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ARTICLE INFO ABSTRACT

Keywords: To be efficient, locust swarm control must focus on the place where eggs are laid and hopper bands may appear.
Agent-based model But swarms travel a lot and among all the places likely to host them, there is a need to predict to which exactly
Displacements

they will fly. It is then essential to consider movement dynamics to anticipate any displacement that may lead to
a further reproduction of locust swarms. Swarms mostly fly downwind and sometimes upwind. We designed an
agent-based model to explore swarm displacements depending on the direction of the wind and the possibility for
the swarms to realise upwind flights. A primary objective was to assess how upwind flights can improve the
replication — and prediction - of documented migratory paths. We looked at the effects of using upwind flight on
the swarm ratio arriving in expected (i.e. historically known) areas. Our simulations clearly showed that using
upwind flight helped for a better replication of Schistocerca gregaria migrations than not using upwind flight. Not
using upwind flight reduced swarm dispersion and reduced the range of migrations. Hence, prevailing winds
alone cannot explain locust swarm migrations. Food intake must also be considered to regulate movement dy-
namics and vegetated areas seem to be more attractive to locusts than expected. Our simulations did not perfectly
reproduce the general patterns of migrations in some scenarios, but this invites further investigations and the use
of other types of field data to calibrate the model. Nonetheless, our results highlighted the importance of upwind

Schistocerca gregaria
Decision support
Wind

flight and showed the major role of wind and temperature on swarm displacement.

1. Introduction

Locusts are an old concern for agriculture around the world. The
Bible’s Exodus itself referred to a locust invasion as the eighth plague of
Egypt (Uvarov, 1944; Kritsky, 1997). Much more recently, swarms of the
Desert Locust (Schistocerca gregaria Forskal, 1775) invaded Eastern Af-
rica in 2020 (Sultana et al., 2021). Such plagues appear because of a
biological specificity of locust species called phase polyphenism (Pener
and Simpson, 2009). Under a specific population density threshold, lo-
custs live with solitarious behaviours and do not cause any issue.
However, in some conditions, the population is more successful in its
reproduction, the density increases, individuals change behaviour and
as gregarious the adults start forming swarms. In the Desert Locust, it is
when density reaches values between 200 and 1200 adults per hectare
depending on vegetation cover, that locusts switch phase from solita-
rious to gregarious (Cissé et al., 2013). This phase change, or gregari-
zation, is expressed in behavioural, colour, morphological,
physiological, and life history changes (Pener and Simpson, 2009).
Once, in the gregarious phase, the insects become much more active and
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eat and devastate all vegetation on their way.

A good knowledge of the biotopes favourable to population upsurge
and phase change is essential for preventive management (Piou and
Marescot, 2023). To prevent crises in their early beginning, and because
swarms are much harder to eradicate once formed, control measures
mainly focus on preventing the apparition of swarms (Magor et al.,
2008). Unfortunately, many of the areas where gregarization happen are
subject to remoteness such as isolated parts of Sahara or are even in war
such as Somalia and Yemen, or insecurity such as some countries in the
Sahel, the horn of Africa or the Arabic Peninsula (Showler, 2003). In
addition, these countries often suffer from a lack of funds to organise the
necessary monitoring despite international assistance through the FAO
(Katel et al., 2021). The main consequence is that the Desert Locust still
stays one of the major pests in Africa. Because crises still occur, there is a
real need to better understand swarm displacement.

Once the swarms are formed, it is essential to forecast their move-
ments in order to anticipate future reproductions that may lead to
worsen crisis situation. In addition, the climate change could lead to
unexpected and spontaneous migrations towards environments still
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known to be hostile to locusts (Meynard et al., 2017; CN 2020). Swarm
migrations were thus recorded and studied, but available documenta-
tion is quite old. Most of the existing scientific articles have been written
in 1940s-1980s and were cited in Uvarov’s second volume of “Grass-
hoppers and locusts” (Uvarov, 1977). From these, it is known that the
locusts’ migratory behaviours are strongly influenced by environmental
conditions such as wind, vegetation, sunshine and landscape structure
(Kennedy, 1951). Intrinsic locust characteristics such as the level of
gregarization (gregariousness) and the average age of swarms play also
important roles (Kennedy, 1951). Swarms mostly fly downwind but also
sometimes upwind (Draper, 1980). These upwind flights often defeat the
usual forecasts. Hence, a major challenge in forecasting migration routes
of locusts is to consider the role of these upwind flights.

Several agent-based models have been developed to understand
phase polyphenism and marching behaviours of hoppers of locusts
(Collett et al., 1998; Romanczuk et al., 2009; Yates et al., 2009; Ariel and
Ayali, 2015; Dkhili et al., 2017). Some density-based partial differential
models were also used to simulate the dynamics of swarms (Topaz et al.,
2008; 2012). However, only one model was developed so far with the
objective to be able to predict flight direction of swarms in response to
environmental conditions: an adaptation of HYSPLIT, an atmospheric
particle diffusion model (Stein et al., 2015). The swarm version of this
model was not published in the scientific literature and lack an evalu-
ation process. Moreover, upwind flights were not considered nor the
specificities of the swarms or their interaction with the vegetation. To fill
these gaps, agent-based modelling can be a very interesting approach to
simulate swarm migrations considering the swarms characteristics and
their interaction with the environment. Such agent-based models built
on general concepts and empirical knowledge can bring solid scientific
answers especially if they are supported by simulations reproducing
field data in a pattern-orientated modelling approach (Grimm et al.,
2005). With the development of free and near real-time meteorological
and remote sensing data, agent-based models using such environmental
data can become very realistic and descriptive of real-world problem
(Edmonds and Moss, 2004).

Following this approach, our study objective is to design an agent-
based model dealing with locust swarms’ migration phenomenon. We
wanted to study and consider the cases when swarms can fly upwind.
Hence, we developed the model considering downwind and upwind
flights as well as the relative frequencies of flying and feeding behav-
iours depending on the swarm status. During Desert Locust crises in West
and North-West Africa in 2004 (Ceccato et al., 2007), and in East Africa
and the Horn of Africa in 2019-2020 (Sultana et al., 2021), noticeable
swarm movements were documented. Hence, we aim at reproducing the
spatial patterns of swarm occurrence observed in these two regions
during 8 periods of 2 months, in 2004 and in 2019-2020. The replication
of the routes observed during these different periods was a way to
compare model versions and parameterisations. Finally, in addition to
studying and understanding swarm movement, the present model could
become a tool to anticipate migration routes and to adapt control op-
erations accordingly.

2. Material and methods
2.1. Model description

The SANDMAN (Swarm migrAtion uNder winD, teMperature and
vegetAtion iNfluence) model description follows the ODD (Overview,
Design concepts, Details) protocol designed for agent-based and
individual-based modelling (Grimm et al., 2006, 2010,2020).
SANDMAN was implemented with Netlogo (Wilensky, 1999), our code
is available at: https://doi.org/10.18167/DVN1/1UIN2P .

2.1.1. Purpose and patterns
SANDMAN aims to explore under which wind (direction and speed),
temperature and vegetation conditions the swarms of Schistocerca
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gregaria can fly. The aim is to reproduce the migration routes of swarms
observed in West and East Africa respectively in 2004 and 2019-2020.
The migration routes shall emerge from the interaction of the swarms
with their environment.

2.1.2. Entities, state variables and scales

Entities: SANDMAN consists of two types of entities: the swarms of
Schistocerca gregaria and the cells representing the environment. Table 1
presents their state variables or attributes.

The swarms are characterised by their geographic coordinates, their
surface in km? (Swsize), their age in days, and their quantity of available
energy (E) in kcal. These agents are keeping track of their status during
the days through some other characteristics: the delays in flight delay1
and delay2 are respectively proportions of time not flying due to feeding
and unavailable food, H is the height of flight, dist is the travelled dis-
tance and flightspeed is the flight speed. The energy states of a swarm are
kept in En (energy needs), Em (energy dedicated to movement), Ep
(energy dedicated to physiological maintenance), Es (energy which can
be stored), and swarmasfood (energy given by a swarm as a resource in
case of cannibalism, expressed in kcal). Additionally, a storage vector of
experienced temperature Vt per day allows to compute the minimal air
temperature at take-off the next day, also stored at the swarm level
(ATD).

The cells correspond to 10 km by 10 km areas, characterised by air
temperature in °C (T), wind speed in m/s (WS) and wind orientation in
degrees (windorient: 0° to 360°, clockwise, northward = 0°). The quan-
tity of vegetation present on these 100 km? is materialised through a
value of NDVI (Normalised Difference Vegetation Index) that corre-
sponds to the difference between the visible red band and the near-
infrared band, sensitive to the vigour and quantity of vegetation (Pet-
torelli et al., 2011). This value is regularly converted as kcal under the
name Ev (energy resource represented by the vegetation, see § 2.1.7).

Spatial scale: SANDMAN is spatially explicit, in a 1000x450 cells
space with finite boundary conditions (non-toroidal world). This envi-
ronment geographically corresponds to the whole of northern Africa and
part of western Asia extending eastwards to India (Fig. 1).

Time scale: The model includes two types of processes, at two
different scales. The main time step represents one day, exactly 21 h.
Inside, for the second temporal level, we consider 7 periods of 3 h each
corresponding to a possibility of displacement. As swarms do not fly by
night, the 8th period is not used, because it corresponds to the middle of
the night at the intertropical longitudes represented by the model. The
typical time horizon of the simulations is 60 days. The 3-hour steps were
chosen from the climatic data availability (see § 2.1.6).

2.1.3. Process and scheduling

From this point, the sub-models are abbreviated SM and associated
information can be found in Section 2.1.7. The processes are described
in Fig. 2. At the beginning of the day and then every 3 h, a process
updates the environment cells in terms of wind and temperature, and
eventually vegetation (SM1). For a swarm, during a period of 3 h, six
functions are called. The first two ones estimate the food requirements of
the swarm (SM2) and the resource availability of the cell (SM3). The
feeding process only starts when the swarm is hungry. Depending on the
previous functions output and if vegetation is available, the swarm feeds
(SM4) if vegetation is available. If not, the swarm begins a cannibalism
process (SM5) that reduces its size. Sub-model SM6 checks if the con-
ditions are met for take-off and computes in which direction the swarm
should go depending on temperature and wind speed. Then, all results of
the previous blocks are computed (SM7) in terms of delay due to
feeding, orientation and flight speed to determine the actual displace-
ment. All swarms are actualised following these six processes every 3 h.
Also, the day temperature is stored for each swarm every 3 h in a list Vt.
Once the first seven 3 h-periods have passed, Vt is used to compute the
minimal air temperature at departure for the next day (SM8). Finally,
the age of the swarm increases by 1 day.
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Table 1
Parameters and selected values.
Name Type Value Description Sub- Remarks
Model
age Swarm 0-60 Swarm age in 2
state days
dist Swarm Variable Distance 7
state travelled by a
swarm
delayl Swarm propdelay, Proportion of 4 Delay due to
state 1 the potential time lost for
distance feeding
travelled by a
swarm
delay2 Swarm Variable Proportion of 4 Delay due to
state the potential lack of
distance resources in
travelled by a the cell
swarm
E Swarm Global energy 2,4,
state state of a 57
swarm in kcal
En Swarm Variable Energy needs 2 Energy
state of a swarm needed to
perform an
average 3 h-
trip
Em Swarm Variable Moving part of 2
state the energy
needs
Ep Swarm Variable Physiological 2
state part of the
energy needs
Es Swarm Variable Energy stock 3
state possibly made
by a swarm
flightspeed Swarm Variable Flight speed of 7
state a swarm
H Swarm Variable Swarm 7
state distance from
the ground in
m
Swsize Swarm Variable Swarm size in 2,5 Value set to
state km? 2.8 km? for
initialisation
\%3 Swarm Variable Vector of 8 Contains 8
state experienced values
temperature experienced
over the last 24 by the swarm
h
Ev Cell Variable Available 3,4 Conversion of
state energy on a the vegetation
patch in kcal quantity from
NDVI
comvbiom Global 400 Conversion 2,3 Mean
factor to computed
convert within the
biomass (kg) interval [300,
into kcal 5001
Source: Weis-
Fogh & Uvarov
(1952)
density Global 50 000 Mean number 2,5
000 of individuals
per km? within
a swarm
Source: Rainey
(1963)
meanspeed  Global 4m/s Mean flight 2,7 Air speed,
speed fixed for mean
swarms computed
Source: Roffey within the
& Magor interval [3.8,
(2003) 4.3]
maxspeed Global 10 m/s Maximal 7
swarm flight
speed
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Table 1 (continued)

Name Type Value Description Sub- Remarks
Model
NDVI Global 0.0-1.0 Quantity of 3,4 Updated
vegetation every 10 or 16
days
ws Global Variable Wind speed in 6,7 Updated
m/s every 3 h loop

| : .
Pixels of 10km by 10km
storing informationon
wind, vegetation
and temperature

4 Wl L o 5
¥ 2 Zones of real observation

: i of swarms at a given date
3 (here between 21/01 and
(just for visualization) - = 30/01/2020) for validation
Extent of
simulation area: 1 Swarm agents
20°W - 80°E .
5°S—40°N

Fig. 1. Netlogo’s graphical interface of the SANDMAN model. Pixels in green
correspond to the vegetation index (NDVI). Pink arrows are the swarms dis-
played with their trajectories. Validation areas are represented in purple (see
§ 2.2).

Every 10 days
Every day

,
Update NDVI
Update ATD
SM8

Update T°C, Wind

Fly SM7

Fig. 2. Organisation of the 8 sub-models. The blue boxes represent the entities,
the orange diamonds the Boolean sub-models in which information is stored,
and the grey boxes the action sub-models updating variables or making the
swarms move (see § 2.1.7).

2.1.4. Design concepts

Basic principles: The model was tuned to reproduce real-world
observations of 8 periods, named hereafter “scenarios” (Table 2). For
2004, specific time of the year were considered to focus on large scale
movements.

Emergence: the trajectories travelled by the swarms emerge from
interaction with environment, and from their movements.

Sensing: swarms perceive the attributes of the environmental cell
where they are located: vegetation, temperature, wind speed and wind
direction.

Interaction: swarms interact with cells by feeding on available
vegetation and thus reduce it. They do not interact with other swarms.

Stochasticity: at initialisation, swarms are generated with random
coordinates within a given area. It is the only source of stochasticity in
the model.

Observation: every day, the swarms’ new computed coordinates
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Table 2
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List of the real-world observation periods, hereafter named "scenarios". The regions are either Western Africa (WA) or Eastern Africa (EA).

Scenario # Year Start date End date Region Coordinates of initialisation*
1 2004 January 1 February 29 WA (—14, —11, 20, 24)

2 2004 March 1 April 30 WA (-13, —-11, 22, 28)

3 2004 June 1 July 31 WA (-9, -6, 27, 31)

4 2004 September 1 October 31 WA (-16, -7, 15, 18)

5 2019 October 1 November 30 EA (44, 49, 8, 10)

6 2019-2020 December 1 January 31 EA (44,49,7,11)

7 2020 February 1 March 31 EA (36, 39, -1, 6)

8 2020 April 1 May 31 EA (35,41, -1,8)

*Initialisation of swarms within a square given by these four coordinates in degrees as: minimum longitude, maximum longitude, minimum latitude

and maximum latitude.

trace the displacements. These trajectories allow to compare the results
of the simulations with the real-world field surveys at the corresponding
periods. To do so, we plotted arrival polygons from field observations
and we counted the swarms that reached them after a 10-day period (see
Appendix A). This allowed us to assess the performance of our model
and validate it. During the displacements, an output variable was
tracked (inrealD) as a goodness of fit score of the model. It corresponded,
each day, to the proportion of simulated swarms present in the places
where locusts were observed at the same period (= the expected areas)
among the total number of simulated swarms. The higher inrealD, the
better the model. By construction, inrealD varies between 0 and 1. The
maps illustrating field observations were generated with the field survey
data stored in the FAO’s (Food and Agriculture Organization of the
United Nations) datasets (see § 2.1.6). The values of inrealD were used
for the two phases of analyses of the model: a calibration phase where
we looked for the parameter values optimising this score for 4 chosen
scenarios of two alternative model versions (with and without upwind
flight) (§ 2.2), and an exploration phase where we analysed the ability of
the best model version (with upwind flight) to reproduce 8 scenarios.
The parameters for this model version were chosen according to the
calibration phase. During the exploration phase, we also looked at the
ratio of upwind flights over the total number of flights performed by the
simulated swarms.

2.1.5. Initialisation

The initialisation of the model depends on which of the 8 scenarios
we try to reproduce, in two periods of outbreak: years 2004 and
2019-2020. 50 swarms are randomly generated on a given region
delimited by a square of minimum and maximum longitude and latitude
(Table 2). Swarms have an initial age of zero day, and have an energy
reserve to ensure physiological needs for the next 3 h. Their size is set to
2.8 km?, which is an average swarm size computed on the FAO dataset
(O’ Neill, 2020).

2.1.6. External inputs

Wind, temperature: wind data (speed and orientation) at about 200
m above ground level (air layer between 1000 hPa and 985 hPa) and air
temperature were downloaded and prepared from the MERRA-2 project
(Modern-Era Retrospective analysis for Research and Applications,
Version 2) (Gelaro et al., 2017) of the American National Aeronautics
and Space Administration (NASA). The MERRA-2 portal is hosted at
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2. Every day and every
3 h steps, these data are entered into the model from raster files.

NDVTI: in order to obtain estimates of vegetation biomass we chose
NDVI data at 1 km resolution. We used a 10 day-average product:
“PROBA-V S10 TOC NDVI 1 KM: Decadal NDVI synthesis of S1’s as
Maximum Value Compositing” (Roujean et al.,, 2018) for years
2019-2020. For year 2004, the NDVI was derived from the NOAA
MOD13A2 product (Didan et al., 2015) with a temporal resolution of 16
days.

Validation areas: The data used to validate the scenarios were real-
world swarm presence maps. These maps contained polygons that we

interpolated from the coordinates of swarm recorded during field sur-
veys (see Appendix A). Those polygons delineated the areas with high
probability of swarm presence, that we call expected areas. These data
were extracted from FAO’s Locust-Hub database that stores the national
field teams’ survey and control results (O’Neill, 2020). Records range
from 1985 to 2021; we worked only with the 2004 and 2019-2020 data.

2.1.7. Sub-models

The SANDMAN model includes 8 sub-models.

SM1: Environment update. This first sub-model updates the envi-
ronmental variables: temperature, wind strength, wind direction and
vegetation quantity (NDVI). Temperature and wind data are updated
every 3 h. NDVI is updated every 16 days (2003-2013) then 10 days
(2014-2020). The maps of expected areas displaying real-world swarm
presence are imported every 10 days.

SM2: Hungry? A swarm with not enough energy to move needs to
eat. Then, in order to estimate a swarm’s hunger, we need to calculate
the swarm basic energy needs En. We were inspired by the Dynamic
Energy Budget theory that identifies the allocation of resources in
different typical compartments (Kooijman et al., 2008). We considered
two requirements: the need for physiological maintenance Ep, and the
need for movement Em, for a 3 h-duration.

En=Ep+Em (@D)]

Ep was obtained by monitoring the food quantity consumed by
Schistocerca gregaria as a function of age (Davey, 1954): up to day 5, the
amount of biomass consumed increases with age. Day 6 and after, this
quantity is fixed at 1 g/day, following Davey’s observations:

0.409 +0.141 x age, if age <6

1, if age > 6 &)

food_quantity = {
Then, the quantity of food required for physiological maintenance is
transformed from g/individual/day to kcal/swarm/3 h:

_ food_quantity x 0.001 X Swsize X density x convbiom

y) 3

where Swsize is the swarm size, density is the number of individuals per
km? (in a medium swarm) and convbiom is the conversion factor from kg
of biomass to kcal. Because it is considered that a swarm cannot fly more
than 12 h, the formula is divided by 4, to be related to the 3 h-time steps.

The energy required for the movement Em is calculated indepen-
dently of age, by using the metabolic rate. Weis-Fogh (1952) gave a
metabolic rate estimated as proportional (factor 9.8287) to the square of
the mean flight speed and expressed in kcal/kg/h. Thus, we convert it to
be comparable with Ep using this equation:

Em = 9.8287 x meanspeed > x 0.002 x Swsize x density x 3 (C))

where 0.002 kg is the average weight of an adult locust (Pélissié et al.,
2016). The value is reported to a full swarm as in the previous equation.
The factor 3 represents the 3 h-time steps. For a given swarm, when the
energy needs En is higher than the current state of energy E, the Boolean
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hungry? is set to true.

SM3: NDVI? Here we check the resources available for a swarm to
increase its energy. We first check if there is any vegetation in the cell.
To do so, NDVI is converted into energy available for consumption,
expressed in kcal, using the following formula, based on Meneses-To-
var’s works (2011):

Ev=(3x10" x (NDVI x 128 + 128)***") x 107 x convbiom )

In this equation NDVI value is converted to tons of biomass per
hectare (first part of the equation), and then converted to kilograms with
the factor 107 and kilocalories using convbiom. Vegetation is available
when Ev > 0, and the result is stored in the Boolean variable NDVI?

When feeding, locusts can build up food reserves and store energy
(Es) for their physiological needs over 2 time periods (6 h overall), plus
their movement over the current period:

Es=Epx2+Em 6)

When Ev is higher than Es, the swarm can build up reserves. If not, all
the biomass in the cell is consumed. Information about the available
quantity of vegetation for feeding is stored in a Boolean variable enough?

SM4: Greenfood. This sub-model updates the swarm and the cell
state variables representing the food intake on vegetation, and considers
the consequences on the displacement. We first set delayl as propdelay
(Tables 1, 3 and 4), as swarms fly for less time because of the time they
take to eat. Then, we refer to SM2: if enough? is true, the swarm eats its
part, then Ev and E are actualised (by removing Es from Ev and adding Es
to E). If enough? is false, the swarm eats all the vegetation, E is updated
(by adding Ev) but Ev is set to 0. In this case, we also compute delay?2.
Because the swarm does not eat according to its needs, it only flies the
distance made possible by partial feeding. Thus, delay2 is calculated as
follow:

E
delay? = n @)

Finally, the new Ey value is converted into NDVI by the inverse
function of Eq (5), presented in SM3.

SM5: Cannibalism. This sub-model updates the energy state E and
swarmasfood when locusts eat each other. When no vegetation is avail-
able, locust caloric requirements to move remain the same. Cannibalism
was already observed in adults of Schistocerca gregaria in the case of
nitrogen deficiency (van Huis et al., 2008). Thus, locusts can eat each
other to achieve sufficient energy to move. An equivalence of the
swarm’s number of locusts is then transformed in kcal as follow:

swarmasfood = 1790 x 0.002 x density x Swsize (€]

where we use the factor 1790 to convert a locust in kcal/kg (Van Huis,
2013; Elagba, 2015; Kourimskaa and Adamkovab, 2016; Mariod, 2020).

Contrasting with SM2 that considers energy storage, cannibalism is
the last resort for feeding. Thus, the swarm will only absorb the amount
of energy needed for the flight, i.e. the difference between the needed
energy En and E (actual energy available for a given swarm). We then

Table 3
Parameters explored to perform an upwind flight.
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compare this quantity with swarmasfood. If the swarm is enough
regarding the need (swarmasfood > En - E), swarmasfood is reduced by
the amount of energy required (En — E). This loss is then reflected in
Swsize, in the same proportion as energy loss (Swsize;1 = Swsize; —

#ﬁmd x Swsize;), and E is updated. If the swarm is not enough, or if its
size is smaller than 1 km?, it dies.

SM6: Takeoff? This submodel first checks if the required conditions
to take off are reached. Swarm’s take off mainly depends on the local
solar time computed from the longitude of swarm’s position. Swarms
cannot fly at night, between 9:00PM and 9:00AM. The minimum tem-
perature for take-off corresponds to ATD (Air Temperature at Departure)
(see SM8). In addition, local temperature needs to be higher than a
minimum activity threshold (Table 3) and wind may not be too strong
(Table 3, below WSmaxAct) to allow take off. Temperature and wind
conditions also define swarm orientation. Swarms are considered to fly
downwind, except in specific situations when temperature is not too
high (Table 3, below Tmax), and wind is not too strong (Table 3, below
WSmaxFlt). These parameters are explored in order to adjust flight be-
haviours during swarm flights (Table 3 & §2.2).

SM7: Fly. Here we compute the results of the previous sub-models in
order to define the real distance travelled by the swarms and then make
them move. If take off is allowed, swarm flight speed must be calculated
and depends on wind orientation.

meanspeed — WS, if upwind flight

flightspeed =
0.9071 x WS — 0.199 x WS>+

0.0049 x H — 3.7373, if downwind flight
)

When swarms fly upwind, we use the average flight speed meanspeed
(Table 1) and the wind speed WS. When swarms fly downwind, they are
borne by the wind. Their speed depends on that of the wind, and also on
height and temperature. Based on Rainey’s works (Rainey, 1963), we
used a formula where height (H) is computed as a function of temper-
ature obtained by relating height measurements to temperature records
(Tr) of the same period, obtained from the Berkeley Earth database
(Rohde and Hausfather, 2020):

H = 76.867 x (Tr —20) 10)

We set flight speed between 0 and a maximal speed maxspeed
(Table 1). flightspeed is then transformed in km/h with the factor 0.36
and multiplied by 3 flight hours and delays (delay1 and delay2) from the
feeding process to obtain an estimate of the distance dist travelled during
this flight:
dist = flightspeed x 0.36 x 3 X delayl x delay?2 (1D

Swarms finally travel a distance dist downwind, or upwind using the
information windorient, in a deterministic way (flight orientation =

windorient or windorient + n respectively). The energy required to
perform this flight is then subtracted from E.

Name Description Explanations Tested values
Tmin Minimal temperature ( °C), allowing activity When temperature is lower, the swarm is cold and cannot move, take off or fly. [15,17, 19, 21,
23]

Tmax Maximal temperature ( °C), allowing upwind When temperature is higher, the swarm rises too high, and must be carried by the wind. Thus, it [25, 30, 35, 40,
flight cannot fly upwind. 45]

WSmaxFlt Maximal wind speed (m/s), allowing upwind When wind speed is higher, the swarm cannot fly upwind. When upwind flight is impossible this  [2, 3, 4, 5, 6]
flight variable is set to 0.

WSmaxAct  Maximal wind speed (m/s), allowing activity When wind speed is higher, the swarm cannot take off or fly because of turbulence. When [3,4,5,6,7]

upwind flight is possible, this variable is set to be > WSmaxFlt + 2

propdelay Proportion, giving its value to delayl in SM4 Represents the proportion of the distance that is actually travelled because of delay for feeding ~ [0.1, 0.25, 0.5,

and applied to dist in SM7 0.75, 0.9]
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SM8: ATD. This sub-model stores daily air temperature every 3hin a
list Vt. At the end of the day, it points out the maximum and the mini-
mum and then computes the air temperature at departure ATD that will
be used the next day, based on the work of Waloff and Rainey (1951):

)

min(Vt) + max(Vt)

> 12)

ATD =5.6 + <0.74 X

2.2. Simulations

As explained in “Basic principles”, we used 8 scenarios to adjust and
explore the model’s outputs (Table 2). As seen in SM6, the parameters
related to flight possibility and direction were explored to evaluate the
role of upwind flights in locust migration (Table 1). Other factor
explored was the delay due to feeding propdelay.

We used two versions of our model SANDMAN in order to determine
if upwind flights affect the quality of the predictions. In a first version
(IUF, Impossible Upwind Flight), we prevented any swarm movement
against the wind by deactivating the process of upwind flight: parame-
ters WSmaxFIt and Tmax were set to 0. Conversely, in the PUF (Possible
Upwind Flight) version, these two parameters were activated, so swarms
could fly against the wind. In this last version, we constrained the
exploration by forcing a difference of 2 m/s between WSmaxFlt and
WSmaxAct to unsure that actual upwind flights could be possible.

In a calibration phase, for each version of the model, we simulated
five replicates for 4 real-world scenarios (scenarios number 3 and 4 in
2004, and 6 and 7 in 2019) using combinations of 5 values per param-
eter (Table 3). For each run we recorded inrealD values (see § 2.1.4) for
the last 10 days of the scenarios to focus on the arrivals of flights after 60
days. We kept the parameter values which maximised the inrealD score
in two different ways. In the first way (thereafter called “Compr.”), we
allowed the best compromise across the whole set of scenarios, trying to

Table 4
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maximise the inrealD score as a mean of the results across all scenarios.
In the second way (thereafter called “Best”), we used the parameters that
maximised the scores for each tested scenario. We compared the inrealD
scores between both versions of the model, by type of maximisation
method and scenarios.

In the exploration phase, we evaluated the efficiency of SANDMAN
as a migration simulator for the 8 scenarios using the PUF version with
the set of parameters values obtained with the compromise method
(Compr.) in the calibration phase. We extracted the coordinates of the
swarms every 10 days. We sorted these coordinates using 5 randomised
simulations by scenario as previously, for every scenario. These co-
ordinates were reported on a map with the R software (The R Project for
Statistical Computing, n.d.), with the positions recorded in the FAO
dataset at the same periods. This visualisation allowed to compare the
simulations and the real positions recorded across time, and to evaluate
them as regards of typical migration patterns (Waloff, 1966). To eval-
uate the importance of upwind flights, we recorded the ratio of upwind
flights over the total number of flights performed by the simulated
swarms in the 8 scenarios.

3. Results
3.1. PUF and IUF calibration and comparison

We looked at the effects of upwind flight on the swarm ratio in the
expected area at the end of the simulation by comparing Possible up-
wind flight (PUF) and Impossible upwind flight (IUF) model versions.
Focusing on the optimisation by scenario (Best in Fig. 3), the possibility
of upwind flight (PUF) always reached higher or equivalent results than
IUF. The proportion of simulated swarms found in the areas where they
actually were present in both PUF and IUF models are close in Sc. 3 and

Parameters obtained during the calibration phase on 4 scenarios (see Table 3 for parameter description) for the two model versions (PUF = Possible Upwind Flight; IUF

= Impossible Upwind Flight).

Name Tested values Best Sc. 3 Best Sc. 4 Best Sc. 6 Best Sc. 7 Compr. Compr.
PUF IUF PUF IUF PUF IUF PUF IUF PUF IUF
Tmin [15, 17, 19, 21, 23] 19 19 17 23 23 17 23 23 23 19
Tmax [25, 30, 35, 40, 45] 45 0 45 0 40 0 45 0 45 0
WSmaxFlt [2,3,4,5,6] 5 0 2 0 4 0 2 0 3 0
WSmaxAct [3,4,5,6,7] 7 6 4 3 7 5 4 3 5 3
propdelay [0.1, 0.25, 0.5, 0.75, 0.9] 0.25 0.1 0.9 0.25 0.9 0.25 0.5 0.75 0.25 0.1
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Fig. 3. Swarm ratio in expected areas at the end of the 60-day simulations obtained in the two versions of the model. Possible upwind flight in green (PUF).
Impossible upwind flight in purple (IUF). Proportions are computed under two sets of parameter values: one optimised across all scenarios (Compr., dark green and
dark purple boxplots) and one optimised for each scenario (Best, light green and light purple boxplots). Scenario 3 started in Jun. 2004, Sc. 4 in Sep. 2004, Sc. 6 in

Dec. 2019 and Sc. 7 in Feb. 2020 (Table 2).
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7, and clearly higher in Sc. 4 and 6. Focusing on the compromised
optimisation (Compr. in Fig. 3), the proportions obtained for the PUF
model version gave higher results in Sc. 3, 4 and 6 than the [UF model
version. Conversely, the IUF results were higher in Sc. 7. Excepted in this
last case, the PUF model version always gave equivalent or better results
of swarm localisation than the IUF model version (Fig. 3). The best
parameters for the different scenarios for PUF were often selecting the
maximum Tmax value (45 °C) except in the case of scenario 6 (Table 4).
The set of parameters to optimise all scenarios (Compr.) with possible
upwind flight (PUF) selected the maximum Tmin and Tmax values, in-
termediate WSmaxFIt and WSmaxAct and a low value of propdelay
(Table 4). The corresponding parameter set optimising all scenarios with
impossible upwind flight (IUF) selected an intermediate value of Tmin
and the lowest values for WSmaxAct and propdelay.

3.2. Exploration by confronting the model to real data

3.2.1. First period (Sc. 1-4, 2004)

The first period focused on a plague that occurred in the North-West
of Africa in 2003-2004, that is considered in scenarios 1 to 4.

In Sc. 1 and 2, according to the real data, the swarms were not
supposed to migrate for a long distance. The simulations did reproduce
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the expected migrations. Swarms remained present on the initialisation
area in Mauritania throughout the whole simulation time. The model
resulted in a very little movement only in Mauritania and Western
Sahara, which corresponded to what was expected for these two sce-
narios (Appendix B). Conversely, in Sc. 3 and 4, real data showed sig-
nificant migration, northwards (Sc. 4) and southwards (Sc. 3). In Sc. 3,
even if the simulated swarms did not reach the exact area where they
were expected, the direction of the southward migration was respected
(Fig. 4). In Sc. 4, the simulated swarms remained stuck in the initiali-
sation area in the south of Mauritania and Senegal, where records were
present during the whole period of simulation, but they did not move
northwards as it was expected regarding real data.

3.2.2. Second period (Sc. 5-8, 2019-2020)

The second period focused on a plague that affected Eastern Africa in
December 2019 and 2020 and went on until the end of 2021, that is
considered in scenarios 5 to 8 (Appendix C).

In Sc. 5, the real records indicated a short migration event from the
Horn of Africa towards the Somalian-Ethiopian border and the appear-
ance of more swarms near the Gulf of Aden. The simulated swarms
actually moved westwards, but also southwards. In Sc. 6, the real data
showed a large migration event from the North-East to the South-West,
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Fig. 4. Comparison map between FAO swarm records (black polygons) and SANDMAN simulated swarms (dark grey dots), run with the Possible Upwind Flight
version using the parameter set selected with the compromise method (see §2.2). Computed from scenario 3 (Table 2). From left to right, the pictures were taken

every 10 days, from June 1 to July 30, 2004.
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across the area around the Ethiopian-Somalian boundary, up to Kenya.
The simulated swarms followed this pattern, following a dispersion
movement from East to West (Fig. 5). In Sc. 7 and Sc. 8, the expected
migration events were short: the real data showed a dispersion from East
to West following the trend of Sc. 7 and almost no movement in Sc. 8. In
both cases, the simulated swarms migrated too far and too fast west-
wards, reaching areas such as the Democratic Republic of Congo (Sc. 7)
or the South and even the North of Sudan (Sc. 8), where there was no
record.

The upwind-flights of swarms during the simulations of the 8 sce-
narios were ranging from 20% to 60% of the total performed flights
(Appendix D), with more variations among than within scenarios. This
result from the specific wind regimes and temperatures for each
scenario.

4. Discussion

The objective of this study was twofold: i) build an integrative model
from the literature on locust swarm movement and ii) evaluate its
quality using simulations. With the development of this model, we could
assess the influence of previously defined factors and processes affecting
swarm movement. Our simulations clearly showed that upwind flight
must be considered for a better replication of Schistocerca gregaria mi-
grations. Locust sometimes show such behaviours which are not pre-
vailing, so we had to integrate them into the model to reproduce reality.
These results are consistent with the assumption that the flight routes
are emerging from the interaction of locusts in the swarm with their
environment in order to avoid inappropriate and dangerous areas as
much as possible, particularly during low altitude flights (Shashar et al.,
2005). During the parameterisation process, the retained values for the
upwind flight version of the model can be discussed in the light of desert
locust literature. We address the importance of upwind flights in a first
part of the discussion. In a second part, we discuss the representativity of
the model in front of real-world observations. A third part discusses the
large-scale constraints in modelling ecological processes. And a last part
opens the discussion on the improvement of preventive management of
desert locust.

4.1. Upwind flight matters

Desert locusts fly most of the time downwind, but they can also
choose to fly upwind under certain conditions: light wind speed, rain in
sight, or high ground (Draper, 1980; Symmons and Cressman, 2001).
Even if upwind flight constitutes a small part of all flights, we added this
ability to the model in order to better match locust behaviour. The
comparison of the two versions of SANDMAN, computed with two
optimisation methods, delivered either better or equivalent results when
upwind flight was allowed, in 3 out of 4 scenarios with the exception of
Sc. 7 (optimised with compromise). The maps of the 8 scenarios with the
impossible upwind flight version (Appendix E) show also lower or
equivalent quality of reproduction of the overall trajectories than with
the possible upwind flight version (Figs. 3 and 4 and Appendices B and
C). Not allowing upwind flights reduces swarm dispersion and reduces
the range of migrations in SANDMAN. We also saw in our simulations
that upwind flights could occur in SANDMAN up to 60% of the cases,
depending on the scenarios (Appendix D). These results not only high-
lighted the importance of upwind flight in the replication of migrations,
but also can be interpreted as a dependence on wind and temperature
factors. We built the model’s relationship from the literature, and then
we refined the parameter values to match the real-world patterns from
different situations. However, we could not entirely validate the
parameter values because of the few information available in the liter-
ature or real data. The retained values for the upwind flight version of
the model are comparable to some old literature information. For
example, the 5 m/s maximum wind speed allowing flight is relatively
low in comparison to the conditions of swarm flights observed by Waloff
(1972) of sometimes up to 7 m/s wind speed at 2 m during swarm flight.
The 3 m/s maximum wind speed that allows upwind flight is realistic
compared to Weis-Fogh’s (1956) tunnel assays measurements of
maximum desert locust flight speed between 3.5 and 4.2 m/s. The 23 °C
minimum temperature of activity is quite high in comparison to some
observations of air temperature at departure below 20 °C by Waloff &
Rainey (1951). Finally, the 45 °C maximum air temperature allowing
upwind flight corresponds to a flight approximately at a height of 2000
m, which has already been observed (Rainey and Waloff 1951). These
small discrepancies between the literature and our results illustrate that
further research in swarms’ flight conditions and on individual locust
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flight behaviours would probably improve the realism of the model.

In particular, we failed to reproduce the movement expected in Sc. 4
(swarms travelling from South to North in West Africa). And yet this
trajectory is one of the best known regarding Schistocerca gregaria
(Symmons and Cressman, 2001; FAO, n.d.1). This area, at the relevant
period, showed particular environmental conditions: strong warm air
currents blowing from the Sahara, associated with an atmospheric
depression over the western Mediterranean, helped swarm flight
(Cressman and Stefanski, 2016). The locusts thus waited for warmer
winds blowing from the South instead of using the prevailing cooler
winds blowing from the North. We actually did observe such a move-
ment with SANDMAN, but during relatively short times and this was not
enough to reproduce the swarm displacement that was observed in the
field. One of the hypotheses we can put forward is that under those
specific conditions, the swarms would be able to cover greater distances
than we had anticipated. But it remains to be determined how and in
which conditions. Another hypothesis is that locust flight is much more
complex than current knowledge suggests. For instance, our model does
not consider the role of thermal breezes. These coastal and local winds
are caused by the difference in temperature between land and sea. They
are independent of the general regime of winds and blow on a narrow
coastal strip. At night and in the morning, they blow from the land to the
sea, taking locusts off, then during the day from the sea to the land,
driving them back towards the coast. According to the locust control
services of Mauritania, this phenomenon has been observed many times,
but was not documented and only orally spread in form of anecdotes.
The locusts were thus able to benefit from the cyclic succession of these
contrary winds regularly sending them in the opposite direction, to
progress gradually northwards along the coast. This phenomenon would
explain that the model did not reproduce in Sc. 4 the movements from
Mauritania towards Morocco following the coast, that are yet well
known and documented (FAO, 2004, n.d.2). Another question needs to
be answered: apart from being sensitive to warmer temperature, what
really motivates locusts to fly in the presence of strong headwinds?
Could it be the perception of moisture brought by the wind? Or the sight
of greenness? Or the perception of colours, even basic? There is a lot to
be asked about and to launch further studies on this subject. This will no
doubt help greatly in understanding locust movement.

4.2. Representativity of the simulation outcomes

The modelling of the swarm energy limits is inspired by the Dynamic
Energy Budget theory (van der Meer, 2006; Kooijman, 2009) and allows
to predict realistic travelled distances related to food intake. We
confirmed that the effects of these energy limits are not artefacts, since
swarms could move slower than expected (Sc. 4), or conversely be
beyond the forecast (Sc. 7 and Sc. 8) where the swarms moved too fast
and too far. The potential reasons why the model behaved differently
(absence of swarm movement from coastal Mauritania to Morocco) from
the empirical observations of Sc. 4 have been given earlier (§ 4.1), but
we did not explain the scenarios in 2019-2020 when swarms moved too
far. We talked previously about the migrations, whose main patterns
mostly concern displacement between reproduction areas. With regard
on this last point, our best lead explaining an excess of mobility would be
an under-estimated attraction of the vegetated areas: in addition to
being useful for feeding, these areas are a key element in the repro-
duction process (Roffey and Popov, 1968; Cissé et al., 2013; Maeno
et al., 2020), which is not considered in SANDMAN. As a result, vege-
tated areas are probably much more attractive than we had modelled. In
particular, the observed migration patterns follow the seasonality of
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vegetated areas in a way that they are synchronised with the repro-
ductive cycles (Symmons and Cressman, 2001). In order to accurately
represent such a process, it would be necessary to integrate an additional
layer of memory effect (i.e. the more vegetated areas a swarm finds, the
faster it becomes able to find more), including a set of processes involved
in the population dynamics.

The scenarios were evaluated with maps of expected areas
(Appendix A) but these maps could be hard to assess when looking at the
scores if the relevant areas are too fragmented. This is why we did not
only consider the scores but also the whole trajectory when confronting
to real data. This way, we can have a more global evaluation of
SANDMAN’s results, and we can also identify other explanations about
the trajectories a bit far from what we expected. A main bias concerns
the field observations. First, FAO dataset does not individually follow
each swarm and does not distinguish different swarms in the same place.
Second, SANDMAN does not include any population dynamics process,
so we considered changes in the maps of FAO data as swarm displace-
ment. Our model also did not consider swarm reproduction while data
actually includes young swarms that have just emerged. That means that
we cannot know if a swarm notification concerns a new swarm that has
just emerged or the movement of a previous one. Also, the cohesion level
within a swarm could influence direction changes during flight (Edel-
stein-Keshet et al., 1998; Murakami et al., 2017; Yates et al., 2009). Such
details are not given by the FAO dataset. Further analyses and consid-
eration of the different sources of uncertainties could improve the cali-
bration of SANDMAN. Dataset following specific swarms would enhance
greatly this and could be the objective of further studies.

4.3. Modelling large scale processes with agent-based models

Swarm movement has already been modelled for forecasting pur-
pose, but was processed as particle diffusion, as in the model HYSPLIT
developed by the NOAA/Air Resources Laboratory, one of the most
widely used models to follow dispersion of atmospheric pollutants
(Stein et al., 2015): all swarms reacted similarly to their environment,
with no distinction. Conversely, we used here agent-based modelling in
order to add specific history and behaviour to each swarm. We modelled
migrations as a result of environmental data, the physical limits of the
insects, and some biological processes reflected with the Dynamic En-
ergy Budget (Van der Meer, 2006). In this way, SANDMAN can more
accurately predict the movement of swarms that have already been
formed, using the same input information as other standard models.

Large-scale individual-based models have been proposed quite early
in the ecological modelling literature (e.g. Cary et al., 1992). Never-
theless, spatial processes at the continental scale are rarely implemented
in agent-based models in ecology. Parry and Bithell (2012) differentiate
two approaches to scaling up geographical processes in agent-based
models: the super-individual approach and a multi-core hardware par-
allelisation (to increase the number of agents and/or the spatial extent).
We used here a super-individual approach that allowed a potential gain
of efficiency in term of computing speed and memory use. Our approach
using remote-sensing and climatic models’ information at the scale of
continents allowed us to focus on the interaction of the swarms as
super-individuals to large scale climatic processes (wind, temperature
and vegetation). Swarm behaviours are typically studied by analysing
group movements emerging from individual interactions (e.g. Dkhili
et al., 2017). However, the large-scale aspect of desert locust swarm
migrations makes hard the analysis of processes at the level of the in-
dividual. Given the scale at which we need to consider our model, our
approach is a good compromise between tractability and complexity of
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the model. Finally, contrary to common belief, considering that locust swarms can
Agent-based models in ecology should consider individual- sometimes fly upwind significantly improves prediction accuracy and
environment interactions to let emerge large-scale processes in order proposes some explanations for some displacements that are historically
to investigate ecosystem and community ecology questions (Grimm known and documented, but were not following the prevailing winds.
et al., 2017). This approach has been widely accepted in population
ecology and proposed by Huston et al. (1988) to unify ecological theory. CRediT authorship contribution statement
When using a super-individual approach, we can still represent
environment-individual interactions and demographic processes. How- Maeva Sorel: Conceptualization, Formal analysis, Investigation,
ever, the inter-individual interactions are lacking. An approach of Writing — original draft, Writing — review & editing. Pierre-Emmanuel
comparison of small and large-scale models using respectively in- Gay: Data curation, Writing — review & editing. Camille Vernier:
dividuals and super-individuals could improve the realism of the Writing — review & editing. Sory Cissé: Writing — review & editing.
super-individual ABMs, eventually even by calibrating these models Cyril Piou: Conceptualization, Formal analysis, Investigation, Method-
with the outcomes of the small-scale models. Further efforts could be ology, Project administration, Resources, Supervision, Writing — review
done in this direction, and locust questions are perfect examples of & editing.

potentially benefiting problematic from such approaches.

4.4. Improving preventive management Declaration of competing interest
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Preventive control in an upsurge context consists in anticipating where the work reported in this paper.
the swarms are going to move before they lay eggs, in order to despatch
control teams on the spot and thus eliminate nymphs before imaginal Data availability
moulting and further multiplication. Our model, based on the observa-
tion of pathways and modes of displacement of locusts observed for The source code is available online. https://doi.org/10.18167/
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Appendix A

In order to draw the maps of real-world swarm presence, it was first necessary to retrieve the FAO data (O’Neill, 2020), that are spatialised. Each
swarm record had its own coordinates: latitude and longitude. These data were also associated with dates. In order to obtain more general trajectories,
we grouped the data into 10-day periods and we cumulated the records.

These data, in the form of coordinates, were then transformed in two steps: first, they were changed into a set of 2-dimension spatialised points, i.e.
a point process (ppp object of the R Spatstat package (Baddeley et al., 2015)). This allowed to get a distribution map of swarms in Africa and in South
West Asia. Second, we converted these point processes into densities. We used a Gaussian kernel with a standard deviation of 0.5° to obtain the density
of points in the whole map with the function « density.ppp » of Spatstat. This conversion resulted in a concentration gradient of the swarm records
across the entire map on pixels of 0.5° (see Piou et al. (2017) for an example of this methodology). We then transformed this rasterised information
into polygons where at least one swarm could be found, the rest of the map being considered swarm-free.

In this way, we produced polygons for each 10-day period corresponding to the scenarios used in the simulations.

Appendix B

(Fig. B-1, Fig. B-2, Fig. B-3)
Scenarios 1, 2 & 4, Western Africa, 2004.
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Fig. B-1. Scenario 1, Jan.-Feb. 2004.
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Fig. B-3. Scenario 4, Sep.-Oct. 2004.
Appendix C
(Fig. C-1, Fig. C-2, Fig. C-3)
Scenarios 5, 7 & 8, Eastern Africa, 2019-2020.
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Fig. C-1. Scenario 5, Oct.-Nov. 2019.
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Appendix E

To illustrate further the better quality of the reproduction of migration pathways with the PUF version of the model, we produce here the same
maps as Figs. 3and 4 and Appendices B and C for the IUF model version. The Compr. IUF parameterisation (Table 4) was used. Note that the initial
swarm number was the same: 50/replicate. However, the lack of mobility of swarms in this version of the model did reduce the swarm number in some
scenarios when swarms did not find enough food (and reduced in size by cannibalism until “dying” in the simulations). This is particularly the case in
Scenario 1 (Figs. E-1-E-8)
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Fig. E-1. Scenario 1, Jan.-Feb. 2004.
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Fig. E-3. Scenario 3, Jun.-Jul. 2004.
15



M. Sorel et al. Ecological Modelling 489 (2024) 110622

Rabat Rabat Rabat
= F) =

2004-9-1 2004-9-11 2004-9-21

Agadir Agadir Agadir
[] ] ]
Adra

-

Adral Adral
o L

Laayoune Laayoune
u =

Laayoune
]

2% Timbuktu
.

Bamako
)

Rabat
)

2004-10-1 2004-10-11

Q
Agadir (D Agadir
' o) Q
Adral Adra Adra
L L Laayoune L

2004-10-21

Laayoune
.

Timbuktu

.. Timbuktu
xx - L -

Timbuktu
* -

Fig. E-4. Scenario 4, Sep.-Oct. 2004.

16



M. Sorel et al.

Ecological Modelling 489 (2024) 110622

Djibouti Djibout Djibouti
AddisAbeba m AddisAbeba W AddisAbeb3 %
& . & . b
Djouba Diouba Djouba
Mogadiscio Mogadiscio Mogadiscio
Kampala Kampala Kampala
. . H
- 2019-10-1 NETEE 2019-10-11 Nairopi 2019-10-21
O Djibouti =" Djibouti N/ Djibouti
A o 3
AddisAbeba AddisAbeb - " ‘AddisAbeba O L) *
£ £ £
Djouba Djouba Djouba
Mogadiscio Mogadiscio Mogadiscio
Kampala Kampala Kampala
sy 2019111 ! 2019-11-11 ! 2019-11-21
Fig. E-5. Scenario 5, Oct.-Nov. 2019.
Diibani Djibout Djibouti
AddisAbeba ‘AddisAbeba o AddisAbeba
Djouba Djouba @ Djouba
Mogadiscio Mogadiscio 'Mogadiscio
Kampala Kampala Kampala
. . H
- 2019-12-1 NETEE 2019-12-11 Nairopi 2019-12-21
Diiboutl Djibouti Djibouti
A o o
AddisAbeba ‘AddisAbeba ‘AddisAbeba
£ £
Djouba & Djouba Djouba
‘Mogadiscio Mogadiscio o Mogadiscio
Kampala Kampala O Kampala
sy 2020-1-1 (e 2020-1-11 =y 2020-1-21
Fig. E-6. Scenario 6, Dec. 2019-Jan. 2020.
Djibouti Djibout Djibouti
AddisAbeba ‘AddisAbeba 0 AddisAbeba
Djouba Diouba
Mogadiscio Mogadiscio Mogadiscio
Kampala
.
2020-2-1 2020-2-11 2020-2-21
Djibouti Djibouti DJ?—/
A o
AddisAbeba ‘AddisAbeba ‘AddisAbeba
£ £ £
Djouba, R
0
- §x
Mogadiscio k] Mogadiscio Mogadiscio
Kampala
2020-3-1 NG 2020-3-11 2020-3-21

Fig. E-7. Scenario 7, Feb.-Mar. 2020.
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