiplication. Our model, based on the observa-
tion of pathways and modes of displacement of locusts observed for 
decades, is an additional tool to anticipate the evolution of an emerging 
crisis situation. Many other tools in early warning systems (Magor et al., 
2008; FAO, 2022) can be used to determine suitable areas for population 
clusters and reproduction: characterisation of biotopes, monitoring of 
rainfall, remote sensing (NDVI, soil moisture), etc. (Cressman, 2008, 
2013; Gómez et al., 2019; Piou et al., 2013, 2019; Piou and Marescot, 
2023). But it remains to discern among all these favourable areas the 
ones towards which the swarms will go. At this level, the experience of 
the anti-locust field teams is of course paramount (Gay et al., 2021). A 
tool such as that prefigured by SANDMAN or its possible further 
development, which allows to predict swarm movements by performing 
simulations using all types of winds, is a real plus for preventive control. 

Finally, contrary to common belief, considering that locust swarms can 
sometimes fly upwind significantly improves prediction accuracy and 
proposes some explanations for some displacements that are historically 
known and documented, but were not following the prevailing winds. 
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Appendix A 

In order to draw the maps of real-world swarm presence, it was first necessary to retrieve the FAO data (O’Neill, 2020), that are spatialised. Each 
swarm record had its own coordinates: latitude and longitude. These data were also associated with dates. In order to obtain more general trajectories, 
we grouped the data into 10-day periods and we cumulated the records. 

These data, in the form of coordinates, were then transformed in two steps: first, they were changed into a set of 2-dimension spatialised points, i.e. 
a point process (ppp object of the R Spatstat package (Baddeley et al., 2015)). This allowed to get a distribution map of swarms in Africa and in South 
West Asia. Second, we converted these point processes into densities. We used a Gaussian kernel with a standard deviation of 0.5◦ to obtain the density 
of points in the whole map with the function « density.ppp » of Spatstat. This conversion resulted in a concentration gradient of the swarm records 
across the entire map on pixels of 0.5◦ (see Piou et al. (2017) for an example of this methodology). We then transformed this rasterised information 
into polygons where at least one swarm could be found, the rest of the map being considered swarm-free. 

In this way, we produced polygons for each 10-day period corresponding to the scenarios used in the simulations. 

Appendix B 

(Fig. B-1, Fig. B-2, Fig. B-3) 
Scenarios 1, 2 & 4, Western Africa, 2004.     
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Fig. B-1. Scenario 1, Jan.-Feb. 2004.   

Fig. B-2. Scenario 2, Mar.-Apr. 2004.   
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Appendix C 

(Fig. C-1, Fig. C-2, Fig. C-3) 
Scenarios 5, 7 & 8, Eastern Africa, 2019–2020. 

Fig. B-3. Scenario 4, Sep.-Oct. 2004.   

Fig. C-1. Scenario 5, Oct.-Nov. 2019.   
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Appendix D 

(Fig. D-1)  

Fig. C-2. Scenario 7, Feb.-Mar. 2020.   

Fig. C-3. Scenario 8, Apr.-May 2020.   

Fig. D-1. Ratio of number of upwind flights over the total number of flights performed by simulated swarms of each scenarios with the optimised parameter set 
(Compr. PUF).  
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Appendix E 

To illustrate further the better quality of the reproduction of migration pathways with the PUF version of the model, we produce here the same 
maps as Figs. 3and 4 and Appendices B and C for the IUF model version. The Compr. IUF parameterisation (Table 4) was used. Note that the initial 
swarm number was the same: 50/replicate. However, the lack of mobility of swarms in this version of the model did reduce the swarm number in some 
scenarios when swarms did not find enough food (and reduced in size by cannibalism until “dying” in the simulations). This is particularly the case in 
Scenario 1 (Figs. E-1-E-8)       

Fig. E-1. Scenario 1, Jan.-Feb. 2004.   
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Fig. E-2. Scenario 2, Mar.-Apr. 2004.   

Fig. E-3. Scenario 3, Jun.-Jul. 2004.   
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Fig. E-4. Scenario 4, Sep.-Oct. 2004.   
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Fig. E-5. Scenario 5, Oct.-Nov. 2019.  

Fig. E-6. Scenario 6, Dec. 2019-Jan. 2020.  

Fig. E-7. Scenario 7, Feb.-Mar. 2020.   
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Fig. E-8. Scenario 8, Apr.-May 2020.  
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