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Abstract

The grape genus Vitis L. includes the domesticated V. vinifera, which is one of the most

important fruit crop, and also close relatives recognized as valuable germplasm resources

for improving cultivars. To resolve some standing problems in the species relationships

within the Vitis genus we analyzed diversity in a set of 90 accessions comprising most of

Vitis species and some putative hybrids. We discovered single nucleotide polymorphisms

(SNPs) in SANGER sequences of twelve loci and genotyped accessions at a larger number

of SNPs using a previously developed SNP array. Our phylogenic analyses consistently

identified: three clades in North America, one in East Asia, and one in Europe corresponding

to V. vinifera. Using heterozygosity measurement, haplotype reconstruction and chloroplast

markers, we identified the hybrids existing within and between clades. The species relation-

ships were better assessed after discarding these hybrids from analyses. We also studied

the relationships between phylogeny and morphological traits and found that several traits

significantly correlated with the phylogeny. The American clade that includes important spe-

cies such as V. riparia and V. rupestris showed a major divergence with all other clades

based on both DNA polymorphisms and morphological traits.

Introduction

The North temperate Vitis genus (Vitaceae family) includes a total of 60 to 70 extant species. It

is divided into two subgenera, Muscadinia and Vitis that differ in chromosome number

(n = 20 vs n = 19) and several morphological characters [1, 2]. Subgenus Vitis includes a single

european species Vitis vinifera subsp. vinifera, which has been domesticated from V. vinifera
subsp. sylvestris [3] and is now widely cultivated to produce wine, fruit juice and fresh or dry

raisins. The other species are distributed in either eastern Asia or North America [4]. Some of

the wild species are cultivated for fruit production for instance V. amurensis in China and M.

rotundifolia in the United States. Others, such as the American species V. riparia and V. rupes-
tris, have been used worldwide as rootstocks. However, the wild species have mostly been used

as parents in crosses aiming to improve the resistance to diseases or confer adaptative traits

both in scion and rootstocks cultivars [5–7].
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Breeding interspecific hybrids is made easier because most Vitis species are interfertile. On

the other hand, natural and past artificial hybridization could also complicate species delimita-

tion [4, 8]. For instance, based on morphology, ecology and geography, the classifications of

subg. Vitis by Planchon [9], Munson [10], Bailey [11], Galet [12] and Moore & Wen [2] are

not in full agreement for the number of series, the placement of species in series and also for

distinguishing hybrids from pure species. Furthermore, these classifications used different syn-

onymous names and apart those of Planchon [9] and Galet [12] mainly concerned the North

American species. Chinese Vitis species taxonomy has been more recently investigated [8, 13,

14] and also revealed problems of species boundaries and synonymies. These difficulties in the

taxonomic treatment when using morphological and anatomical characters have been consid-

ered due in part to hybridization and clinal variation [1, 4, 15, 16].

Recent molecular studies allowed clarifyig the classification of subg. Vitis. It has been

shown that the Eurasian species (including V. vinifera) and North American species constitute

two well-separated clades each containing several subclades [17–28]. The two main clades

diverged recently between the middle-late Miocene and the late Pliocene [28] and most studies

agree on that partition. However, the species relationships within clades vary according to the

analyzed sample, the type of data (i.e. chloroplast vs. nuclear, single genes vs. SNP arrays or

NGS data) and the method used for phylogeny reconstruction. Such difficulties may result

from the sharing of ancestral polymorphisms due to recent divergence and reticulation due to

historical recombination [22]. For this last point, recent studies highlighted hybridization

within the Asian clade [29] and within the American one [30]. The misidentification of acces-

sions and the presence of hybrids in the studied samples may add background noise that could

result in weakly supported nodes in phylogenetic trees.

Leaf morphology broadly varies among species and varieties in the Vitis genus [31]. Vitis
leaves differ for instance in their degree of lobing, in the lengths and angles of their five major

veins and in margin dentation. Ampelographic measurements have therefore been largely

used to discriminate between Vitis vinifera cultivars [31–36], and more recently Vitis species

[37–39]. Moreover, Chitwood et al [40] found evidence for an important genetic component

determining leaf shape and venation patterning in grape. Therefore, besides their interest for

taxonomy, some morphometric measures may be useful in the breeding of new varieties with

adaptative traits for the undergoing climatic changes. In a recent work, Ma et al. [41] used a

phylogenomic framework within the Vitis genus to decipher the evolution of several morpho-

logical characters, e.g. tendril architecture, leaf shape, and type of trichomes. They found sev-

eral examples of convergences, and revealed in the Asian V. bryoniifolia subclade the presence

of cryptic species having similar morphology and distribution.

In this study, we assessed genetic and morphological diversity in the Vitis genus throughout

its geographic range within a comprehensive sample of species and putative hybrids. Our main

objectives were 1) to clarify some standing problems in the Vitis phylogeny and 2) to evaluate

the importance of the phylogenetic signal in morphological characters in comparison with

convergence due to similar environments. Analyses helped to clarify the relationships among

species and allowed hybrids identification. Morphological variation was found both within

species and among clades and several traits were found autocorrelated with the phylogeny.

Materials and methods

Plant material and DNA extraction

A total of 90 Vitis accessions maintained at the INRAE repository of Vassal-Montpellier (Mar-

seillan, France, www6.montpellier.inrae.fr/vassal_eng) were used during this study (S1 Table).

This set included 13 Asian and 56 North American accessions representing 12 and 18 putative
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species, respectively. For Vitis vinifera we retained a set of eight cultivars (subsp. vinifera)

amongst the most popular French ones and a set of eight wild accessions (subsp. sylvestris)
mostly originated from French populations. Muscadinia rotundifolia was added as an out-

group with five accessions. Most of this germplasm has been studied and precisely identified

[12] but seven accessions (THU2, YES, AES5, AES6, ARZ2, TRE, TRE2, S1 Table) were more

recently introduced to increase the number of species or the number of accessions for some

species. Total genomic DNA was extracted from young leaf tissues using the DNeasy 96 plant

mini kit (Qiagen Inc., Valencia, CA, USA). DNA concentration and purity was assessed using

a NanoDrop 8000 UV-Vis spectrophotometer (Thermo Scientific).

Loci sequencing

Twelve nuclear sequences (S2 Table) were amplified and sequenced in 78 accessions (S1 Table)

according to Péros et al [42]. Primers were either already published or specifically designed for

this study using Primer3 software [43]. GAI1 [44] and TFL1 [45] genes are involved in grape

development and GAI1 has already been used in grape phylogenetics [46]. LDOX, CHI1 and

DFR4 code for key enzymes in the flavonoid biosynthetic pathway in grape [47]. TC1-A and

TC1-B are located in a large intron of around 1,500 bp that contains several repeat motifs. As

Vitis species are highly heterozygous, several steps were needed to design primers to partly

sequence this intron. The five other amplicons were selected among a large set of amplicons

designed to obtain a SNP-based diversity map in the Vitis genus (INRAE project SNPGrape-

Map). Polymerase chain reaction (PCR) was performed in 25 μL volumes using the following

protocol for all sequences: denaturation at 94˚C for 3 min, 35 cycles at 94˚C for 30 s, 55˚C for 1

min, and 72˚C for 1 min 30 s, followed by 6 min elongation at 72˚C and 10˚C soak. Samples

containing 1 μL of PCR products and 10 μl of de-ionized water were run on a capillary

sequencer ABI Prism 3700 XL (Applied Biosystems, CA, USA). Chromatograms of the forward

and reverse strands were aligned and edited with deletion of indels using the software CLC

Sequence Viewer 6.0 (CLC bio then Qiagen) to generate alignment files in fasta format.

SNP array genotyping

The GrapeReseq 20 K SNPs array [48] was used to genotype 78 accessions (S1 Table) accord-

ing to Illumina GoldenGate assay protocols [49] at the GenoToul platform (Toulouse, France).

DNA from ‘PN40024’ corresponding to the reference genome [50] was included as control.

Genotyping was performed using the Genotyping Module v1.9 of the Illumina GenomeStudio

Data Analysis software. Manual curation and several filters were applied following Laucou

et al [51]. We finally used the genotyping at 12,971 SNPs with only 2.04% of missing data for

the 78 accessions. Among these SNPs 83.06%, 14.35% and 2.57% were discovered in V. vinif-
era, several American Vitis and M. rotundifolia, respectively (S3 Table).

Phylogenetic analyses

Chromatograms of forward and reverse strands were aligned and edited using the software

CLC Sequence Viewer 6.0 (CLC bio then Qiagen). All positions corresponding to indels in

one or several individuals were deleted. Final alignments were generated in fasta format and

analyzed separately or after concanetation. Phylogenetic analyses were first conducted using

MEGA7 [52]. Other analyses were performed in the R environment 3.6.0 [53] using the follow-

ing R packages: apex v.1.0.3 [54], phangorn v.2.5.5 [55], ape v.5.3 [56] and adegenet v.2.1.1

[57]. Phased genotypes were obtained using the algorithm GEVIL of GEVALT software [58]

implemented within SNIPlay software [59]. Haplotype networks were then constructed using

the Median Joining method implemented in PopART software [60].
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Ampelometric measures

Leaves from 70 accessions were collected at the end of spring at Vassal-Montpellier repository.

Four to 18 fully expanded leaves per accession (median number = 8.5) at similar developmen-

tal stage were taken from the middle of shoots. Leaves were dried in a plant press between

newsprint sheets. The abaxial surface of each leaf was photographed using a camera mounted

on a copy stand. Parameters were obtained from these pictures using SuperAmpelo ver. 2.0

[61] and corresponded to lengths, distances, angles and calculated values (area, ratio). Median

values per accession were considered and averaged for parameters measured on the right and

left halves of leaves. In addition, photographs were processed using ImageJ [62] to obtain from

binary images measurements of the aspect ratio AR and circularity (Circ = (4π × (area/perime-

ter2) [40]. The 39 parameters were grouped according to three main types of quantitative vari-

ables: length and distances (n = 16), angles (n = 10) and ratios (n = 13); they are listed in

S4 Table and illustrated in S1 Fig.

OIV descriptors

Accessions were observed directly in the vineyard (INRAE repository of Vassal-Montpellier)

for a total of 46 OIV descriptors [63] assessed at different development stages of leaves and

shoots (S5 Table). Observations had already been recorded across several past vegetative sea-

sons and were completed during this study to avoid missing data. These descriptors were

grouped according to three types of traits: morphology (n = 15), color (n = 13), and pilosity

(n = 18).

Morphometric analyses

Analyses were performed without hybrid accessions (known or identified) and for accessions

having all three types of data (sequence data, leaf measures, OIV codes). This subsample com-

prised 56 accessions and represented 24 species or subspecies. Leaf measurements and OIV

descriptors were analyzed separately using Principal Component Analysis (PCA) implemented

in the R package FactoMineR v.1.42 [64]. Results were visualized using the R package factoex-

tra v1.0.5 [65]. We also analyzed the phylogenetic signal (i.e. phylogenetic autocorrelation)

present in each data set using the R package adephylo v1.1.11 [66]. The non-parametric Abou-

heif’s test [67] was used to detect traits with significant autocorrelation based on a randomiza-

tion test with 999 permutations. Then, a phylogenetic principal component analysis (pPCA)

was performed to summarize our sets of traits into a few synthetic variables showing positive

(global structure) or negative (local structures) phylogenetic autocorrelation in the phyloge-

netic tree. This latter was that previously obtained using the alignment of the 12 loci.

Results

Species relationships based on sequence data

The final aligment for 12 loci and 78 individuals was 6,771 bp in length. MEGA7 detected 434

variables sites including 261 parcimony informative sites and 173 singletons. However, hetero-

zygous data (IUAPC codes: K, M, R, S, W, Y) were not considered by the software and the

level of polymorphism was therefore underestimated using the diploid data. The Maximum-

Likehood tree with the bootstrap values calculated from 100 replicates were exported in newick

format and then edited using package ape in R (Fig 1). The outgroup Muscadinia was well sep-

arated from the accessions of subgenus Vitis and among these latter the American species V.

californica had a separate position. The Eurasian accessions were grouped in two sister clades

corresponding to the East Asian species (EA) and to wild and cultivated V. vinifera (EU).
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Other North American accessions were distributed in two separate clades: NA1, sister to the

Eurasian clades, and NA2. Nodes were generally poorly supported, with the exception of the

V. coignetiae-V. thunbergii-V. amurensis group in the EA clade, the V. cinerea complex in the

NA1 clade and the V. trealesii-V. arizonica group in the NA2 clade. Cultivated and wild acces-

sions of V. vinifera were separated with the exception of cv. Syrah, which grouped with the

wild accessions. The position of the hybrid between V. vinifera and V. labrusca (LAB, cv. Isa-

belle) occupied an intermediate position between EU clade and NA1, which contained the

pure V. labrusca species (LABv). By contrast, the other known hybrids V. × champinii (CHA)

and V. × doaniana (DOA1) were imbedded within the NA1 clade. The second putative acces-

sion of the East Asian V. thunbergii (THU2) occupied a basal position in the NA1 clade sug-

gesting an hybrid parentage.

To assess genetic diversity and identify the hybrids existing in our sample, haplotype

sequences were inferred from genotype data for each individual locus. The number of SNPs

per locus varied from 29 (LDOX) to 106 (CHI1) for a total of 674 SNPs (Table 1) indicating

Fig 1. ML tree obtained using nuclear sequences. Vitis accessions (codes in S1 Table) were grouped in separated clades: EA (East Asia,

blue), EU (Europe, spring green: V. vinifera subsp. vinifera, dark green: V. vinifera subsp. sylvestris), NA1 (North America 1, orange), NA2

(North America 2, red), V. californica (brown) andM. rotundifolia (grey). Known hybrids were figured in pink (CHA, DOA1, LAB). The

tree is drawn to scale, with branch lengths measured by the number of substitutions per site. The percentage of trees in which the associated

accessions clustered together is shown at nodes with threshold at 70 and 90%.

https://doi.org/10.1371/journal.pone.0283324.g001
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that 240 polymorphic positions (674 minus 434) were not taken into account in the ML tree

(Fig 1). The number of haplotypes per locus varied from 27 to 66 with similar diversity statis-

tics among loci; in average, ThetaW, Pi and He were 0.0214 (range 0.0118–0.0387), 0.0106

(range 0.0063–0.0177) and 0.92 (range 0.863–0.953), respectively (Table 1). Using a custom R

script, we calculated the number of differences between the two haplotypes for each accession.

The values averaged over the 12 loci were figured as boxplots for each group identified in the

ML tree (S2 Fig). Outliers comprised, as expected, the recognized hybrids V. × labrusca (LAB),

V. × champinii (CHA) and V. × doaniana (DOA1) and other outliers might therefore be also

suspected to be hybrids: V. coriacea in the NA1 group, one accession of V. rupestris and V.

girdiana in the NA2 group, and accessions assigned to V. yeshanensis, V. thunbergii and V. pia-
zeskii in the East Asian group (EA).

To clarify the origin of these putative hybrids we analyzed the haplotype networks for each

of the 12 loci. From the network obtained with locus 2351A (Fig 2), it clearly appeared that V.

girdiana resulted from hybridization between V. vinifera and an American species, whereas

both V. thunbergii (THU2) and V. yeshanensiswere hybrids between V. vinifera and Asian spe-

cies. The high heterozygosity of V. × labrusca (cv. Isabelle) was due to a well-documented arti-

ficial cross between V. labrusca and V. vinifera. High heterozygosity in V. × champinii and

V × doaniana resulted from natural hybridization between species belonging to the two dis-

tinct American clades NA1 and NA2. Networks obtained for other loci were shown in S3 Fig.

Sequences such as GAI1 (S3A Fig), CHI1 (S3B Fig) and 4275A (S3C Fig) indicated that both

hybrids shared one haplotype with V. candicans whereas their second haplotype belonged to

an American species of clade NA2, most probably V. rupestris for V. × champinii and V. riparia
for V. × doaniana.

We constructed another ML tree without the known or newly identified hybrid accessions

(Fig 3), with the aim to better depict the relationships among pure species. Branch supports

were not greatly improved but some changes in accession placement were observed. Within

the Eurasian clade, V. piazeskii (PIA) now occupied a sister position in the EA clade and the

two subspecies of V. vinifera were separated although without strong support. In the NA1

clade, the V. cinerea var. cinerea and var. berlandieri accessions constituted a well-separated

branch with V. cordifolia (COD) in a sister position. Another clade was represented by V. aesti-
valis and V. labrusca, whereas V. candicans (CAN) was a distant species at the base of the NA1

Table 1. Diversity statistics calculated for phased haplotypes of 12 loci sequenced in a set of Vitis accessions.

Locus N Size (pb) Nb SNPs Nb haplotypes ThetaW Pi He D Talima Fay & Wu

GA1 77 650 43 34 0.0118 0.0063 0.863 -1.407 4.078

TFL1 67 712 66 52 0.0167 0.0082 0.966 -1.603 5.808

LDOX 70 260 29 39 0.0202 0.0138 0.925 -0.926 3.592

CHI1 78 703 106 53 0.0266 0.0099 0.953 -1.991 6.933

DFR4 70 219 34 27 0.0282 0.0111 0.831 -1.796 2.438

TC1A 72 312 67 53 0.0387 0.0173 0.953 -1.731 5.385

TC1B 73 323 55 44 0.0306 0.0177 0.953 -1.300 5.721

255A 75 369 42 28 0.0204 0.0095 0.873 -1.601 3.519

1526A 77 526 47 46 0.0159 0.0078 0.946 -1.547 4.099

2351A 75 704 52 34 0.0132 0.0075 0.923 -1.318 5.301

4194A 77 617 52 38 0.0150 0.0081 0.914 -1.408 4.994

4275A 76 758 81 66 0.0191 0.0097 0.961 -1.540 7.371

N, number of individuals in the alignment

https://doi.org/10.1371/journal.pone.0283324.t001
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clade. This part of the tree might be obscured by a possible hybridization between V. aestivalis
(AES) and V. candicans (CAN) either with V. simpsonii (SIM) or more probably V. coriacea
(COR) as suggested by the high heterozygosity in this latter accession (S2 Fig). The arizonica-

rupestris-riparia clade within the NA2 clade also included V. longii (LON, syn. V. acerifolia)

and V. novo mexicana (MEX). V. rubra (RUB, syn. V. palmata) and V. monticola (MON)

occupied a basal position in this clade. The position of V. californica was not changed after the

exclusion of hybrids and was always clearly separated from other accessions of the subgenus

Vitis.

Species relationships based on SNP array

The full data set included 70 accessions genotyped at 12,971 SNPs. The distance tree con-

structed with the NJ algorithm confirmed the accessions placement of in the four clades identi-

fied using the sequence data but with a higher number of highly supported nodes (Fig 4).

Hybrids that had a vinifera parent clearly appeared at the base of the vinifera clade. In addition

to LAB (cv. Isabelle), GIR, THU2 and YES, they included two accessions without sequence

data: another V × labrusca hybrid (LAB2, cv. Concord) and a falsely identified putative acces-

sion of V. aestivalis (AES6). Since around 83% of the array SNPs originated in V. vinifera
(S3 Tab), branch lengths were very long for V. vinifera accessions and hybrids with this species.

On the contrary, branch lengths were short in the other clades especially in NA2 that was not

represented in the discovery panel. The East Asian clade also was not represented in the

Fig 2. Haplotype network for the 2351A locus. Haplotypes of known (CHA, DOA1, LAB) and putative (GIR, THU2, YES)

hybrids (colored in pink) occupied separate position in the network. Other Vitis haplotypes were colored as in Fig 1

considering the clade to which they belong.

https://doi.org/10.1371/journal.pone.0283324.g002
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discovery panel but some SNPs discovered in V. vinifera might be expected to exist in the East

Asian accessions. As another consequence of this ascertainment bias, the mean observed het-

erozygosity was high and highly variable in the European clade, but low and less variable in the

other clades, especially in NA2. Hybrids with V. vinifera again corresponded to outliers in the

box-plots (S4 Fig), whereas V. × champinii (CHA) and V. × doaniana (DOA1), although not

identified as outliers, presented the highest values of heterozygosity within the NA1 clade.

We then excluded the hybrids to construct another distance tree (Fig 5A). Differences in

branch length were clearly visible but clade arrangement was not evident especially for the spe-

cies occupying basal positions in the clades. To reduce the effect of ascertainment bias and

therefore better visualize the relationships between non-vinifera accessions, we constituted

three other data set with decreasing fractions of vinifera SNPs sampled at random. The new

SNP sets had 5,000 (69.4%), 1,000 (31.3%) and 500 (18.5%) vinifera SNPs, respectively. Decrease

in the percentage of vinifera SNPs did not change the species relationships but allowed visualiz-

ing better the relationships in non-vinifera accessions by modifying branch lengths (Fig 5B–

5D). V. amurensis appeared basal in the Eurasian clade (EA+EU). For American taxa, except

the clearly differentiated clades such as aestivalis or cinerea-berlandieri in NA1 or arizonica-

rupestris-riparia in NA2, the position of V. californica, V. candicans, V. rubra and V.monticola
were not fully congruent with the relationships depicted using sequence data (Fig 3).

Polymorphim in chloroplast DNA

A total of 23 SNPs in the array corresponded to polymorphisms in chloroplast DNA (Ibanez,

pers. comm.). Only 11 of these loci were informative (biallelic) in our sample of 70 accessions

Fig 3. ML tree obtained without hybrids using nuclear sequences. Six Vitis hybrids were not included in this analysis

(CHA, DOA1, LAB, GIR, THU2, YES). Same legend than Fig 1.

https://doi.org/10.1371/journal.pone.0283324.g003
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and allowed defining 19 chlorotypes with 1 to 8 SNP differences and corresponding to 1 to 16

accessions (S5A Fig). The hybrids THU2 and YES shared their chlorotype with accessions

from the European clade and with V. californica, therefore they issued most probably from a

hybridization between an Asian species as female and V. vinifera as male. The GIR and LAB

(cv. Isabelle) hybrids shared their chlorotype with American accessions and therefore V. vinif-
era was again the male parent. The CHA and DOA1 hybrids had a chlorotype differing from

V. candicans so their female parent was more probably V. rupestris for CHA and V. riparia for

DOA1 according to the nuclear results. Using the mlg.filter function in package poppr we col-

lapsed chlorotypes having only one difference, which resulted in eight chlorotypes (S5B Fig).

This allowed suggesting an American species as female parent for AES6 and V. vinifera for

LAB2 (cv. Concord).

PCA analysis of morphological traits

In the PCA with the 39 leaf measures (Fig 6), the two first axes explained 60.7% of the variance.

PC1 (35% of the variance) reflected the effect of many length variables (Fig 6A) and separated

Fig 4. Distance tree constructed using data from the SNP array. Colors used for hybrids and clades as in Fig 1. The

percentage of trees in which the associated accessions clustered together is shown at nodes with threshold at 70 and

90%.

https://doi.org/10.1371/journal.pone.0283324.g004
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the accessions according to their leaf size (Fig 6B). Species with large leaves such as V. coigne-
tiae (COI), V. romanetii (ROM), V. riparia (RIP) and some cultivars of V. vinifera (e.g. Car-

ignan, CAR) were distinguished from species with small leaves such as V. monticola (MON)

and V. rupestris (RUP). The variables most contributing to PC2 (25.7% of the variance) were

angles and calculated ratio; both separated the accessions according to leaf form. For instance,

the distance SPSP’ and the angle pi both allowed distinguishing species with a large sinus open-

ing: V. rupestris (RUP) and V. riparia (RIP). The angles between the three main veins N1,N2

and N3 and especially their sums grouped accessions having lobes (mostly the sampled vinifera
accessions). Finally, some calculated variables such as the ratio OMETN2N3 (omega+eta/

lengthN2+lengthN3) also appeared useful to define the leaf form and was only correlated with

OMETOSOI (omega+eta/OS+OI) which depended on sinuses depth. In addition to these gen-

eral trends, a rather large variation was noticeable within species having several accessions.

Another PCA was performed, keeping only the angles and calculated variables (except leaf

area) to better interpret the differences in leaf form among species (S6 Fig). V. rupestris was

Fig 5. Distance trees constructed with different sets of SNPs from the array. a) 12,971 SNPs with 10,774 V. vinifera
SNPs, b) 7,197 SNPs with 5,000 V. vinifera SNPs), c) 3,197 SNPs with 1,000 V. vinifera SNPs, and d) 2,697 SNPs with

500 V. vinifera SNPs. Hybrids are not included. Vitis clades colored as in Fig 1. The percentage of trees in which the

associated accessions clustered together is shown at nodes with threshold at 70 and 90%.

https://doi.org/10.1371/journal.pone.0283324.g005
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easily distinguished on PC1 (38.1% of the variance) from all other species due to its reniform

leaves (high leaf width relative to length AR, high values of mu and lambda) with large open

petiolar sinus (high values of pi). Other species were separated along PC2 (23.0% of the vari-

ance) according to variables measuring lobbing and serration such as Circularity (Circ.) and

sinus depth (RS, RI, OMETOSOI). V. vinifera and some Asian species such as V. piasezki and

V. amurensis) were lobed and serrated in contrast to other Asian species such as V. armata, V.

pentagona, V. balanseana, whose had entire cordiform leaves.

For the traits coded using OIV scales, the two first PCA axes explained 31.7% of the vari-

ance (19.7% for PC1 and 12% for PC2) and the contribution of most variables was weak

(Fig 7A). However, the different genetic clades and also species within clades were clearly dis-

tinguished (Fig 7B). PC1 separated species from the NA2 clade whereas PC2 tended to separate

NA1 to EU and EA clades. Opening of the shoot tip (M1 = OIV001), surface relief

(M102 = OIV102) and several OIV descriptors measuring organ pilosity were the most con-

tributing traits to PC1, the most villous species of clade NA1 (V. candicans, V. coriacea, V.

simpsonii) and the glabrous species of clade NA2 such as V. riparia and V arizonica were at

opposite sides of PC1. In contrast to the previous analyses with leaf measures, accessions from

the same species or species subgroup within clades showed lower variation and clustered in

the PCA plot (Fig 8B). This was the case, for instance, for V. cinerea var. cinerea accessions or

for the group of Asian species having spines on internodes (V. armata, V. romanetii, V. davi-
dii) although this latter characteristic was not encoded by OIV.

Searching for a phylogenetic signal

We found 21 and 4 leaf measures with significant autocorrelation at p<0.01 and 0.05, respec-

tively, on a total of 39 measures (listed in S4 Table). The results of pPCA indicated that the var-

iation in these traits corresponded to a global signal (S7A Fig) and the main component (PC1)

isolated V. riparia from the other species (S8A Fig). We then selected the measures having the

highest loadings in the analysis (quantile (a,0.1) | a>quantile (a,0.9)) and drew a plot (Fig 8A)

using only the eight selected variables, some of which being correlated (S9A Fig). These traits

were characteristics of leaf form: distance between F and N2 extremity (FN2), angle between

veins 1 and 3 (ANGN1N3: omega + eta), ratios of leaf width measured at vein extremities

(RN2N3, RN2N4), angle mu and ratio between major and minor axis (AR).

We found 30 and 5 OIV descriptors with significant autocorrelation at p<0.01 and 0.05,

respectively, on a total of 46 descriptors (S6 Table). The results of pPCA indicated that the vari-

ation corresponded to a global signal (S7B Fig) and the main component (PC1) isolated the

whole NA2 clade + M. rotundifolia from all the other species (S8b Fig). We then selected the

variables as above and drew another plot using the 11 variables having the highest loadings

(Fig 7B), some of which being correlated (S9B Fig). The most structured traits corresponded to

all three categories: morphology (M1 = OIV001: opening of the shoot tip; M102 = OIV102:

surface relief, M73 = OIV073: undulation between veins), coloring (C2 = OIV002: distribution

of anthocyanin coloration on prostrate hairs of the shoot; C7 = OIV007: color of the dorsal

side of internodes; C9 = OIV009: color of the dorsal side of nodes) and villosity (P4 = OIV004:

density of prostrate hairs on the shoot tip; P5 = OIV005: density of erect hairs on the shoot tip,

P53 = OIV053: density of prostrate hairs between main veins on lower side of blade (4th leaf);

P56 = OIV56: density of erect hairs on main veins on lower side of blade (4th leaf)).

Fig 6. PCA using leaf measures. a) correlation plot for variables classified according to their type (length, angle and

ratio, see S4 Table) b) plot for Vitis accessions grouped by clades identified using molecular data and colored as in Fig

1. Hybrids were excluded.

https://doi.org/10.1371/journal.pone.0283324.g006
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Discussion

The Vitis genus comprises several clades

In the last decade, numerous efforts have been made to obtain a comprehensive description of

species relationships within the Vitis genus. Phylogenetic studies have concerned both the

chloroplast [17–19, 26, 28] and nuclear [18–25, 27, 47] genome using different sets of markers

and accessions. All these works agreed with the sister position of subg. Muscadinia relative to

subg. Vitis and most of them concluded that subg. Vitismay be divided in several clades corre-

sponding to the continental origin of the species. However, incongruent results have been fre-

quently observed for the placement of either clades in subg. Vitis or species within clades.

These discrepancies have been attributed to non-exclusive reasons such as recent divergence,

natural hybridization or false identification of accessions. Another additional explanation

might be the type of markers or the manner they were obtained. For instance, previously

widely used markers such as Simple Sequence Repeats (SSR) were prone to homoplasy [68].

More recent technologies also have some biases, due to the procedures used to select SNPs in

the case of SNP arrays [69, 70] and to the part of reduced genome examined by genotyping-

by-sequencing [71]. Using a very large number of markers issued from whole-genome

sequencing did not always guaranty a more precise description of the species relationships.

For instance in grape, V. cinerea and V. aestivalis were not recovered as monophyletic in a

whole-plastome tree [26]. As another example, the relationships among American species

were poorly described within the ML tree obtained after the complete nuclear genome

sequencing of 472 Vitis accessions [27, S3 Fig]. Quality of sequences, parametrization in the

bioinformatic process, use of a reference sequence from V. vinifera and high heterozygosity in

nuclear data could introduce additional difficulties. Furthermore, to assess species relation-

ships even in a recent divergent genus, using several thousand or millions of markers do not

seem necessary in contrast for example to genetic association studies [72].

In this work, we first used Sanger sequencing to discover polymorphims in a limited num-

ber of loci. ML tree based on these polymorphims confirmed i) the outgroup position of M.

rotundifolia, ii) the peculiar position of V. californica, iii) the existence of two other clades in

North America, iv) a clade comprising all Asian species and v) the derived position of V. vinif-
era in Eurasia. In addition, accessions of the same species generally clustered together. We

then used an SNP array comprising around thirty times more SNPs than the Sanger data and

obtained a similar phylogeny with a higher support for the main nodes. We demonstrated that

the ascertainment bias due to the discovery panel had large effects on branch lengths with a

lower discrimination of species in clades not included in the panel (e.g. North American clade

2). Moreover, some species (e.g. V. rubra, V. monticola, V. candicans) having a sister position

in clades according to the ML tree (Sanger data) exhibited an ambiguous position in the dis-

tance tree (SNP array data). This could be due to the absence in the array of the polymor-

phisms specific of these more distant species. We therefore considered that the ML tree

obtained with sequence data better reflected the species relationships.

Hybridization in Vitis genus

Natural hybrids in the genus Vitis have long been recognized based on morphological and

agronomic traits, especially in North America [73]. For instance, Foex [74] suggested, as early

Fig 7. PCA using OIV codes. a) correlation plot for OIV codes classified according to their type (M: Morphology, C:

Color, P: Pilosity, see S5 Table) b) plot for Vitis accessions grouped by clades identified using molecular data and

colored as in Fig 1. Hybrids were excluded.

https://doi.org/10.1371/journal.pone.0283324.g007
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as 1882, that V. × champinii was a hybrid combining the vigor of V. candicans and the rooting

ability and hardiness of V. rupestris. Several parentages proposed in the past have indeed been

supported by recent molecular data: Zecca et al [30] using data from the 9K SNP array [75]

obtained evidence that V. × champinii and V. × doaniana resulted from natural crosses

between V. candicans and, respectively, V. rupestris and V. acerifolia. In the present work, we

reached a similar conclusion based on haplotype networks of a few nuclear loci for V. × cham-
pinii, whereas fo V. × doaniana the second parent might be V. riparia or the close species V.

longii (syn. V. acerifolia). Moreover, cpDNA polymorphisms allowed us to infer the direction

of crosses. Their hybrid origin might not be deduced form their position in the ML-tree since

they clustered with one of their parent (V. candicans) within the same clade (NA1). By con-

trast, artificial hybrids between V. vinifera and V. labrusca (also called V. labruscana) occupied

intermediate positions in the ML and distance trees. Our cpDNA data showed that the female

parent is V. labrusca for cv. Isabelle and that the chlorotype of cv. Concord originated from V.

vinifera. This latter result confirms the recent study of Wen et al. [76] who also pointed out a

probable backcross with V. labrusca as already suggested by Huber et al. [77].

The previous examples indicated that the position of hybrids in phylogenetic trees is not

predictable and depends on which parent the hybrid shares the most derived characters with

[78]. We therefore used information not only from the trees but also from haplotype networks

and the heterozygosity values to define the most probable hybrids in our sample. A total of

eight accessions were confirmed or identified as hybrids and have been eliminated from down-

stream analyses. We considered this step as essential to provide an accurate view of the rela-

tionships between the pure species. However, we acknowledge the fact that possible hybrids

within clades or complex interspecific hybrids may have escaped from our scrutiny at this

stage.

Zecca et al [30] detected a very interesting gene flow between the M. rotundifolia outgroup

and two species from clade NA1 V. candicans (syn. V. mustagensis) and V. coriacea (syn. V.

shuttleworthii), which are both currently sympatric with M. rotundifolia. It had been also pre-

viously documented that this species hybridized with several American Vitis species and more

readily when used as a male than a female parent [79]. The existence of introgression between

the two subgenera in North America would bring the outgroup closer to American species in

phylogenetic trees. This could have provided a false support for the American origin of subg.

Vitis suggested in several studies [22, 23, 25].

Species relationships within clades

For V. vinifera (clade EU), the accessions included in our work only covered a little part of the

species diversity. The cultivars of subsp. vinifera analyzed represented mostly the diversity

group from Western Europe and have a wine usage [51, 80]. The studied wild accessions of

subsp. sylvestris also originated from the same region except the Tunisian accession (LAS). In

Western Europe, the differentiation of the two subspecies is probably limited due to the exis-

tence of a gene flow [81]. However, the two subspecies were clearly separated using the

sequence data without the hybrids (Fig 3). The SNP array data without hybrids also separated

the two subspecies, although the Tunisian accession clustered or not with the cultivated acces-

sions depending on the set and number of SNPs used (Fig 5).

Fig 8. Phylogenetic tree along with the phylogenetically structured traits. a) eight leaf measurements, b) ten OIV

codes. The first global principal component of the pPCA (PC1) is shown. Positive and negative values are represented

using black and white symbols, respectively, with a size proportional to the absolute value. In the phylogenetic tree

clades are colored as in Fig 1. Hybrids were excluded.

https://doi.org/10.1371/journal.pone.0283324.g008
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The East Asian clade is sister to the European clade. The sequence data allowed to cluster

some Asian species: i) V. amurensis, V. coignetiae and V. thunbergii that constitute a northern

clade, ii) V. flexuosa and V. balanseana representing the V. bryoniifolia clade recently studied

by Ma et al [41] and iii) V. armata, V. romanetii and V. davidii included by Galet [12] in the

Spinosae serie. Several discrepancies were observed between the sequence and array data. For

instance, V. amurensis was found sister to other Asian taxa in the distance tree but not in the

ML tree. Moreover, in the distance tree V. armata did not cluster with the two other species of

the Spinosae serie, which was identified using sequence data. These differences could be due to

the lack of Asian taxa within the discovery panel for the SNP array.

Our results for American species are largely congruent with those of Klein et al [24] who

also described two distinct groups: Clade I and II corresponding to our clades NA2 and NA1,

respectively. These authors discussed in details the characters of each of the clades in relation

with previous classification, morphological characters and phylogeography. NA1 clade

includes species from eastern regions like V. aestivalis, V. cinerea, V. cordifolia (syn. V. vul-
pina), V. labrusca, V. coriacea (syn. V. shuttleworthi), V. simpsonii and V. candicans (syn. V.

mustangensis). Both sequence and array data identified a V. cinerea clade including the two

varieties var. cinerea and var. berlandieri (syn. var. helleri). These varieties were clearly distin-

guished especially in the distance tree with a strong support (Fig 7D). Gene flow between them

is probably limited due to the strict adaptation of var. berlandieri to dry climate and lime soils

[82]. Some authors proposed to classify var. berlandieri and var. cinerea in two different species

based on morphological differences [83]. However, a recent population analysis showed that

the two varieties are in the species boundaries and that var. cinerea probably contains several

genetic groups [84]. Interestingly, our present study identified V. cordifolia as sister to V.

cinerea.

Further work is required to better understand the relationships among V. aestivalis, V.

simpsonii, V. coriacea and V. candicans. These species share similar climatic niches in the

southeastern United States [85] where some morphological similarities and possible hybridiza-

tion caused taxonomic ambiguities [86]. For instance, our V. coriacea accession exhibited a

high heterozygosity and shared many polymorphisms with V. simpsonii and V. aestivalis. Fur-

thermore, the position of the three species in our phylogenetic trees changed according to the

data set. Sequence data grouped V. aestivalis and V. simpsonii whereas the SNP array data

grouped V. simpsonii and V. coriacea. V. simpsonii has sometimes been named V. cinerea var.
floridana [87]. By contrast, accessions with this latter name did not group with other V. cinerea
accessions in recent phylogenetic trees based on chloroplast [26] and nuclear [30] polymor-

phisms. We therefore suggest that V. cinerea var. floridana does not belong to V. cinerea; it is

more probably a pure species or a hybrid close to V. aestivalis and V. coriacea.

NA2 clade includes the species: V. arizonica, V. riparia, V. longii (syn. V. acerifolia) and V.

rupestris, thus confirming previous results [21, 22, 24]. In addition, we found a very close prox-

imity between V. arizonica and V. treleasii. These two species have been assigned to the same

series in previous classifications based on morphology [10, 12]. We identified V. monticola as a

sister species in clade NA2 in congruence with previous molecular studies [21, 24]. We

obtained conflicting results for V. rubra (syn. V. palmata). Sequence data identify this species

as sister to the clade NA2 but SNP array indicated a close genetic relationship with V. candi-
cans from clade NA1. This species could be a relict and its isolated position in the distance tree

may be due to the sharing of ancestral polymorphisms with M. rotundifolia, which was repre-

sented in the discovery panel.

Our results also confirmed the particular phylogenetic position of V. californica, already

pointed in several contributions [e.g. 17–19, 26], this species appearing very different from all

other American species. In contrast to Ma et al [25], our nuclear data are congruent with
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plastome data [e.g. 18, 26]. V. californica was probably isolated for a long time in northwestern

America and then entered in contact and hybridized with V. girdiana [30, 87] as well as, more

recently, with V. vinifera [87]. V. californica shared characters with the core subg. Vitis from

Eurasia: low to high susceptibility to mildew diseases and reddening leaves at fall whereas all

other American species display low to high resistance to mildews and have yellowing leaves at

fall.

Adaptation and morphological diversification in subgenus Vitis
Subgenus Vitis experienced rapid radiation in East Asia [25] and also a rapid and probably

more recent radiation in North America [26]. These radiations have been associated with

adaptation to diverse ecological conditions implying diversification for morphological charac-

ters. Similar adaptation has been observed in both continents, leading to two main growth

habits: climbers with large leaves, tall plant stature with strong stems and tendrils (e.g. V.

riparia, V. coignetiae) and shrubs with tiny leaves, small plant stature, many branches and

weak climbing ability (e.g. V. rupestris, V. pentagona). A striking example of convergence was

the assigment by Galet of V. labrusca and V. coignetiae to the Labruscae series, as both species

have large and entire leaves but are phylogenetically very distinct (e.g. Fig 3). Recent studies

[41, 88] also pointed out the importance of environment-driven evolutionary convergences

driven in Vitis.
In this context, it is not surprising that our analyses of leaf measurements and OIV traits

poorly reflected the species relationships found using DNA polymorphisms. As expected, the

size and form of leaves did not allow recovering the differents clades although reniform leaves

were only found in clade NA2 (V. rupestris). PCA analyses of OIV traits tend to isolate NA2

and also to separate NA1 from the EU and EA clades but with large variation within species.

We then searched for a phylogenetic signal (i.e. “a tendency for closely related species to pos-

sess similar trait values due to descent from a common ancestor” [89, 90]) in our data using a

method that took simultaneously into account phylogeny and morphological traits. Several

traits were found autocorrelated with the phylogeny and the main result pointed again the

NA2clade as the most distinct within the core Vitis subg. Vitis. Diversification in North Amer-

ica has been therefore very marked with three clades (V. califonica, NA1 and NA2) probably

isolated during a long time. They adapted to different environments, which are very contrasted

in Northern America [73, 91]. Assessing the relative roles of common ancestry and adaptation

in determining morphological traits appears therefore very challenging at the subgenus level

[92].

However, leaf measurements and OIV codes are still very useful for identification of species

and varieties within species. Moreover, more precise methods for quantifying leaf shape are

now available and have been recently applied to Vitis species. These methods performed very

well for identification purposes even at the clonal level within V. riparia and V. rupestris [38].

The digital reconstruction of grapevine leaves allowed also recently identifying numerous QTL

associated with leaf shape [93]. Taking into account the variation along the shoot has recently

been found to outperform the classic measures of individual leaves [94].

Conclusions

In this work, we showed that a relatively low number of SNP markers obtained from sequences

of a few nuclear genes are sufficient to recover the main divisions in the Vitis genus. Our phylo-

genetic results were largely similar to other recent phylogenies evidenced for this genus and

confirmed the continental distribution of genetically distinct clades. In addition, using haplo-

type reconstruction of nuclear genes and a few chloroplast markers, we identified hybrids in
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our sample and demonstrated how they might affect the position of pure species in phyloge-

netic trees. Despite an evident effect of ascertainment bias, genotyping with an SNP array pro-

vided congruent results with the sequence data. There was recently a renewed interest for

morphological variation in Vitis, not only for classification purposes but also to decipher evo-

lution and adaptation in the genus knowing the genetic relationships between species [25, 29,

41, 80]. Here we contributed to this topic by searching a phylogenetic signal in morphological

characters. The signal was generally weak but confirmed that the American clade NA2 is the

most genetically divergent in subgenus Vitis exhibiting original morphological traits. Further

research would aim to identify the ancestral species of clades and to follow their evolutionary

history during their geographic extension [85]. For that purpose we suggest to combine differ-

ent types of data: nuclear and plastid polymorphisms, including indels [42], morphological

characters in particular for the leaf form and biochemical characters such as those involved in

the flavonoid pathway [95].
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