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Abstract
Key message We identified markers associated with GRD resistance after screening an Africa-wide core collection 
across three seasons in Uganda
Abstract Groundnut is cultivated in several African countries where it is a major source of food, feed and income. One of 
the major constraints to groundnut production in Africa is groundnut rosette disease (GRD), which is caused by a complex 
of three agents: groundnut rosette assistor luteovirus, groundnut rosette umbravirus and its satellite RNA. Despite several 
years of breeding for GRD resistance, the genetics of the disease is not fully understood. The objective of the current study 
was to use the African core collection to establish the level of genetic variation in their response to GRD, and to map genomic 
regions responsible for the observed resistance. The African groundnut core genotypes were screened across two GRD hotspot 
locations in Uganda (Nakabango and Serere) for 3 seasons. The Area Under Disease Progress Curve combined with 7523 
high quality SNPs were analyzed to establish marker-trait associations (MTAs). Genome-Wide Association Studies based 
on Enriched Compressed Mixed Linear Model detected 32 MTAs at Nakabango: 21 on chromosome A04, 10 on B04 and 1 
on B08. Two of the significant markers were localised on the exons of a putative TIR-NBS-LRR disease resistance gene on 
chromosome A04. Our results suggest the likely involvement of major genes in the resistance to GRD but will need to be 
further validated with more comprehensive phenotypic and genotypic datasets. The markers identified in the current study 
will be developed into routine assays and validated for future genomics-assisted selection for GRD resistance in groundnut.
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Introduction

Cul t iva ted  g roundnut  (Arachis  hypogaea  L . ) 
(2n = 4x = 40), also known as peanut, is an important cash 
and food crop worldwide (Okello et al. 2013; Janila et al. 
2016). It is cultivated in more than 100 countries with 
an estimated average annual world production of 49 mil-
lion tonnes (FAOSTAT 2019). Asia is the leading conti-
nent in groundnut production (~56%) followed by Africa 
(~34%) (FAOSTAT 2019). The kernels are a rich source of 
dietary protein (Arya et al. 2016; Toomer 2017), healthy 
fats (Mora-Escobedo et al. 2015), essential vitamins (King 
et al. 2008; Arya et al. 2016) and micronutrients (Mienie 
et al. 2013; Kurapati et al. 2021), making it an important 
ingredient in the formulation of ready to use therapeutic 
foods (RUTF) for target populations in Africa and Asia 
(Nabuuma et al. 2013; Wagh and Deore 2015; Schoonees 
et al. 2019). Groundnut haulm and seed cake are preferred 
sources of fodder and feed (Desmae et al. 2019; Ahmed 
et al. 2021). Other industrial uses include making soaps, 
detergents, paints, cosmetics, candles and lubricants 
(Janila et al. 2016).

Despite being the second most important legume crop 
after common bean (Phaseolus vulgaris) in many sub-
Saharan African (SSA) countries, groundnut productivity 
is extremely low, owing to various biotic and abiotic chal-
lenges. One of the most important foliar diseases in SSA 
is Groundnut Rosette Disease (GRD), which is endemic 
to SSA and was first reported in Tanzania in 1907 (Naidu 
et al. 1999). GRD has since spread to several countries 
in SSA and its offshore islands leading to losses of up to 
100% in pod yield, especially if the symptoms occur before 
flowering (Okello et al. 2010, 2014). A complex of three 
agents that function in a synergistic manner cause GRD; 
groundnut rosette assistor luteovirus (GRAV); groundnut 
rosette umbravirus (GRV) and its satellite RNA (satRNA) 
(Naidu et al. 1999; Deom et al. 2000). The satellite RNA 
depends on GRV for its replication and on GRAV for its 
encapsidation (Taliansky et al. 2000). Aphids (Aphis crac-
civora Koch) are the principal transmission vectors for the 
GRD agents (Lynch 1990).

The presence of all the three disease agents results in 
severely stunted and bushy plants with reduced leaf size 
and shortened internodes (Waliyar et al. 2007; Nigam et al. 
2012). Sole infection from GRAV or GRV agents alone 
result in either no symptoms or in a mild transient mottle 
or yellowing in groundnut foliage (Waliyar et al. 2007). 
The main cause of GRD damage is the GRV-satRNA 
(Murant and Kumar 1990; Taliansky et al. 2000), which 
is responsible for symptoms ranging from green (Okello 
et al. 2014, 2017; Mabele et al. 2021), chlorotic/yellow 
(Okello et al. 2017; Mabele et al. 2021) and mosaic rosette 

(Waliyar et al. 2007; Mukoye et al. 2020). Although there 
is evidence suggesting that different forms of satRNA from 
different regions of the world may be responsible for dif-
ferent symptoms (Murant and Kumar 1990; Mukoye et al. 
2020), the studies are not comprehensive enough to be 
conclusive on the specific satRNA forms causing yellow, 
green or mosaic symptoms. Disease scoring has, therefore, 
been done according to the number of plants showing at 
least one of the GRD symptoms rather than by the types 
of symptoms observed (Reddy 1991; Waliyar et al. 2007; 
Mugisa et al. 2016; Mukoye et al. 2020).

The most effective and practical solution for groundnut 
farmers is to grow GRD resistant varieties (Nigam et al. 
2012). However, the complexity of the viral agents and the 
involvement of a transmission vector have made successful 
breeding for complete resistance difficult. Previous reports 
suggest that resistance could be specific to the various 
agents (Waliyar et al. 2007) or to the vector (Minja et al. 
1999). Furthermore, the genetics of resistance to the dis-
ease agents or the vector are not clearly understood (Bock 
et al. 1990; Olorunju 1992; Herselman et al. 2004; Usman 
et al. 2015; Athanas 2015; Nalugo et al. 2016). Although 
efficient development of resistant varieties in other crops 
with similar complex diseases has been possible through 
the use of molecular markers (Awata et al. 2021), ground-
nut breeding programs in Africa are largely conventional. 
The few reported molecular studies deployed include 
Amplified Fragment-Length Polymorphisms (AFLPs) for 
resistance to aphids (Herselman et al. 2004) and Simple 
Sequence Repeat (SSR) markers for GRD resistance (Pan-
dey et al. 2014; Athanas 2015). However, the reported 
associated markers were not validated and, therefore, are 
not used routinely in any of the breeding programs in SSA.

Recent developments in groundnut genomics (Bertioli 
et al. 2016, 2019; Pandey et al. 2017; Clevenger et al. 
2018; Korani et al. 2019) provide great opportunities for 
enhanced utilization of state-of-the-art molecular mark-
ers in breeding programs in SSA and elsewhere. Linkage 
disequilibrium (LD) or association mapping has rapidly 
become a useful method in elucidating the molecular 
basis underlying phenotypic variation (Alqudah et  al. 
2020). Genome Wide Association Studies (GWAS) have 
been used to identify molecular markers and Quantitative 
Trait Loci (QTLs) associated with economically important 
traits in groundnut (Wang et al. 2019; Zhang et al. 2020, 
2021; Otyama et al. 2022). The only reported GWAS study 
that involved GRD resistance in groundnut (Pandey et al. 
2014) used germplasm from the ‘reference set’, majority of 
which are not part of the SSA breeding programs. In this 
study, we performed a GWAS for GRD resistance using 
213 genotypes selected from the African core collection. 
Our aim was to exploit the natural variation present in this 
representative set of genotypes to identify novel sources 



Theoretical and Applied Genetics (2023) 136:35 

1 3

Page 3 of 20 35

of resistance to GRD, associated molecular markers and 
putative genes.

Materials and methods

Plant material

Two-hundred and thirteen (213) breeding lines from nine 
African countries that were part of the African core col-
lection were used in this study (Supplementary Table 1; 
Fig. 1). The African core collection was constructed from 
a nucleus of 116 non-redundant breeders-preferred geno-
types and expanded to 300 genotypes using genotyping data 
and the core hunter software (De Beukelaer et al. 2018). 
The 213 genotypes of the subspecies fastigiata (32 “hybrid” 

(combinations between botanical types), 97 Spanish, 10 
Valencia) and the hypogaea subspecies (74 Virginia) used 
in this study were selected based on availability of seed for 
multi-location trials. Each trial contained a maximum of 200 
genotypes per season depending on seed availability.

Field screening and evaluation for disease 
resistance

Field evaluation was done in Eastern Uganda at two GRD 
hotspot locations, Serere and Nakabango (Okello et al. 2010). 
Serere is located 33A°26′43.943″ E and 1A°31′58.580″ 
N at 1126 m above sea level while Nakabango is located 
 33o12′47.588″ E and  0o31′26.762″ N at 1169 m above sea 
level. The 200 lines were planted in two 1-m row plots at a 
spacing of 15 cm within rows and 45 cm between rows in a 

Fig. 1  A map of Africa showing countries from which genotypes for core collection were obtained and their market classes
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10 × 20 lattice design. The trial was planted in two replicates 
across the two locations in three seasons (2020A, 2020B 
and 2021B). Genotypes Ug-43_Oug-RED_BEAUTY_UG 
and Gh2-54_GhaII-NUMEX_03 were used as susceptible 
checks, while Ug-41_Oug-DOK_1_RED_UG and Ug-194_
Oug-ICGV_90099 were used as resistant checks (Supple-
mentary Table 1).

GRD incidence was recorded based on the intensity and 
presence of any one of the symptoms recorded in literature 
(Waliyar et al. 2007; Okello et al. 2014, 2017; Mukoye et al. 
2020; Mabele et al. 2021). Percentage GRD incidence (Wali-
yar et al. 2007) was recorded at 30, 60 and 90 days after 
planting (DAP). Percentage disease incidence (PDI) was 
calculated as:

The PDI data at 30, 60 and 90 days were used to calculate 
the Area Under Disease Progress Curve (AUDPC) using the 
formula:

where yi is the PDI at the ith observation; ti is time (in days) 
at the ith observation and n is the total number of observa-
tions (Simko and Piepho 2012).

Statistical analysis of phenotypic data

Best linear unbiased predictions (BLUPs) and thereafter 
variance components within environments were estimated 
in the lme4 package (Bates et al. 2015) in R (R core team 
2021) by manipulating the REstricted Maximum Likelihood 
(REML) method using the model:

where Yijk is the kth observation for the ith genotype; µ is the 
overall mean; Gi is the Genotype effect, Rj is the replication 
effect while R/Bjk is the effect of blocks nested in replicates, 
respectively; εijk is the error term associated with Yijk.

BLUP variance components estimated within environ-
ments were appropriated to calculate Broad-sense heritabil-
ity (H2 bs) for GRD using the formula:

where σ2g is the genetic variance component and σ2e is 
the residual (error) component and nr is the number of 
replications.

GRD PDI (%) =

(

Number of plants showing rosette symptoms

Plant stand count at a given crop stage

)

× 100

AUDPC =

n−1
∑

i=1

(

yi + yi+1

2

)

(

ti+1− ti
)

Yijk = � + Gi + Rj + R∕Bjk + �ijk

H2bs =
�2g

(

�2g + �2e
/

nr

)

BLUPs were further used to generate frequency distribu-
tion curves and in GWAS.

DNA isolation, genotyping and SNP calling

Three seeds per genotype were planted per pot in the 
screen house at the Regional Center for Drought Adap-
tation Improvement (CERAAS) in Senegal West Africa. 
Thinning was done to retain one plant per genotype. 
Twenty mg of oven-dried young leaves from a single plant 
were collected 21 days after planting. DNA was isolated 
using the MATAB protocol (Gawel and Jarret 1991) and 
purified using the Zymo DNA purification Kit (ZYMO 
Research USA). A final concentration of 100 ng/µl was 

obtained for genotyping.
Genotyping was done using the Thermofisher SNP 

array Axiom Arachis2 with 48 K SNPs (Clevenger et al. 
2018; Korani et al. 2019). SNP data were extracted from 
raw files and filtered using Axiom Arachis Suite Version 
4.0.3 from Thermofisher scientific (https:// www. therm 
ofish er. com/ fr/ fr/ home/ life- scien ce/ micro array- analy sis/ 
micro array- analy sis- instr uments- softw are- servi ces/ micro 
array- analy sis- softw are/ axiom- analy sis- suite. html). The 
raw SNPs were filtered at a call rate > 0.95 and minor 
allele frequency > 0.05. The distribution of the final fil-
tered high-quality SNPs was plotted across the chromo-
somes using CMplot (Yin et al. 2021).

Genetic diversity, population structure and linkage 
disequilibrium (LD)

Filtered SNPs were used to draw a Neighbor-Joining den-
drogram in TASSEL 5.2.67 (Bradbury et al. 2007). Prin-
cipal Component Analysis (PCA) was done in the SNP & 
Variation Suite (SVS version 8.9.0). Ten principal compo-
nents (PCs) and the additive model were used to generate 
Eigen values. The first three principal components of the 
variation were plotted and visualized in R software using 
the scatterplot3d 0.3–41 package (Ligges and Machler 
2003). The Discriminant Analysis of Principal Compo-
nents (DAPC) was done using the adegenet v. 2.1.5 pack-
age in R software by retaining fifty principal components 
and clustering the genotypes into four groups (Jombart 
2008). LD decay was estimated using the software Pop-
LDdecay v.3.41 (Zhang et al. 2019) using the parameter 
“-MaxDist 500”. Script Plot_OnePop.pl in the package 
was then used to plot the estimated r2 values over 10 kb 
bins. The r2 threshold was set to 0.2.

https://www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-analysis-instruments-software-services/microarray-analysis-software/axiom-analysis-suite.html
https://www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-analysis-instruments-software-services/microarray-analysis-software/axiom-analysis-suite.html
https://www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-analysis-instruments-software-services/microarray-analysis-software/axiom-analysis-suite.html
https://www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-analysis-instruments-software-services/microarray-analysis-software/axiom-analysis-suite.html
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GWAS analysis

Marker trait associations (MTAs) were calculated by com-
bining the filtered SNP dataset of the genotypes with the 
corresponding BLUPs in R software using the Genome 
Association and Prediction Integrated Tool (GAPIT) ver-
sion 2 package (Tang et al. 2016). The enriched Com-
pressed Mixed Linear Model (ECMLM) method which 
builds on the Compressed/Mixed linear model factors by 
grouping individuals into clusters and stipulates the rela-
tionship among groups to correct for population structure 
(Li et al. 2014) was used as below;

where y is a vector of the phenotype (disease levels); β rep-
resents unknown fixed effects, as well as population struc-
ture and marker effects; u is a vector of size s (number of 
groups) for unknown random polygenic effects following 
a distribution with mean of zero and covariance matrix of 
G = 2K�2

a
 and K is the group kinship matrix with element 

Kij(i, j = 1, 2, ....s) representing the relationship between 
group i and j, and �2

a
 is an unknown genetic variance. X 

and Z are matrices for β and u while e is a vector of random 
residual effects that are normally distributed with zero mean 
and covariance  R = I�2

e
 . where I is the identity matrix and 

�2
e
 is the unknown residual variance.
The resulting associations were displayed as Manhattan 

plots alongside quantile–quantile (Q–Q) plots to demonstrate 
the model fitness using qqman package in R (Turner 2018). 
The P values for each marker were adjusted for false discov-
ery rate (FDR) (Benjamini and Hochberg 1995) and used to 
select significant associations (P < 0.05). Candidate genes 
were identified within 250 kbp distance of the significant 
marker using Arachis duranensis and Arachis ipaensis ref-
erence genomes. Information on the location of the genes 
and their annotations were obtained from the A. ipaensis, 
A. duranensis and annotation files (https//peanutbase.org/).

Identification of haplotypes

Stable markers within identified significant QTL regions 
were used as references for building the haplotype blocks. 

y = X� + Zu + e

All markers that were within the LD decay distance of 250 
kbp made up a haplotype block. Individuals with ambigu-
ous nucleotide calls were excluded from analysis. Pheno-
typic data were categorized based on the identified haplo-
types and used to test for association. One way ANOVA 
with Duncan's test as a post hoc test was used to identify 
significant associations and measure specific differences 
between pairs of means in R using package DescTools ( 
et al. 2021). Only haplotypes that were present in at least 
five or more genotypes were considered for the statisti-
cal analysis. Further, Haploview v4.2 (Barrett et al. 2005) 
was used to visualize the presence of LD between the 
SNP markers within the significant haplotypes. We used 
combined dataset analysis to identify genotypes harboring 
unique haplotypes and further established the extent of 
diversity among the resistant genotypes in comparison to 
the African core collection.

Results

Phenotypic variation

Table 1 provides descriptive statistics for the response of 
groundnut germplasm to GRD. The most common symp-
toms observed were green and yellow rosette (Fig. 2). 
Highly significant differences (P < 0.001) were observed 
among the genotypes for AUDPC across all the Nakabango 
trials (Table 1). At Serere, data revealed significant differ-
ences (P < 0.05) among the genotypes in seasons 2020A 
and 2020B. There were no significant differences observed 
for Serere 2021B. The broad sense heritability was low 
(0–30%) for environments Serere 2020B and Serere 
2021B; moderate (31–60%) for environments Serere 
2020A, Nakabango 2020A, 2020B and high (> 60%) for 
Nakabango 2021B. The frequency distribution graphs for 
AUDPC showed near normal distribution for environments 
Serere 2020A and Nakabango 2020A while for Serere 
2020B and 2021B, AUDPC values were skewed to the 
right (Fig. 3). Environments Nakabango 2020B and 2021B 
were normally distributed (Fig. 3).

Table 1  Descriptive statistics for AUDPC across environments

MS is the mean square value; H2—Broad sense heritability; **Significant at P < 0.005; ***Significant at P < 0.001; ns–non-significant

Environment 2020A 2020B 2021B

Mean MS H2 (%) Mean MS H2 (%) Mean MS H2 (%)

Serere 2428.8 1,337,811** 31 404.7 420,363** 17 400.8 305288 ns 29
Nakabango 2261.7 2,339,754*** 51 8643.6 22,515,350*** 58 2819.6 3,624,008*** 68
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Linkage disequilibrium, genetic diversity 
and population structure

A total of 7523 (3125 from sub-genome A and 4,398 from 
sub-genome B) high quality SNP markers were retained 
that had a genotype call rate > 0.95 and Minor Allele Fre-
quency (MAF) > 0.05. The SNPs were well distributed 
across the 20 chromosomes (Fig. 4), with SNP densities of 
2.5 and 2.8 SNPs/Mbp for sub-genomes A and B, respec-
tively. The overall LD decay across the 20 chromosomes 
was estimated at 250 kbp (Supplementary Fig. 1). LD 
decayed more rapidly in the B sub-genome (177 kbp) in 

comparison to the A sub-genome (388 kbp) (Supplemen-
tary Fig. 1).

The Neighbor-Joining dendrogram, PCA and DAPC all 
grouped the groundnut genotypes according to market class 
and not by country of origin (Fig. 5A–C). The Virginia and 
Spanish group clusters were the most distinct with minimal 
contamination within the major clusters (Fig. 5). Clusters 2 
and 3 within the DAPC analysis were composed of a mixture 
of Spanish and Virginia (cluster 2), and Valencia and Hybrid 
(cluster 3) (Fig. 5C). Although a few Virginia genotypes 
clustered with the Spanish, there were no Spanish genotypes 
that clustered with the Virginia genotypes. The first 3 PCs 

Fig. 2  Symptoms of Groundnut 
Rosette Disease as observed in 
the field. A. Green rosette. B. 
Yellow rosette. C. Plot showing 
resistant check with 0% disease 
incidence at 60 DAP. D. Plot 
showing susceptible check with 
100% PDI (all plants affected by 
GRD showing severe stunted-
ness) at 60 DAP
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explained a total of 67.3% (48.6%, 11.8% and 6.9%) genetic 
variation across the genotypes indicating the superior quality 
of SNPs used in the analysis (Fig. 5B).

Genomic regions associated with GRD resistance

Due to low disease pressure in Serere that resulted in the lack 
of significant genetic variation in the response of genotypes 
to GRD for season 2021B, this dataset was not included 
in the GWAS analysis. Both the genotypic and phenotypic 
datasets that were used for GWAS have been made available 
at this link (https:// figsh are. com/s/ ebf60 2b52e a2c55 07f26). 
GWAS for Serere 2020A and 2020B yielded no significant 
markers (Supplementary Fig. 2) and for that reason, were 
not used for any further analysis or data interpretation. All 
the results presented below are for Nakabango.

Thirty-two significant marker-trait associations (MTAs) 
(FDR P < 0.05) were detected in at least one season and/or 
from combined seasons in Nakabango (Table 2; Supplemen-
tary Table 2). Manhattan and QQ plots supporting the GWAS 
results are provided in Fig. 6. Of the 32 markers detected, 21 
were from chromosome A04 while 10 were from chromo-
some B04, which is syntenic to A04 (Fig. 6). One marker 
was detected on chromosome B08 (Table 2) and was sup-
ported with two seasons data as well as the combined dataset 

(Fig. 6). Eleven markers (AX-147219783, AX-147219785, 
AX-147219808, AX-147219820, AX-147219834, 
AX-147219906, AX-147219910, AX-147219925, 
AX-147247475, AX-147247493, AX-147247508) were 
common in all the four (2020A, 2020B, 2021B and com-
bined) datasets (Table 2). The season 2020B reported the 
highest number of MTAs (30 SNPs) followed by the com-
bined dataset with 26 MTAs (Table 2). The Percent Varia-
tion Explained (PVE) that was estimated based on R2 ranged 
from 0.25 to 0.29 (2020A), 0.34–0.42 (2020B), 0.32–0.38 
(2021B) and 0.40–0.49 (combined dataset) (Supplementary 
Table 2). The combined dataset picked up an association 
with one additional SNP that was not detected with any of 
the single season’s data (AX-147219934).

Haplotype‑based association analysis

We identified five haplotypes from the respective QTL 
regions that were associated with resistance to GRD 
(Table 3; Fig. 7). All the haplotypes were located on chro-
mosome A04 except one that was located on chromosome 
B08. Tests of significance for all the possible allelic combi-
nations at each haplotype block is given in Supplementary 
Table 3. Box plots drawn using each season and combined 
data confirmed the differences in performance between the 

Fig. 3  Phenotypic distribution of AUDPC across the two loca-
tions (Nakabango and Serere) for all seasons tested (2020A, 2020B, 
2021B). The curves were drawn using BLUPs. There was no consist-

ency in the distribution of the trait in Serere location (Ai, Bi, Ci and 
Di) as compared to Nakabango (Aii, Bii, Cii, Dii)

https://figshare.com/s/ebf602b52ea2c5507f26
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favorable haplotypes and the alternative allelic combina-
tions (Supplementary Fig. 3). One of the haplotype blocks 
(TGAA), was just 1 Mbp away from a major disease resist-
ance gene (TIR-NBS-LRR) (Supplementary Table 4).

Using combined datasets, we identified 39, 25, 13, 9 and 
9 genotypes that harbored favorable haplotypes 1, 2, 3, 4 
and 5, respectively (Table 3). There were 46 non-redundant 
genotypes from the combined dataset that harbored at least 
one favorable haplotype (Supplementary Fig. 4). Two gen-
otypes (Ug-5_Oug-SERENUT_9T_UG and Ug-164_Oug-
ICGV_SM_06518) harbored all the favorable haplotypes 
(Supplementary Fig. 4). Most of the 46 genotypes were Vir-
ginia (39) types with only 5 being Spanish and one each as 
Valencia and Hybrid types. A majority of the 46 genotypes 
were from Uganda (Table 3) and were genetically similar, 
forming a cluster within the predominantly Virginia market 
class group (Fig. 8). There were hardly any GRD resistant 
genotypes among the Spanish market class cluster (Fig. 8).

Identification of candidate genes

We identified a non-redundant set of 383 genes within 250 
kbp of all significant SNPs, of which 253 were from the A 
sub-genome (Aradu) while the remaining 130 genes were 

from the B sub-genome (Araip) (Supplementary Table 4). 
Of the 383 candidate genes identified, 62 (43 from sub-
genome A and 19 from sub-genome B) were unknown 
proteins while an additional 37 (31 from sub-genome A 
and 6 from sub-genome B) were uncharacterized (Sup-
plementary Table 4). A total of 17 markers were localized 
within genes, 10 on the A sub-genome and 7 on the B 
sub-genome (Supplementary Table 4). Two markers from 
sub-genome A, AX-147219924 and AX-147219925, were 
localized within a disease resistance protein (TIR-NBS-
LRR; 39,354,055–39,358,311 bp) as shown in Fig.  9. 
There was a cluster of 9 “Disease resistance response pro-
teins” on chromosome B04 that spanned from 15,5743, 
372 bp to 15,709,800 bp. The other candidate genes onto 
which markers were localized included entatricopeptide 
(ppr) repeat-containing protein, peroxisome biogen-
esis protein 1-like isoform, protein root hair defective 3 
homolog 2-like, vesicle-associated membrane protein 725, 
exocyst complex component 84b, Myosin heavy chain-
related protein, Poly(rc)-binding protein 3-like protein, 
Ser/thr-rich protein t10 in dgcr region-like protein, argo-
naute family protein, Zip zinc/iron transport family protein 
and Phosphate transporter 1 (Supplementary Table 4).

Fig. 4  Distribution of high quality SNPs retained for population and marker-trait analysis against the joint A. ipaensis and A. duranensis refer-
ence genomes
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Stability of GRD resistance across seasons

Most of the top 20 most resistant groundnut genotypes 
showed stability across all the three seasons, with 14 geno-
types showing top levels of resistance in all the three sea-
sons, while an additional five were stable across two seasons 
(Table 4). Expectedly, Ugandan accessions dominated the 
top 20 performers category recording 9 stable genotypes 
across all seasons and another 3 genotypes across 2 seasons.

Discussion

We sought to shed light on the genetic basis of Ground-
nut Rosette Disease (GRD) resistance using a diverse set 
of cultivated groundnut germplasm that had been carefully 

selected using genotypic data and breeders’ preferences. We 
identified significant Marker Trait Associations (MTAs), 
favourable haplotypes and candidate genes tightly linked 
to significant markers. Our key findings reveal important 
aspects on choice of germplasm, environments, molecu-
lar markers, the identification of candidate genes and their 
implications on future genetic and genomic studies for GRD 
resistance in groundnut.

The choice of genotypes and environments

We have demonstrated that the African core collection was 
suitable for the identification of GRD resistance loci. We 
also captured the predominant groundnut market classes 
used across Africa. Collections with useful diversity such 
as core and mini core sets have been recommended as more 

Fig. 5  Relatedness of genotypes used in the study. A. A NJ tree 
revealing two major clusters comprising of Virginia and Spanish bio-
logical groups. Hybrid, Valencia and a number of Spanish genotypes 
appeared as admixtures. B. A PCA plot showing consistent cluster-
ing of the groundnut genotypes according to biological groups. The 3 

PCs explained 67% genetic variation across the genotypes. C. A pop-
ulation structure analysis using DAPC that clustered the genotypes 
into 4 groups, of which the Spanish and Virginia clusters are the most 
distinct
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appropriate for association studies as a result of numerous 
rounds of historical recombination (Otyama et al. 2019). 
Despite this careful selection of germplasm, our results also 
revealed the minimal existence of GRD resistant sources 
from the Spanish market class. Thirty-nine out of 46 (84.8%) 
of GRD resistant genotypes were from the Virginia class 
compared with 5 out of 46 (10.9%) from the Spanish class 
despite the Spanish class having the highest number of geno-
types (97) in the evaluation set. This finding was inconsistent 
with earlier reports (Subrahmanyam et al. 1998) but may 
also have to do with the region where the experiment was 
undertaken and the existing pathogen isolates. The experi-
ment was done in Uganda where majority of the breeding 
lines are Virginia types that have been bred for resistance to 

the pathogen isolates specific to the region. The Ugandan 
breeding lines were therefore more likely to be adapted to 
the pathogen isolates, and hence better performance. It is 
not surprising therefore that a majority of the GRD resist-
ant and stable genotypes were from Uganda. Future studies 
will need to screen the same set of germplasm across differ-
ent African ecologies to fully confirm their stability across 
different locations that might have different GRD pathogen 
isolates. Deom et al. (2000) reported region-specific cluster-
ing of GRV and sat-RNA isolates in comparison to GRAV, 
further indicating that a thorough characterisation of the 
GRD agents will be necessary for future gene and marker 
discovery studies.

Table 2  Marker-Trait 
Associations detected from each 
season and combined datasets 
and their respective P values

All markers shown were significant (FDR corrected P < 0.05)

SNP Chromosome Position P values

2020A 2020B 2021B Combined datasets

1. AX-147219775 A04 27,460,853 N/A 4.21E-05 N/A 9.39E-05
2. AX-147219783 A04 27,962,232 5.74E-05 6.52E-07 1.02E-04 3.01E-07
3. AX-147219784 A04 27,963,468 1.36E-05 5.59E-07 N/A 1.51E-06
4. AX-147219785 A04 27,964,131 2.92E-05 2.20E-08 6.07E-07 N/A
5. AX-147219808 A04 29,244,932 1.93E-05 6.91E-07 2.26E-06 3.64E-08
6. AX-147219820 A04 30,792,252 1.52E-05 2.79E-08 4.15E-06 7.59E-10
7. AX-147219834 A04 31,201,852 1.48E-05 9.88E-09 3.48E-07 2.32E-10
8. AX-147219844 A04 31,447,199 N/A 1.31E-05 1.55E-06 2.59E-06
9. AX-147219906 A04 38,089,388 1.97E-06 4.79E-06 9.68E-08 3.38E-08
10. AX-147219910 A04 38,629,872 1.55E-05 7.01E-08 7.41E-07 2.19E-09
11. AX-147219924 A04 39,355,923 N/A 6.53E-08 5.22E-06 2.41E-09
12. AX-147219925 A04 39,358,203 1.52E-06 5.53E-09 6.51E-08 9.20E-11
13. AX-147219934 A04 86,907,162 N/A N/A N/A 5.19E-05
14. AX-147247470 B04 27,243,560 N/A 4.26E-07 7.42E-05 8.15E-08
15. AX-147247475 B04 27,988,550 8.02E-06 1.62E-08 1.14E-06 3.51E-08
16. AX-147247493 B04 29,672,339 2.86E-05 1.62E-08 1.14E-06 1.04E-09
17. AX-147247505 B04 30,758,471 N/A 1.31E-05 1.55E-06 2.59E-06
18. AX-147247508 B04 30,760,719 2.73E-05 2.70E-08 1.56E-06 1.25E-09
19. AX-147247536 B04 36,984,423 N/A 5.17E-06 N/A 1.34E-07
20. AX-147247549 B04 38,566,259 N/A 2.20E-08 6.07E-07 8.35E-10
21. AX-176791378 B04 25,635,381 N/A 7.31E-07 1.27E-05 1.47E-07
22. AX-176795814 A04 20,130,699 N/A 1.59E-05 N/A 1.17E-05
23. AX-176797377 B04 34,737,194 N/A 1.81E-04 N/A 8.36E-05
24. AX-176799050 A04 69,311,317 N/A 7.71E-05 N/A 5.99E-05
25. AX-176799431 A04 68,633,760 N/A 4.21E-05 N/A 9.74E-05
26. AX-176801644 B04 15,741,129 N/A 6.52E-07 N/A 8.35E-10
27. AX-176801951 A04 61,227,858 N/A 9.78E-05 N/A 1.90E-08
28. AX-176810563 A04 83,062,040 N/A 1.18E-04 N/A N/A
29. AX-176814531 A04 4,507,325 N/A 8.68E-05 N/A N/A
30. AX-176815600 A04 83,426,568 N/A 7.88E-05 N/A N/A
31. AX-176823509 A04 32,085,166 2.83E-05 2.20E-08 6.07E-07 N/A
32. AX-177638322 B08 129,079,001 N/A 7.01E-08 1.12E-05 N/A
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Future studies will need to decipher what forms of 
satRNA are responsible for the different symptoms observed. 
While the current study reported mainly the yellow and 
green rosette, all the three major GRD symptoms have been 
previously reported in Eastern Africa, ranging from green 
(Okello et al. 2014, 2017; Mabele et al. 2021), chlorotic/

yellow (Okello et al. 2017; Mabele et al. 2021) and mosaic 
rosette (Mukoye et al. 2020). It will be extremely important 
to partition the various symptoms and fully understand the 
corresponding agents or forms of satRNA responsible for 
the specific symptoms. The focus of this initial study was 
to determine broadly, resistance versus susceptibility under 

Fig. 6  Manhattan (Ai, Bi, Ci and Di) and QQ (Aii, Bii, Cii, Dii) plots 
drawn using ECMLM approach indicating SNPs significantly associ-
ated with resistance to GRD for Nakabango. The consistent peaks on 
the Manhattan plots are highlighted on chromosomes A04 and B04. 
An additional signal on chromosome B08 is indicated by an arrow. 

The solid red line across the Manhattan plots represents the signifi-
cance threshold based on FDR correction (P < 0.05). Manhattan (Ei, 
Fi and Gi) and QQ (Eii, Fii and Gii) plots show GWAS results for 
Serere. No SNPs were significant at FDR threshold of P < 0.05
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Ugandan GRD hotspots. The Area Under Disease Progress 
Curve (AUDPC) tool was useful in providing a quantitative 
summary of GRD intensity over time for each of the geno-
types observed. No doubt, GRD will not be fully understood 
unless the specific agents and forms of satRNA are fully 
characterised with the corresponding reactions that they 
elicit from different genotypes.

The lack of consistent disease pressure in Serere resulted 
in no significant marker-trait associations. Accurate phe-
notypic datasets are critical for successful GWAS results 
(Gage et al. 2018). Earlier studies in GRD also reported 
significant and positive correlation between broad sense 
heritability (H2

bs) and increased disease pressure (Van 
der Merwe et al. 1999). Our results are a strong indication 
that future GRD studies should include artificial inocula-
tion to enhance disease pressure and its uniformity across 
trials. Lack of sufficient disease pressure would result in 
poor detection of causal alleles, especially those with minor 
effects (Davis et al. 1990; Zheng et al. 2018). Studies in 
other crops have also reported the need for enhanced disease 
pressure for accurate QTL identification (Gowda et al. 2018; 
Sitonik et al. 2019). While we were not able to detect any 
QTLs for Serere, it is also not clear if there could have been 
causal alleles with minor effects that we may have missed 

for Nakabango location too. Previous investigations in GRD 
enhanced disease pressure by growing plants in the glass-
house and inoculating with viruliferous aphids that had been 
reared on GRAV-infected groundnut (Naidu and Kimmins 
2007) or using the field-based infector-row technique (Bock 
and Nigam 1988). Nevertheless, the consistency of QTLs 
detected in Nakabango across three seasons under natural 
inoculation will remain significant and a strong foundation 
for future studies in GRD.

The suitability of the markers used in population 
structure analysis and GWAS

We used SNP markers based on the two diploid reference 
genomes of A. duranensis (sub-genome A) and A. ipaen-
sis (sub-genome B) (Bertioli et al. 2016). Though fewer 
than expected, these SNP markers were fairly evenly dis-
tributed across the chromosomes, worked extremely well 
and were highly informative for establishing the popu-
lation structure, and subsequently for the GWAS. There 
was a consistent absence of markers at the top of chro-
mosomes A05 and B05 that we attributed to tetrasomic 
recombination, which is quite frequent in groundnut (Leal-
Bertioli et al. 2015). The choice of the best markers for 

Table 3  Haplotypes associated with GRD resistance

Haplotype # SNP Markers Chromosome Position (bp) Number of genotypes harboring favorable haplotype

1. AAAA AX-147219167 Aradu.A04 4,260,861 39 (18 from Uganda; 6 from Zambia; 5 from Ghana; 4 from Senegal, 3 from 
Malawi and 1 each from Togo, Mozambique and Mali)

AX-147219171 Aradu.A04 4,320,760
AX-176814531 Aradu.A04 4,507,325
AX-176801369 Aradu.A04 4,519,432

2. CCT AX-176822505 Aradu.A04 29,183,214 25 (12 from Uganda; 3 each from Ghana, Mali and Senegal; 2 from Zambia 
and 1 each from Malawi and Togo)

AX-147219808 Aradu.A04 29,244,932
AX-176806502 Aradu.A04 29,267,392

3. CCA AX-176823509 Aradu.A04 32,085,166 13 all from Uganda
AX-176822424 Aradu.A04 32,141,842
AX-176814604 Aradu.A04 32,161,004

4. TGAA AX-176815166 Aradu.A04 38,039,961 9 (3 from Uganda, 2 each from Ghana and Zambia; 1 each from Malawi and 
Senegal)

AX-176819233 Aradu.A04 38,047,338
AX-176814614 Aradu.A04 38,086,506
AX-147219906 Aradu.A04 38,089,388

5. CTG TCG CA AX-177642019 Araip.B08 128,843,602 9 (8 from Uganda and 1 from Malawi)
AX-177643679 Araip.B08 128,909,268
AX-177644379 Araip.B08 129,005,860
AX-177638322 Araip.B08 129,079,001
AX-147259549 Araip.B08 129,102,004
AX-177638283 Araip.B08 129,199,206
AX-176794504 Araip.B08 129,311,474
AX-147259559 Araip.B08 129,323,492
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genotyping groundnut is always difficult given the ploidy 
and the large genome size (2.7 Gb). Although SNP mark-
ers called from reduced genome representation libraries 
(Gupta et al. 2015; Zhao et al. 2016; Han et al. 2018) or 
from transcriptome sequencing (Chopra et al. 2015) have 
been used previously in groundnut, they tend to result in 

homoeologous SNP calls (Zhao et al. 2016; Peng et al. 
2020) unless the very expensive option of whole genome 
resequencing (WGRS) at high coverage is applied (Agar-
wal et al. 2018) to improve accuracy of calls. The SNP 
markers used in the current study had earlier been vali-
dated using the HAPLOSWEEP pipeline, which applies a 

Fig. 7  Five haplotypes significantly associated to GRD resistance. All the haplotypes were located in the QTL region of chromosome A04 
except haplotype 5
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Fig. 8  A N-J dendrogram showing the genetic diversity of the stable GRD resistant material in comparison with the African core set. The GRD 
resistant lines are highlighted in red. The predominantly Spanish cluster is highlighted in blue (color figure online)

Fig. 9  A sketch showing a hypothetical structure of the TIR-NBS-LRR disease resistance protein identified as a candidate gene on chromosome 
A04. Two markers co-localised on exons 3 and 4 are highlighted in light green. Figure not drawn to scale
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haplotype-based method to retain allelic polymorphisms 
between genotypes (Clevenger et al. 2018). A recent study 
comparing different SNP development pipelines recom-
mended the use of Axiom Arachis2 48 K SNP array fol-
lowed by HAPLOSWEEP as the most accurate pipeline 
resulting in informative homozygous SNP calls (Peng 
et al. 2020).

According to Korte and Farlow (2013), the power of 
GWAS to detect significant MTAs is dependent on the phe-
notypic variation explained (PVE) by the SNPs. The mini-
mum PVE recorded in our current study was 25%, which 
suggests that the SNP markers used were informative and 
sufficiently captured the existing phenotypic variation. 
However, the overall low density of the SNPs significantly 
reduced the power to identify relevant genomic regions with 
higher resolutions. Disease resistance is generally known 
to be controlled by both qualitative and quantitative genes 
(Jiquel et al. 2021). Although the GWAS results point to 
qualitative resistance based on the two major peaks identi-
fied, it will be difficult to rule out the involvement of quan-
titative resistance, which was also strongly supported by the 
frequency distribution graphs. While the QTLs identified in 
the current study will form an important basis for further 
understanding of the genetics of GRD resistance, future 
studies will need to include higher marker densities that 
would ensure that each causal genomic region is adequately 
captured. The lower numbers of SNPs in the current study 
may have reduced the power to identify rare variants, espe-
cially those with small effects (Gibson 2012).

Linkage disequilibrium (LD) is the non-random associa-
tion between alleles at different loci in a breeding population 
and is the result of interplay of several factors including link-
age, population structure, relatedness, selection and genetic 
drift (Flint-Garcia et  al. 2003; Bush and Moore 2012). 

Understanding the LD pattern is crucial in genomic analysis 
as it determines the resolution and power of association anal-
ysis for a given population. Our study observed an overall 
LD decay of 250 kbp, suggesting that at least 10,384 markers 
would have been required to adequately scan the genome 
(2.7 Gb) for the population that we studied. Although our 
markers were slightly less, they were extremely informative 
across the population and provided consistent QTL peaks 
across seasons, especially for Nakabango location. The large 
LD blocks reported in our study are common in self-pollinat-
ing crops and are much smaller than those reported in other 
groundnut studies (Pandey et al. 2014; Otyama et al. 2019; 
Zhang et al. 2020; Zhou et al. 2021; Li et al. 2022). Future 
studies will need to use significantly more markers with a 
higher number of diverse genotypes to enhance the resolu-
tion of association analysis. Additional markers will also 
be needed for the A sub-genome where the markers were 
fewer and LD decay much slower than in the B sub-genome, 
consistent with earlier reports (Zhao et al. 2017).

Genetics of GRD resistance, candidate gene 
identification and haplotype analysis

Moderate (51%, 58%) and high (68%) broad sense heritabil-
ity (BSH) estimates reported for Nakabango location in our 
study was lower than in other studies that had fewer germ-
plasm, but also with enhanced disease pressure either using 
artificial inoculation (Amoah et al. 2016) or infector-rows 
(Kayondo et al. 2014; Nalugo et al. 2016). Although our 
frequency distribution curves suggested that GRD resistance 
in groundnut is a quantitative trait, the clear peaks identi-
fied from GWAS indicate the likely involvement of a few 
major genes. In addition, two of the significant markers were 
located on a disease resistance gene (TIR-NBS-LRR) on 

Table 4  A compilation of the most stable genotypes out of the top 20 best performers per season

Across all seasons 2020A + 2020B only 2020B + 2021B only

1. Ug-23_Oug-SGV_0084_UG 1. UGh2-46_GhaII-JENKAAR 1. Gh1-62_Gha-Nakpanduri_1
2. Ug-3_Oug-SERENUT_11T_UG 2. Mlw-46_Mwi-ICG_14705 2. Ug-7_Oug-SERENUT_14R_UG
3. Ug-121_Oug-ICGV_SM_15583 3. Ug-8_Oug-SERENUT_3R_UG
4. Ug-19_Oug-SGV_07002_UG
5. Ug-41_Oug-DOK_1_RED_UG
6. Ug-164_Oug-ICGV_SM_06518
7. Ug-5_Oug-SERENUT_9T_UG
8. Ug-194_Oug-ICGV_90099
9. Ug-28_Oug-SGV_ER_10010_UG
10. Sn-40_Sen-SERENUT_10R
11. Gh2-38_GhaII-YENYAWOSO
12. Zam-17_Zam-MGV-8
13. Zam-32_Zam-ICGV-SM-01514
14. Mlw-21_Mwi-ICGV-SM_01711
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chromosome A04, and one of the markers was located on an 
argonaute family protein on chromosome B04. We identified 
four significant haplotypes on chromosome A04. Preced-
ing studies conducted via conventional breeding approaches 
proposed that GRD resistance is simply inherited and con-
trolled by a single dominant gene (Olorunju et al. 1992; 
Athanas 2015) or two independent recessive genes (Nigam 
and Bock 1990; Olorunju et al. 1992). More studies will 
still be required to conclude the genetic control of GRD in 
groundnut.

Resistance (R) genes, which encode mostly nucleotide-
binding site and leucine-rich repeat (NBS-LRR) proteins 
(Dangl and Jones 2001; Yuksel et al. 2005; Mchale et al. 
2006) facilitate the ability of plants to fight pathogens 
through an antiviral mechanism known as Effector-triggered 
immunity (ETI). NBS-LRR proteins do this by recognizing 
effectors released by pathogens which result in activation 
of downstream signaling pathways consequently trigger-
ing plant defense reaction toward various pathogens (Bao 
et al. 2018; Li et al. 2017; Dubey and Kunal 2018). In the 
NBS-LRR cluster of proteins, the Toll/interleukin-1 recep-
tor (TIR) associated with GRD resistance in this study is 
the most common and has been reported to play a role in the 
detection of Avr proteins such as in the tobacco mosaic virus 
(TMV) (Dubey and Kunal 2018), in Pseudomonas syringae 
in Arabidopsis thaliana (Kim et al. 2009) and in a downy 
mildew-resistant genotype in grapevine (Vitis vinifera L.) 
(Li et al. 2017).

Argonaute family proteins have been implicated in RNA 
interference (RNAi), a gene silencing mechanism deployed 
by plants to fight viral infections by hindering expression 
of genes during and post transcription (Muhammad et al. 
2019). The involvement of argonaute proteins in the specific 
translational control of viral transcripts has been anticipated 
as an essential factor in resistance against viruses arbitrated 
by NBS-LRR proteins (Marone et al. 2013). Future studies 
will not only need to validate the QTLs identified in the 
current study using bi-parental mapping populations, but 
also characterise all the candidate genes within these QTLs. 
The functional markers identified in the current study will 
be developed into easy-to-use marker assays and validated 
for future routine genotyping and early generation selection 
for GRD resistance.

Haplotype analysis has been used in groundnut to distin-
guish botanical varieties (Zheng et al. 2022) and character-
ize different traits of interest (Wang et al. 2018; Liu et al. 
2022; Zou et al. 2022) in past studies. The five favourable 
haplotypes identified in the current study provide an imme-
diate resource for marker development and functional gene 
identification. Developing marker assays targeting candidate 
genes within the haplotype blocks will be a more precise 
approach for identifying putative functional markers for 
routine selection for GRD resistance but will still need to 

be validated using bi-parental populations. Haplotype based 
markers, once validated, will distinguish any new recombi-
nation blocks of interest on the chromosome that produce 
any favorable or unfavorable phenotypes (Bhat et al. 2021). 
The two genotypes (Ug-5_Oug-SERENUT_9T_UG and 
Ug-164_Oug-ICGV_SM_06518), which harboured all the 
favourable haplotypes will be useful, both as donor parents 
for introgressing GRD resistance, but also as resources for 
better understanding the genetics and evolution of GRD 
resistance alleles.

Conclusion

Our results open a new chapter for GRD resistance stud-
ies and breeding in groundnut in Africa. Our findings, 
which include the identification of novel genomic regions, 
associated haplotype blocks and putative candidate genes 
that affect GRD resistance, will pave the way for marker 
assisted breeding for GRD. Bi-parental mapping popula-
tions and routine marker assays will need to be developed 
for validating the genomic regions identified for more effi-
cient selection for GRD resistance in the future. Given 
the complexity of the disease, future studies should be 
planned more carefully to enable the full understand-
ing of the genetics of resistance to the various agents as 
well as the vector. While single location experiments will 
enhance our understanding of the genetics of resistance 
to individual isolates, the search for more durable resist-
ance in farmer-preferred varieties should be undertaken 
across several locations and seasons under high disease 
pressure. The current collaboration that involves several 
African countries will form a solid backbone for future 
successful characterisation of the host, the vector, as well 
as the various pathogen agents. Several advanced breeding 
tools including Next Generation Sequencing (NGS), Rapid 
Generation Advance (RGA), digital data capture, precision 
phenotyping, as well as gene editing should be deployed 
appropriately to speed up the varietal development process 
and enhance our understanding of this disease.
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