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Abstract

Experimenting with dynamic games raises issues about implementing discounting in ex-
periments. Theoretical rational decision-makers evaluate payoff streams by converting them
to a reference period, often “time zero.” In experiments, subjects can adapt their strategy
continuously. We explore individual behavior in a dynamic resource extraction experiment
with two treatments: “z-discounting” (evaluating gains at time zero) and “p-discounting”
(evaluating gains in present-time equivalents). Contrary to theoretical predictions, our data
shows a significant positive treatment effect, indicating more substantial extraction under
p-discounting. This challenges the theoretical model and prompts discussion on method-
ological considerations for discounting in laboratory settings.

JEL classification: C91, D90, Q20
Keywords: dynamic optimization; discounting; continuous time; laboratory experiment; time
consistency.

1



1 Introduction

Experimenting with dynamic games raises questions about how to implement discounting. We
introduce a new puzzle about the suitable reference period for discounting. We address this
issue by examining, in a dynamic resource extraction experiment, how individuals behave when
gains are valued at the initial point in time or when they are valued at the current time of the
experimental game.

In theory, the reference period to discount is time zero: before the effective play of the game,
future benefits are discounted at time zero to compute the optimal path. Dynamically consistent
agents select their strategy at time zero and remain committed to it throughout. Altering their
course of action as the dynamic game unfolds would prove disadvantageous. This issue was
already discussed in the seminal paper of Strotz (1955) who proposed two behavioral strategies
that could lead to time consistency1: pre-commitment and consistent planning. In contrast,
in dynamic resource extraction game experiments, the subjects’ task is not only to select an
extraction rate for time zero, but also gradually over time. It is common to observe participants
continually revising and adapting their extraction decisions in response to realized payoffs (see
e.g., Benchekroun et al., 2014; Tasneem et al., 2017, 2019; Djiguemde et al., 2022a,b). But,
instructing subjects about the possibility to revise their extraction rate at any point in time,
raises two issues. Firstly, this is inconsistent with the theory that all decisions are to be made
at time zero, and, secondly, it questions about the relevant reference period for discounting.
Imposing time zero as the reference period is therefore debatable when plans can be revised as
gains are realized. In this paper, we address the latter issue.

In a dynamic resource extraction game experiment, assuming that subjects behave following the
theory, wherein they make an initial decision at time zero and adhere to it consistently, we show
that the reference period for discounting is irrelevant if there is sole ownership of the resource.
The same optimal extraction path is determined for any reference period for discounting. How-
ever if subjects do not follow a pre-established plan, but continuously adjust their decisions
as time elapses, the choice of the reference period may affect their extraction path. Arguably,
for such agents, the critical reference period for discounting future benefits is the present time.
Indeed, alongside a dynamically consistent agent who takes decisions at time zero, an agent who
continually revises takes decisions at the current time. For such an agent, what holds signifi-
cance is the valuation of future benefits at the current moment.

In this paper, we investigate whether individuals playing a dynamic resource extraction game
exhibit distinct behavior when benefits are assessed at the outset (time zero) compared to when
they are evaluated at the current time of the experiment. Precisely, we aim to understand how
subjects’ behavior is affected by the informational feedback about the benefits provided in the
dynamic game. We, therefore, set up an experiment in which, as the game proceeds, benefits
are either converted into time zero values (z-discounting thereafter) or into present time values
(p-discounting thereafter).

So far, the issue of the appropriate reference period for discounting in dynamic experimental
games has been ignored. However, if plans are either non-observable or difficult to observe in the
lab, as pointed out by several authors (Hey, 2002; Willinger, 2002; Bone et al., 2009; Hey and
Panaccione, 2011; Hey and Knoll, 2011), the issue becomes relevant. Previous experiments on

1This is true even for non-standard discounting. Strotz distinguished between logarithmically linear discount-
ing and logarithmically non-linear discounting, which may favor more proximate satisfactions.

2



the sole owner renewable resource model, either neglected discounting (Hey et al., 2009; Botelho
et al., 2014) or relied on z-discounting (Benchekroun et al., 2014; Tasneem et al., 2017, 2019;
Djiguemde et al., 2022a,b). At the same time, these experiments also allowed subjects to adjust
their extraction level at any time. Therefore, valuing benefits at the present time could be an
alternative and seem natural for the subjects.

Raising the issue of the appropriate reference period for discounting leads to a related issue about
the implementation of infinite time in laboratory experiments. The standard implementation
of an infinitely repeated game in the laboratory involves the random termination procedure of
Roth and Murnighan (1978), which is considered isomorphic to discounting. The termination
probability p is taken as a substitute for the discount factor δ. Discounting the period t payoff
by δt is therefore supposed to be equivalent to ending the game with probability pt = δt. There
are, however, several critical objections. There is indeed a small chance that the game lasts an
infinite time when such a procedure is implemented, which raises an issue of credibility about
the duration of the experiment2. From a theoretical perspective, assuming that individuals are
expected utility maximizers, the equivalence between discounting and random termination is
true only if agents are risk-neutral and time-consistent. From an empirical point of view, it is
not obvious whether individuals treat equivalently games where future payoffs are discounted
and games in which discounting is replaced by an exogenous ending probability. Evidence sug-
gests that many people are confused about probabilities, tend to distort them (Kahneman and
Tversky’, 1972; Tversky and Kahneman, 1973) and revise them in a biased way (Zimmermann,
2020). Even when they are familiar with the concept, they might neglect small continuation
probabilities (Selten et al., 1997). Furthermore, it is unlikely that subjects believe that the prob-
abilities given by the experimenter are credible, because “the server may crash, or there may
be an earthquake” (Dal Bó and Fréchette, 2018), suggesting that probabilities are transformed
subjectively. In addition, from a practical point of view, random termination methods lead to
heterogeneous observations with respect to game length, because of uncontrolled termination
dates (Dal Bó and Fréchette, 2018).

The previous reasons plead in favor of relying on discount factors rather than on termination
probabilities for designing experiments on dynamic games. Providing feedback to subjects about
discounted gains seems also more in line with the spirit of dynamic games when there is no un-
certainty. A mixed option, consisting of a combination of discounting and random termination,
was proposed by some researchers (see Sabater-Grande, 2002; Cabral et al., 2014; Vespa, 2020).
Discounting is implemented during a fixed number of periods of an initial sequence, followed
by a sequence with a random termination procedure during which discounting is replaced by
termination probabilities. The problem with this comes from the fact that each possible combi-
nation of discounting sequences with random ending sequences, provides specific incentives to
subjects. Frechette and Yuksel (2016) compared four (theoretically) equivalent methods and
concluded that “.. systematic behavioral differences in repeated interactions with payoff dis-
counting versus random continuation can have important implications for the application of the
theory of infinitely repeated games to these different environments.” In addition, the “random
round payment” method, which is often used in combination with the random termination pro-
cedure, tends to distort the discount factors (Sherstyuk et al., 2013; Chandrasekhar and Xandri,
2023), in a way that puts lower weights on future periods.

2Many experiments using random termination (e.g., Roth and Murnighan (1978), Fréchette and Yuksel (2017))
have a credibility issue about the possibility of infinitely long experimental duration. In most cases, what happens
in the case of a very long repetition of the game is not discussed in the instructions. A notable exception is Lei
and Noussair (2002) who considered in detail all the possible outcomes.
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Given the above limitations of the standard practice of implementation of infinite horizons in
the lab, we chose to rely on an alternative method that avoids random termination but keeps
the infinite horizon fully credible. In addition, this method is fully consistent with discount-
ing. Indeed, we use the “continuation payoff” method, which corresponds to the discounted
payoffs from the termination time of the experiment up to infinity (see Tasneem et al., 20173,
Djiguemde et al., 2022a,b). When the experiment reaches the time limit, which is announced
at the beginning of the experiment, subjects are aware that their final extraction rate will be
used to calculate the “continuation payoff”. Practically, this long-term gain is computed at any
instant p of the game and included in the total gains of the play. In the instructions, this value
was defined as the long-term gain and phrased as follows: “Your long-term gain at date p is
equal to the potential gain that you could realize if the game continued indefinitely and your
extraction remained fixed forever at the level of the present moment.”

We investigate the role of the reference period by comparing time zero discounting (z-discounting)
and present-time discounting (p-discounting), in a continuous time CPR game in which we imple-
mented the continuation payoff method. Participants were involved in a continuous extraction
game of a renewable resource R. R had a constant growth rate and was decreasing in total
instantaneous extraction (E). The subjects’ task was to choose the level of extraction, which
could be adjusted at any time. Chosen extractions induced benefits and costs (depending on
the scarcity of the resource) in each period and gave rise to instantaneous and long-term gains.
Both gains were either z-discounted or p-discounted. The sum of instantaneous gains and long-
term gains gave rise to the overall gains of the play (G). Participants received instantaneous
feedback about the levels of R, E, and G. This information was displayed permanently allowing
participants to see how their decisions affected their overall gains.

The experiment consisted of two treatments: In the baseline treatment (z-discounting) gains
are measured in terms of time t = 0 equivalents; in the test treatment (p-discounting) gains
are measured in present time t = p equivalents. Besides the main task, we implemented several
control tasks. We elicited subjects’ impatience using a mini-version of the Convex Time Budget
method (Andreoni and Sprenger, 2012) and their risk-tolerance based on the Bomb Risk Elic-
itation Task proposed by Crosetto and Filippin (2013). Impatience is likely to strongly affect
subjects’ extraction rates (see e.g., Fehr and Leibbrandt, 2011). It is less obvious whether risk
tolerance also plays a role, but we may think about subjects who have a poor understanding of
the dynamics of the game being more cautious about their extraction rates. We also collected
demographic data (age, education level, gender) to take into account usual behavioral control
factors.

Our predictions rely on a standard sole owner dynamic extraction game, with either expo-
nential z-discounting or exponential p-discounting. The model predicts that z-discounting and
p-discounting lead to the same optimal path, as the total discounted gains only differ by a
multiplicative factor between the two reference periods. This property implies that there is no
ground for predicting that subjects will be more likely to follow the optimal extraction path
under one reference period than under the other. Furthermore, this dynamic adaptation does
not impede subjects with a pre-existing plan from endeavoring to stick to it throughout their
actions. However, from a behavioral point of view, under p-discounting, subjects’ perception of
the game could be different from that of standard z-discounting, because current gains are mul-
tiplied by a positive constant that increases over time. Past gains have therefore higher weights
than future gains. Intuitively, because of the larger magnitude of the gains under p-discounting,

3An earlier version of this paper is Benchekroun et al. (2014)
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p-discounters could be expected to play more accurately because they would have a better sense
of the evolution of marginal gains than the z-discounters4.

We find that extraction rates are generally larger under p-discounting than under z-discounting.
Furthermore, the extraction path deviates substantially more from the optimal extraction path
under p-discounting, as compared to z-discounting. Although z-discounters seem to follow a
nearly optimal path “on average”, few of them can be categorized as optimal players (19 per-
cent, compared to 16 percent for p-discounters). Hence, our treatment effect is primarily influ-
enced by non-optimal subjects who substantially deviate from the optimal path, as the effect
is absent among optimal players. Moreover, we analyze the behavior of subjects categorized
as planners and non-planners, depending on whether they declared, before starting the game,
having a plan about how to extract the resource over the whole time horizon, and taking into
account the continuation payoff. We show that planners are on average closer to the optimum
path than non-planners, who exhibit a much more erratic extraction behavior. However, both
planners and non-planners exhibit a positive correlation between their extraction behavior and
p-discounting. We suggest that plausible explanations, such “money illusion” (Fehr and Tyran,
2001; Petersen and Winn, 2014) or the magnitude effect (Andersen et al., 2013; Noor, 2011;
Ballard et al., 2017; Sun and Potters, 2022), have poor explanatory power.

The remainder of the paper is organized as follows. In section 2 we introduce the model and
its parametrization, compute the optimal solution, and show the equivalence between the p-
discounting and z-discounting approach. In section 3, we discuss some important issues of the
experimental design and describe the different parts of the experimental setting. In section 4,
we present the results. We discuss our findings in section 5, and conclude in section 6.

2 Theoretical Considerations

2.1 The underlying resource model

We base our work on a dynamic continuous-time model of resource extraction and concentrate
on the sole ownership case, as in Gisser and Sánchez (1980). The demand for the extracted
resource, Et is linear in its price, P : Et = g + kP where k < 0 and g > 0 and gives rise to the
benefits from resource use. The cost to extract one unit of resource is linearly decreasing with
the resource stock level Rt:

C(Rt) = max{C0 − C1Rt; 0} with C0 > 0, C1 > 0.

The cost is thus strictly positive for Rt < C0/C1.
Agents’ benefit is given by the surface underneath the inverse demand function:

B(Et) =

∫
Et

P (x)dx =

∫
Et

(x
k
− g

k

)
dx =

1

2k
E2
t −

g

k
Et.

The equation of motion for the renewable resource is:

Ṙ = α− (1− γ)Et

with α > 0 the exogenous natural recharge, and γ a return flow coefficient associated with
extraction levels, with 0 6 γ 6 1.

4We thank François Salanié for suggesting this idea during a conference presentation.
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2.2 The optimal control solution

The social planner, or the sole owner, solves an infinite-horizon dynamic optimization problem.
He applies the discount factor e−ρ(t−s) to discount the gains, where ρ ∈ (0, 1) is the discount
rate. We denote s as the reference date for discounting. While s = 0 is the usual reference date
for dynamic optimization problems, other reference dates are conceivable. In particular, in lab-
oratory experiments where subjects can continuously update their extraction rate, discounting
at the present time, i.e. setting s = p, might be more relevant for choosing their extraction
rates. However, as shown below, whatever the value of s ∈ [0; t[, the optimum extraction path is
the same. Therefore, in agreement with our theoretical framework, subjects seeking to achieve
the optimum path in a dynamic resource extraction experiment should not be affected by the
value chosen for s.
The optimal extraction plan is obtained by maximizing the following program:

max
Et>0

∫ ∞
0

G(Et, Rt)e
−ρ(t−s)dt

s.t R0 given and Ṙ = α− (1− γ)Et.

with the gains:

G(Et, Rt) =
1

2k
E2
t −

g

k
Et − (C0 − C1Rt)Et.

The optimal solution consists of a monotonic transition path towards the steady state (R∗∞;E∗∞),
for resource and extraction:

R∗∞ =
kC1α+ ρ (g + kC0)− ρα(1− γ)

kρC1
; E∗∞ = α/(1− γ).

Note that some conditions on the parameters have to be satisfied to keep the steady state of
the resource positive:

kC1α+ ρ (g + kC0)− ρα(1− γ) > 0.

Both the optimal extraction paths for R∗t and E∗t and the steady state (R∗, E∗) do not depend
on s, meaning that the time at which the gains are discounted is without consequences. As
the planner discounts all future gains at a constant rate of interest, he adopts a time-consistent
plan.
An alternative way to highlight the dynamic consistency of the plan or its independence from
the discount factor, consists of decomposing the stream of gains associated with this plan.
Denote the total gains of the plan at time p by GPTp , with T = {Z,P} for z-discounting or

p-discounting. We decompose GPTp into instantaneous gains, GCTp , and long-term gains, GLTTp
(see also instructions in the appendix A). We note t > p the time from p onwards (in the
experience, time is measured in seconds, and we switch from t to t = p+ 1). We thus have:

GPTp =

∫ p

t=0

eρ(p−t)G(Rt, Et)dt︸ ︷︷ ︸
GCT

p

+

∫ ∞
t>p

e−ρ(t−p)G(Rt, Et)dt︸ ︷︷ ︸
GLTT

p

.

To see that both discounting references dates, i.e. z and p, lead to the same time-consistent
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plan, let us substitute T by Z and by P , respectively to obtain the corresponding gains:

GPZp = GCZp +GLTZp

=

∫ p

t=0

e−ρtG(Et, Rt)dt+

∫ ∞
t>p

e−ρtG(Et, Rt)dt.

GPPp = GCPp +GLTPp

=

∫ p

t=0

eρ(p−t)G(Et, Rt)dt+

∫ ∞
t>p

e−ρ(t−p)G(Et, Rt)dt.

Define G(Rt, Et) ≡ Gt, these two equations become:

GPZp =

∫ p

t=0

e−ρtGtdt+

∫ ∞
t>p

e−ρtGtdt.

GPPp =

∫ p

t=0

eρ(p−t)Gtdt+

∫ ∞
t>p

e−ρ(t−p)Gtdt.

We note the equivalence:

GPPp =

∫ p

t=0

eρ(p−t)Gtdt+

∫ ∞
t>p

e−ρ(t−p)Gtdt = GPZp e
ρp.

In other words, total discounted gains only differ by a multiplicative factor eρp between the two
reference periods. There is a nominal difference in gains between the two configurations. As this
difference is independent of the individual’s choices, the optimal solution remains unchanged.
For a given discount rate, future benefits are consistently discounted to their present value,
regardless of the specific date at which the discounting occurs.

2.3 Numerical analysis

For the sake of the experiment, we assigned values to the model parameters. We calibrated the
model in a way that an optimally managed resource converges close to the steady state within
5 minutes (300 seconds). The parameterization below allows to reach this target. We also
selected values that can be easily imagined by subjects, such as a resource stock of 700 units or
an extraction between 0 and 50 units. The discount rate of one percent did have the advantage
not to extremely distort the sum of gains. In addition, we were careful to have instantaneous
and total gains in an order of magnitude that remained easily understandable to subjects. The
chosen parameter values are summarized in Table 1.

Table 1: Description of the model parameters

Parameter Description Calibrated values

R0 initial resource stock 700
C0 maximum average cost of extraction 550
C1 sensitivity of cost to the resource level 0.5
k parameter in the benefit function -0.097
g parameter in the benefit function 44
α natural recharge 3.6
γ return flow coefficient 0
ρ discount rate 0.01
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With these values, the steady state is defined by (R∗;E∗) = (627.01; 3.6) and the optimal
extraction paths are given by (values are rounded) by the following equations:

R∗t = 72.99e−0.0176t + 627.01,

E∗t = 1.28e−0.0176t + 3.6

Different types of gains can be computed, namely instantaneous gains, which can be evaluated
at any second, and total gains, which are the sum of instantaneous gains and long-term gains.
Of particular relevance is the long-term gain at the last instant of the game. Numerical model
outputs for gains are given in Table 2. We depict instantaneous gains at time 300 (the end of
the game), and corresponding total gains, under the assumption of an optimal extraction strat-
egy, for both z-discounting and p-discounting. Observe that the magnitude of gains is about 20
times greater under p-discounting than under z-discounting, both for the instantaneous gain at
t = 300 and for the gains of the play, including the long-term gains.

Table 2: Numerical model results (values rounded)

Parameter Description Optimal values

GCZ
300 Instantaneous gains at time 300 for z-discounting 36

GCP
300 Instantaneous gains at time 300 for p-discounting 717

GPZ
∞ Total gains of the play including long-term gains for z-discounting 85 468

GPP
∞ Total gains of the play including long-term gains for p-discounting 1 716 662

3 Experimental design

We set up a dynamic continuous-time model following previous work by Benchekroun et al.
(2014), Tasneem et al. (2017, 2019) and Djiguemde et al. (2022b). Our protocol is closest to
the one of Djiguemde et al. (2022b), see the appendix in section 6. In subsection 3.1, we first
discuss the two key design issues raised in the introduction, i.e. continuous time and infinite
horizon, before introducing our experimental design features in subsection 3.2.

3.1 Key design issues for the extraction game

3.1.1 Continuous-time

Our approach to implementing continuous time is similar to that of Tasneem et al. (2017) and
Djiguemde et al. (2022a,b), which is based on real-time. Specifically, the elapsed time between
two instants of the game was set to one second. Therefore, the computer program calculated the
subject’s resource and gain every second, taking into account their extraction at the correspond-
ing second. The graphs displayed on the players’ screens were also updated every second. As
detailed in Djiguemde et al. (2022a,b), this time interval between two instants of the theoretical
model facilitates the understanding of the instructions by the subjects and ensures technical
precision in the calculations and data exchanges over the network between the server and the
subjects’ stations.

In practical terms, the subjects had a horizontal cursor on their screen to set their extraction
level, which they could move during play. The cursor value was sent to the server every second
and used to perform calculations (resource stock and gains). The updated information was then
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sent back to the player’s computer, where the graphs and displayed information were updated
accordingly. If a subject did not move the cursor, the standing value was used for the calculation
of the next extraction level. Throughout the experiment, the resource level evolved continuously,
while the player’s decision remained constant between two instants. This allowed for calcula-
tions to be performed in continuous time, while the displayed information was updated every
second.

3.1.2 Infinite horizon

The standard method for implementing infinite time in an experiment involves the random ter-
mination procedure (RTP thereafter) introduced by Roth and Murnighan (1978). For instance,
RTP has been used by Suter et al. (2012) and Vespa (2020) in the case of dynamic CPR ex-
traction games. RTP has several drawbacks already discussed in the introduction. First, there
is a credibility issue about the real duration of the experiment (Selten et al., 1997; Dal Bó
and Fréchette, 2018), second, variable endings across sessions and/or individuals complexify the
analyses, and third discount factors are distorted if RTP is combined with the random round
payment method (Sherstyuk et al., 2013; Chandrasekhar and Xandri, 2023). In addition, the
usual argument that discounting and random termination are isomporphic, holds true in the
expected utility framework only if agents are risk-neutral and time-consistent. An alternative
approach is to use the continuation payoff method (CPM thereafter) as in Tasneem et al. (2019)
and Djiguemde et al. (2022a). The CPM consists in calculating the discounted payoff for all
future periods, up to infinity, assuming that the player keeps his extraction effort at the cur-
rent level forever. CPM offers two advantages. Firstly, players can monitor their gains at the
infinite horizon at any time, irrespective of the actual game end date. Secondly, they gain an
understanding of the long-term consequences associated with their current extraction choices.
Additionally, this approach ensures that all players play for the same effective duration, as set
by the experimenter, making data more easily comparable and facilitating analysis.

Formally, the continuation payoff at time p for level of extraction Ep is defined as follows:

GLTTt (p) =

∞∑
t=p+1

e−ρ(t−s)G(Ep, Rt). (1)

As a result, we define the subject’s payoff for the game at time p as:

GPTp =

p∑
t=0

e−ρ(t−s)G(Et, Rt) +

∞∑
t=p+1

e−ρ(t−s)G(Ep, Rt). (2)

with T = {Z,P} and s = {0, p}. The first term in equation (2) is the discounted current payoff
and the second one the continuation payoff.

3.2 Experimental settings

The experiment consisted of four parts, plus a socio-demographic questionnaire. In the first
part, the subjects played the dynamic extraction game alone (optimal control), they played
the same game in pairs in the second part. The third part aimed at measuring the subject’s
impatience, with the Convex Time Budget method (Andreoni and Sprenger, 2012), and the
fourth part their risk attitude based on the Bomb Risk Elicitation Task (Crosetto and Filippin,
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2013). The four parts and the questionnaire were computerized, they were developed with the
oTree platform (Chen et al., 2016). Participants were informed of the number of games, and
also that their payoff for the experiment would consist of either part 1 or part 2 plus either part
3 or part 4, based on random selections made by the computer program. The rest of the section
details the different parts.

3.2.1 Presentation of the experiment

After a silent reading of the instructions by subjects, an experimenter read the instructions aloud,
and participants could ask questions (in private). After reading the instructions, subjects had
to answer 5 comprehension questions. Written explanations for each answer were shown once
all questions were answered.

3.2.2 Part 1: individual extraction task

In part 1 the subjects played the extraction game as a single owner for two rounds. The first
round was a training round that did not count for the payoff of this part. Participants could get
used to the information displayed on the computer screen (extraction, resource level, and total
gains of the play, including the continuation payoff) and observe the impact of their behavior
on these indicators.

Each round lasted exactly 5 minutes (300 seconds). Before the start of a round, subjects had
to choose an initial extraction level for instant t = 0. Once all the subjects in the room had
finished, the countdown (300 seconds) started and subjects could change their extraction level
at any time by moving a cursor on a slider. Appendix A displays a picture of the screen that
showed the 300 seconds of play of the dynamic game. The possible extraction values ranged
from zero to 50 units. This wide range was chosen to avoid inducing extraction behavior close
to the optimal values, i.e. 4.88 units at time zero and 3.6 units in the steady state.5 Every
second the subject’s computer sent the current extraction on the slider to the server, and the
latter made computations to establish the resource stock and the player’s payoff, and sent back
the updated values to the subject’s computer which updated the graphs: the extraction level,
the resource stock and the payoff for the part.

3.2.3 Part 2: two player CPR extraction game

The second part of the experiment consisted of three rounds of the dynamic game played by
pairs of subjects. At the beginning of each round, new pairs were formed randomly, making
sure that two players could not meet more than once. The conditions were exactly the same as
in the first part, except that two players extracted the same resource. On the players’ screen a
curve was added to the extraction graph, this curve reported the extraction level chosen by the
other player of the pair. The data collected in this second part of the experiment will not be
analyzed in this paper, which focuses on the issue of discounting when the subject is alone in
extracting the resource.

5We also wanted to include values leading to the maximum of the benefit function (at 44 units) as shown in
the appendix A.
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3.2.4 Part 3: time preferences

Common pool resource is intertemporal in nature, individual time preferences are therefore a key
ingredient to examining extraction behaviors. Subjects’ time preferences are likely to affect their
extraction decisions. For example, impatient individuals may choose higher extraction rates and
deplete the resource faster than patient individuals. Classical economic theory teaches that a
lower rate of time preference, characterized by a lower discount on future payoffs, implies that
the agent puts a higher value on the future. In the context of dynamic CPR, this entails that
the patient individual extracts more sustainably because under-extraction in the present time is
a way to increase the availability of resources in the future. This view is supported by the field
experiment of Fehr and Leibbrandt (2011) with Brazilian Fishermen. However, Javaid et al.
(2016) found the opposite result in Indian fishermen, suggesting a more complex relationship
between time preference measures and CPR exploitation. To capture the level of patience of
individuals we rely on the Convex Time Budget (CTB hereafter) method proposed by Andreoni
and Sprenger (2012). With this method, we can establish that the more a subject allocates to
the sooner date, the more impatient they are. We ask each subject to make three allocations
for a given pair of dates, by changing the interest rate (1.1, 1.25, 1.5), to check for consistency
(the allocation at the sooner date should be non-increasing in the interest rate). We take the
average allocation at the later date for the three interest rates as an index of patience.

3.2.5 Part 4: risk preferences

Subjects’ risk attitude is measured with the Bomb Risk Elicitation Task (BRET hereafter)
proposed by Crosetto and Filippin (2013). In this task the subject chooses the number of boxes
they want to open, knowing that one box contains a bomb. Each box opened was worth 0.5
euros. If the box that contains the bomb is opened the subject loses all their payoff and earns
0 euros.

3.2.6 Questionnaire on extraction strategies

In 7 test sessions (over 15, 4 in treatment z-discounting and 3 in treatment p-discounting), we
added a questionnaire on extraction strategies before and after part 1. After having read the
instructions, and before part 1, subjects had to answer several questions (on top of the existing
understanding questions) about their extraction strategies: whether they had a precise idea
about the way they would extract the resource, which indicator variables (resource, extraction,
gains) they intended to follow, whether they would extract more in the beginning or the end, in
a constant way or using spikes, etc. what particular resource level they aimed at and whether
they had an idea about the total gains they could obtain. After having played the extraction
experiment in part 1, we asked subjects whether they had followed their initial extraction strat-
egy and if not, why. Several open and closed questions were dedicated to this issue. The test
sessions were designed to gain a better understanding of the subjects’ way of dealing with a
dynamic extraction game in continuous time. For these sessions, we skipped part 2 of the exper-
iment (the game with pairs of subjects), but subjects performed part 3 (time preferences) and
4 (risk preferences) and answered the socio-demographic questionnaire. The implementation of
the questionnaire on extraction strategies in certain sessions might have influenced the behavior
of subjects; however, evidence presented in section 4.1 indicates that this was not the case.
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4 Results

In this section, we present our main results. In subsection 4.1 we first explore whether sub-
jects took into account the dynamic nature of the game. In subsection 4.2, we analyze average
extraction paths and the resulting evolution of resource stocks depending on the discounting
treatment. In subsection 4.3 we characterize the efficiency of extraction depending on the treat-
ment. Finally, in subsection 4.4 we explore two behavioral strategies that could account for the
treatment effect of discounting: optimality of play and planning strategy.

Table 3 reports summary statistics about the participants (N = 160), in total and the two
treatments.6

Total z-discounting p-discounting Difference p-value

Participants 160 90 70
TQ=0 | TQ=1 79 | 81 42 | 48 37 | 33

Gender (Male) 0.44 0.52 0.33 0.19 0.022**
Age 23.21 22.66 23.93 -1.27 0.026**
Student 0.84 0.88 0.80 0.08 0.261
Studied discipline

Economics and management 0.44 0.43 0.46 -0.03

0.329
Human sciences 0.18 0.20 0.16 0.04
Science and engineering 0.19 0.22 0.16 0.06
Health 0.05 0.02 0.09 -0.07
Other 0.13 0.12 0.14 -0.02

Study level 3.01 2.76 3.34 -0.58 0.038**

χ2 tests were performed for variables Gender, Student, Studied discipline and Study level.

Mann-Whitney test was performed for the variable Age.

Table 3: Statistics about participants

4.1 The dynamic nature of the experiment

Before proceeding with the analysis of the whole sample, we tested whether the dynamic nature
of the experiment was taken into account by the participants. 81 subjects participated in these
test sessions. Based on their answers to the questionnaire on extraction strategies, we created
two binary variables. The first one is “playing a dynamic game” which is equal to 1 if a subject
declared that the continuation payoff had an impact on her extraction behavior. The second
one is “having a dynamic extraction strategy” equal to 1 if a subject declared that they had
a plan for how to extract the resource over the 300 instants and that the continuation payoff
had an impact on his extraction behavior. 75 percent of the participants of the test sessions
stated that they are “playing a dynamic game” and 53 percent declared“having a dynamic

6Note that 180 subjects participated in our experiment. However, 20 of them ended part 1 with a negative
payoff, indicating a misunderstanding of the game dynamics. As subjects knew they could not lose money,
retaining their data would be challenging since they lacked any incentive to conserve resources. It is worth
noting that these 20 subjects are evenly distributed between the two treatments, with 12 from the z-discounting
treatment and 8 from the p-discounting treatment. Moreover, we observed that these 20 subjects exhibited a
higher frequency of errors in the understanding questionnaire, with an average of 1.75 faults (sd=1.25), compared
to the other participants averaging 1.03 faults (sd=0.94). This discrepancy in performance between the two groups
is statistically significant, as indicated by the Mann-Whitney test (p-value = 0.010).
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extraction strategy” at the beginning of the play.7 Regressions show that having a high score in
the understanding questionnaire is positively related to both these strategies, independently of
the treatment (see Table 4).8 We examined additional control variables, as presented in Table 3,
but none of them exhibited a significant impact on the responses to these questions. To ensure
that this additional questionnaire did not affect participants’ extraction behavior, we define
the control variable ‘Questionnaire’ which is equal to 0 for participants in sessions without the
questionnaire and 1 for the others. Mann-Whitney U-tests and OLS regression of extraction on
‘Questionnaire’ show that there is no significant effect of this variable, on extraction behavior.
Consequently, we view the data as a cohesive entity for the forthcoming analysis. In essence,
any significant difference between treatments can be solely attributed to them.

“Playing a dynamic game”

dy/dx Std error z Prob > |z| 95% Conf. Interval

Treatment 0.085 0.096 0.88 0.377 -1.034 0.275
Gender 0.106 0.095 1.11 0.269 -0.081 0.293
Understanding 0.148 0.051 2.89 0.004 0.048 0.248
Prob(predicted): 0.786
N=81

“Having a dynamic extraction strategy”

dy/dx Std error z Prob > |z| 95% Conf. Interval

Treatment 0.013 0.126 1.10 0.921 -2.333 0.259
Gender 0.181 0.118 1.53 0.126 -0.051 0.412
Understanding 0.180 0.070 2.56 0.011 0.042 0.317
Prob(predicted): 0.533
N=81. dy/dx: discrete change for dummy from 0 to 1

Table 4: Marginal effects of logit regression explaining participants’ dynamic extraction strate-
gies.

4.2 Average extraction and resource stock

4.2.1 Average extraction and resource paths

Figure 1 shows the evolution of the average extraction and resource stock for both treatments,
with discounting at time zero (blue) and present time (orange). The optimal extraction path,
which is common to both treatments, is indicated by the black dashed line. We can see that
the extraction paths are quite similar in both treatments until halfway through the game, at
which point the extraction level in the p-discounting treatment becomes higher than in the z-
discounting treatment (instant 138). As a consequence, the average resource stock drops sharply
and ends up at a much lower level in the p-discounting treatment (see the resource graph at the
bottom of Figure 1). This visual trend is confirmed by the average extraction and resource levels

7Specifically, of the 54 participants who acknowledged “playing a dynamic game”, 24 also reported “having
a dynamic extraction strategy”, while the remaining 30 did not. In contrast, among the 27 participants who
denied “playing a dynamic game” 18 similarly reported “not having a dynamic extraction strategy”, whereas 9
reported the contrary.

8Beforehand, we checked that the score in the understanding questionnaire was not influenced by the treat-
ment.
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by minute, provided in Table 5. Statistical support is provided by the estimates of a mixed linear
model that considers both inter-individual and intra-individual variability, reported in Table 6.

4.2.2 Individual heterogeneity in extraction paths

We can also look at individual explanatory factors for the above paths. First, note that there
is more heterogeneity among players in the p-discounting treatment than in the z-discounting
treatment, as shown in Figure 2, which displays the distribution of the average individual ex-
tractions minute by minute in both treatments. Moreover, Table 11 in the appendix shows
the impact of the treatment on extractions in different mixed linear models, when considering
additional control variables.

4.2.3 Mean squared deviation from the optimal path

Additionally, we compute the mean squared deviation from the theoretical optimal resource
path, per participant, in the two treatments. Table 7 reports results for periods incremented by
60 instants. The mean squared deviation exhibits a significant positive difference between the
z-discounting and the p-discounting treatment in the first minute. Then, the difference becomes
significantly negative. This is in line with resource trends depicted in Figures 1 and confirms
that when gains are measured at present time, players’ behavior moves away from the optimal
resource evolution path.

Taken together, the data reported in the figures and the tables clearly indicate a significant
treatment effect, which is particularly evident in the later stages of the game. To the extent
that it is optimal to adopt the same strategy in both treatments, this result highlights that
players, in at least one of the two treatments, do not behave optimally.

Extraction Resource

z-discounting p-discounting z-discounting p-discounting

t=0 to t=59 4.82 4.55 648.26 659.20
t=60 to t=119 3.35 3.54 638.88 651.42
t=120 to t=179 3.68 4.11 646.23 642.03
t=180 to t=239 3.46 4.18 647.58 603.14
t=240 to t=300 3.87 4.39 646.88 566.22

Table 5: Average extraction and resource per treatment and minute.
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Figure 1: Evolution of the average extraction (top) and resource stock (bottom). Shaded areas

represent 95% confidence intervals around the mean.

4.3 Efficiency

Dividing the player’s final payoff by the predicted optimal payoff, we obtain a simple measure
of relative efficiency. Given the high over-exploitation of the resource under p-discounting, we
expect higher efficiency losses under this treatment. We assess these losses by looking at the
relative efficiency reached in each treatment. The average relative efficiency is equal to 0.83
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Figure 2: Individual average extraction distribution per treatment and minute

(sd = 0.23) for the z-discounting treatment and 0.79 (sd = 0.18). Although the difference is
relatively modest, it is significant (Mann Whitney U-Test, p-value=0.001). To illustrate the
difference, Figure 3 displays the cumulative distribution of the relative efficiency for the two
treatments. A Kolmogorov-Smirnov two-sample test rejects the null hypothesis that the two
distributions are identical (p-value = 0.004).

4.4 Behavioral strategies

To better understand the reasons for the treatment effect of the reference period for discounting,
we explore different behavioral patterns. We analyze subjects’ stated behaviors according to
the questionnaire on extraction strategies (planned behavior) and their reactions to the level of
stock of the resource (optimal behavior).

4.4.1 Optimal players

A plausible reason for the discrepancy in terms of efficiency between the two treatments is the
likelihood that subjects react optimally to the prevailing level of resource stock. Because the
magnitude of the gains is amplified under p-discounting, we expected players involved in the
p-discounting treatment to be more sensitive to variations in their payoffs and the stock of avail-
able resources. Therefore, we identify subjects’ reactions to variations of the resource stock, by
estimating the following model Et = β0 + β1E

c
t for each subject.9 Ect represents the optimal

extraction conditional on the current stock of resources. A player who behaves optimally is
expected to increase her extraction when the (conditional) optimal extraction increases. We

9This method was proposed by Djiguemde et al. (2022a) who showed that the linear regression provides a
better categorization than the former method proposed by Suter et al. (2012).
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Extraction Resource

(Intercept) 4.82∗∗∗ 648.26∗∗∗

(0.13) (19.80)
p-discounting −0.27 10.94

(0.17) (29.94)
minute2 −1.47∗∗∗ −9.38∗∗∗

(0.13) (2.03)
minute3 −1.14∗∗∗ −2.03

(0.13) (2.03)
minute4 −1.36∗∗∗ −0.67

(0.13) (2.03)
minute5 −0.95∗∗∗ −1.38

(0.13) (2.03)
p-discounting:minute2 0.46∗∗∗ 1.60

(0.10) (3.02)
p-discounting:minute3 0.69∗∗∗ −15.14∗∗∗

(0.10) (3.02)
p-discounting:minute4 0.98∗∗∗ −55.38∗∗∗

(0.10) (3.02)
p-discounting:minute5 0.79∗∗∗ −91.60∗∗∗

(0.10) (3.00)

AIC 257293.93 584840.39
BIC 257408.10 584954.56
Log Likelihood -128633.97 -292407.20
Num. obs. 48160 48160
Num. groups: instant 301 301
Num. groups: participant 160 160
Var: instant (Intercept) 0.34 4.68
Var: participant (Intercept) 0.89 35115.00
Var: Residual 11.97 10753.80
∗∗∗p < 0.001, ∗∗p < 0.05, ∗p < 0.1

Table 6: Treatment effect by minute

z-discounting p-discounting Diff Prob > |z|
t=0 to t=59 14913.02 11904.06 3008.96 0.0000
t=60 to t=119 29322.36 34764.15 -5441.69 0.0000
t=120 to t=179 40744.24 56034.17 - 50287.08 0.0000
t=180 to t=239 42955.59 85819.24 -15289.93 0.0000
t=240 to t=300 44238.36 114613 -70374.64 0.0000

We applied a Mann-Whitney U-test to test for the difference between the two treatments.

Table 7: Mean Squared Deviation from the optimal resource path per treatment and minute.

therefore classify subjects into two groups depending on whether their β1 value is significantly
different from zero and positive, or not. We categorize a subject as having behaved optimally
in the experiment if β1 > 0 and is statistically significant.

We found that 18.89% of the subjects behaved optimally in the z-discounting treatment and
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Figure 3: Cumulative distribution of the efficiency at the last instant of play (part payoff /
theoretical part payoff).

15.71% in the p-discounting treatment, with no significant difference (Chi-squared test, p-value
= 0.753). Additionally, Table 8 reports the results of a logit model where the dependent vari-
able is “behaving optimally” (equal 1 if the subject is categorized as optimal). The absence
of a treatment effect is confirmed by the model. The only control variable with a significant
effect is stated risk aversion which has a positive effect on optimal extraction behavior. Figure 4
illustrates the path of gains for optimally behaving players and non-optimally behaving players
in the z-discounting (left) and p-discounting (right) treatments. It reveals that optimal players
closely align with the optimal gain paths in both treatments.

In Table 9 and Figure 5, we decompose our analysis depending on the optimality behavior. The
analysis in Table 9 highlights the fact that the significant treatment effect is driven by non-
optimal players, whereas among optimal players, the treatment effect is not significant. This
confirms the consistency of our strategy to identify optimal players, as theory suggests that
optimal players are expected to employ the same extraction strategy in both treatments. Figure
5 illustrates the average MSD between the observed resource path and the theoretical resource
path, for both the z-discounting (left) and the p-discounting (right) treatments and optimally
or non-optimally playing subjects. In each treatment, the average MSD for players deemed
optimal is significantly lower than that for non-optimal players. This discrepancy is statistically
significant in both instances, as indicated by Mann-Whitney tests, with p-values falling below
the 0.05 threshold.

4.4.2 Planners

In this subsection, we investigate whether planners’ instantaneous extractions are closer to the
optimal extraction path than those of non-planners. Remember that 81 subjects answered a
detailed questionnaire about their extraction strategies. We categorized a subject as a planner
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Figure 4: Path of gains for optimally and non-optimally playing subjects in the two treatments.
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Dep. Variable: Optimal (β > 0) No. Observations: 160
Model: Logit Df Residuals: 150
Method: MLE Df Model: 9
converged: True Pseudo R-squ.: 0.04528
Covariance Type: nonrobust Log-Likelihood: -70.837

LL-Null: -74.196
LLR p-value: 0.6664

coef std err z P> |z| [0.025 0.975]

Const. -2.9708 1.496 -1.986 0.047∗∗ -5.902 -0.040
P-discounting -0.2346 0.456 -0.514 0.607 -1.129 0.660
Understanding faults 0.0953 0.236 0.404 0.686 -0.367 0.557
Patience (CTB) 0.0178 0.027 0.667 0.505 -0.035 0.070
Risk (BRET) -0.0036 0.010 -0.349 0.727 -0.024 0.016
Risk (declared) 0.2449 0.117 2.096 0.036∗∗ 0.016 0.474
Patience (declared) -0.0447 0.083 -0.540 0.589 -0.207 0.118
Gender (Male) -0.7011 0.489 -1.433 0.152 -1.660 0.258
Age 0.0078 0.057 0.137 0.891 -0.103 0.119
Study level 0.0155 0.141 0.110 0.912 -0.261 0.292
∗∗∗p < 0.001, ∗∗p < 0.05, ∗p < 0.1

Table 8: Logistic Regression Analysis of Factors Influencing Optimal Behavior.

if he answered positively to the two questions: (i) whether she had a strategy for extracting
the resource over the 300 instants of the experiment, and (ii) whether she thought that the
continuation payoff had an impact on their extraction behavior. Based on this definition, 43 of
the 81 subjects were categorized as planners and 38 as non-planners. We examined the poten-
tial correlation between being a planner and patience. Individuals with greater patience might
demonstrate a heightened awareness of the dynamic aspects of the game and the implications of
continuation payoffs. However, our analysis did not reveal any significant association between
being a planner and patience, either in terms of self-reported patience (p-value = 0.605) or in
terms of elicited patience (p-value = 0.241) through the CTB method.10 This findings suggest
that being a planner is more likely be related to cognitive factors than to time-preferences. We
also checked whether the relative frequency of planners varied across treatments. Still, no signif-
icant differences were observed (52% and 55% of the participants involved in the questionnaire
sessions were identified as planners in the p-discounting and z-discounting treatments, respec-
tively).

The regression results reported in Table 10 show that p-discounting increases significantly the
level of extractions, both for planners and non-planners. Figure 6 reports the extraction and
resource paths for planners and non-planners. One can see that planners are on average closer to
the (unconditional) optimum path. However, looking at MSDs, there is no significant difference
between the chosen and the optimal level of extraction, neither under z-discounting (p-value =
0.820) nor under p-discounting (p-value = 0.814). Figure 7 shows that the discrepancy is mainly
related to the p-treatment. Under z-discounting both planners and non-planners are closer to
the (unconditional) optimum path than in the p-treatment. In addition, extraction rates are
more noisy in the p-treatment, especially for the non-planners.

10p-values are based on a logit regression with dependent variable “being a planner”.
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Extraction Extraction
Non-optimal players Optimal players

(Intercept) 5.06∗∗∗ 2.89∗∗

(0.58) (1.06)
P-discounting 0.51∗∗ −0.21

(0.17) (0.33)
Patience (CTB) −0.01 0.01

(0.01) (0.02)
Patience (declared) −0.08∗ 0.23∗∗∗

(0.03) (0.06)
Risk (BRET) −0.00 −0.01

(0.00) (0.01)
Risk (declared) 0.06 −0.11

(0.04) (0.08)
Gender (Male) −0.16 0.13

(0.18) (0.40)
Age −0.04 0.01

(0.02) (0.04)
Study level 0.06 −0.03

(0.06) (0.08)

AIC 218503.44 33032.29
BIC 218606.52 33116.76
Log Likelihood −109239.72 −16504.14
Num. obs. 39732 8428
Num. groups: instant 301 301
Num. groups: participant 132 28
Var: instant (Intercept) 0.52 0.49
Var: participant (Intercept) 0.85 0.59
Var: Residual 13.97 2.71
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 9: Mixed Linear Models - Extraction of non-optimal and optimal players.
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Figure 6: Average extraction (left) and resource (right) for planners and non-planners
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Extraction Extraction
Non-planners Planners

(Intercept) 4.25∗∗ 5.40∗∗∗

(1.53) (1.04)
P-discounting 0.86∗∗ 0.81∗

(0.32) (0.33)
Patience (CTB) 0.00 −0.01

(0.02) (0.01)
Patience (declared) −0.05 −0.08

(0.06) (0.07)
Risk (BRET) 0.00 −0.01

(0.01) (0.01)
Risk (declared) 0.09 −0.01

(0.07) (0.07)
Gender (Male) −0.34 0.29

(0.30) (0.32)
Age −0.04 −0.04

(0.06) (0.04)
Study level 0.11 −0.00

(0.11) (0.08)

AIC 61042.20 68065.71
BIC 61130.34 68155.33
Log Likelihood −30509.10 −34020.86
Num. obs. 11438 12943
Num. groups: instant 301 301
Num. groups: participant 38 43
Var: instant (Intercept) 0.51 0.36
Var: participant (Intercept) 0.62 0.75
Var: Residual 11.70 10.87
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 10: Mixed Linear Models - Extraction of planners and non-planners.
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5 Discussion

We report a sharp treatment effect of the reference period for discounting gains in a continuous
infinite time CPR extraction game. On average, extraction levels are larger under p-discounting
than under z-discounting. Furthermore, average extractions are closer to the optimum path
under z-discounting. Over time, following an initial time interval during which average extrac-
tion trajectories of both treatments are close, a sharp drop in the resource is observed under
p-discounting. Our different analyses seem to converge to the conclusion that participants are
less efficient when their gains are discounted in the present time.

However, this conclusion is nuanced when we split the sample of participants into optimizers
and non-optimizers. Recall that an optimizing agent is defined as a participant who adjusts
her current extraction level towards her optimal conditional level of extraction. We found
that optimizers’ extraction levels are independent of the discounting reference period, whereas
non-optimizers are positively influenced under p-discounting. This observation suggests that
participants who fail to realize what their best contemporary extraction strategy is, are influ-
enced by the perception of the gains. Nevertheless, upon segregating the subset of participants
who responded to a comprehensive questionnaire regarding extraction strategies, we discern no
distinction between planners and non-planners in terms of how these individuals are impacted by
the discounting reference period. Both planners and non-planners exhibit a positive correlation
between their extraction behaviors and p-discounting; in other words, extractions are greater
under p-discounting compared to z-discounting for both categories.

Another reason for the deviant extraction behavior of non-optimizers could be related to the
complexity of the extraction game, because of the temporal dimension. According to Enke
et al. (2023), intertemporal decisions entail intrinsic complexity, which could influence players’
decision-making strategies: intertemporal tradeoffs appear to generate behavioral distortions in
large part because they require a great deal of costly cognitive information processing. Subjects
respond to this complexity by substituting from costly rational procedures for evaluating trade-
offs to less costly noisy or heuristic alternatives that are relatively inelastic to time intervals,
generating systematic departures from time consistency.”

The inherent complexity of the dynamic task may have led many subjects to adopt strategies
not aligned with their best interests, at various points in time. These subjects might have opted
for extraction levels that prioritized short-term gains, even if such strategies were suboptimal
in the long run. The question then becomes whether the complexity of the game is more
significant in the p-treatment. The comprehension questionnaire does not reveal any differences
in the understanding of the game between the two treatments. However, this questionnaire
only captures a limited aspect of the player’s perception of complexity and cannot be used as a
relevant indicator of the game’s complexity. However, the perceived complexity of the game is
likely to have been greater under p-discounting because the discount factor evolves throughout
the game, while under z-discounting instantaneous gains at any given instant t remain constant
throughout the entire game. Precisely, under z-discounting the instantaneously discounted gain
at instant t is e−ρtG(Et, Rt), while under p-discounting it becomes e−ρ(t−p)G(Et, Rt). It is easy
to perceive that the introduction of this second alternative added increased complexity, leading
to potentially heightened confusion in participants’ comprehension of the game. Indeed, the
notion that p-discounting introduces a sliding reference date may have confused participants’
minds. However, the relative frequency of planners in the two treatments was not affected by
the apparent complexity of the instructions (Chi-squared test, p-value = 1).
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Were our participants under p-discounting exposed to a magnitude effect? Several experimental
studies have highlighted the importance of the magnitude of the gains in temporal allocation
tasks (see e.g., Raineri and Rachlin, 1993; Andersen et al., 2013; Sun and Potters, 2022). Un-
der p-discounting, gains were multiplied by the factor eρp > 1, where p is the current period.
This factor, which increases over time, may have mistakenly led subjects to believe that their
current and future wealth was being amplified, leading them to over-extract. However, our
data indicates rather a negative magnitude effect. Subjects in the p-treatment behaved as if
the magnified gains they observed prompted them to act more “impatiently” in their extraction
decisions compared to those in the z-discounting treatment.

Finally, could our subjects be susceptible to a form of “money illusion” effect? Harrison (1989)11

argued that increasing the nominal value of the gains can affect the perceived opportunity cost
of misbehavior. If this argument applied to our subjects, we would have expected to observe
greater consistency under p-discounting, which is not the case. Our claim of the absence of
money illusion in our individual optimization experiment is further supported by the findings
of Fehr and Tyran (2001) who demonstrated that subjects exhibit less susceptibility to money
illusion when interacting with a computer program that optimally best responds, compared
to playing against a human opponent12. In addition, Drichoutis et al. (2015) provided clean
evidence against a money illusion effect in a second price auction experiment, by manipulating
the conversion rate: whether subjects are incentivized in Euros or Ecus (with conversation rates
ranging from 10:1 to 25:1), did not affect their bidding strategies.

6 Conclusion

We implemented a single-owner resource extraction game in the lab, to study the possible impact
of the discounting reference period. We found that subjects’ extraction levels are affected by
the discounting reference period. We observed higher extraction levels under p-discounting than
under z-discounting. This is not in accordance with the theory, as subjects’ extraction levels
should not be affected by the reference period. From a theoretical point of view, the optimum
extraction path is independent of the discount factor.

In a sub-sample, we confirmed subjects’ comprehension of the dynamic game, with the major-
ity employing dynamic extraction strategies. Utilizing various models, we identified a signif-
icant positive treatment effect, indicating overall higher extraction under p-discounting than
z-discounting. Further, we identified subjects adopting optimal extraction paths by comparing
strategies to optimal conditional ones based on past behavior. The treatment effect did not
influence subjects following optimal paths, in line with theory. We controlled for socio-economic
variables, game understanding, impatience, and risk attitude.13

Continuous-time dynamic game experiments are still in their early stages but are gaining trac-
tion among experimental economists. Knowing how to best implement this type of game in
the laboratory is a key aspect of good experimental practice. Based on our findings we suggest
using z-discounting rather than p-discounting. We also recommend relying on the continuation

11This paper led to a controversy about proper incentives in auction experiments, see Kagel and Roth (1992)
and Harrison (1992).

12Yamamori et al. (2018) report a sharp money illusion effect in an experiment based on an inter-temporal
consumption model (without discounting). However, their experiment involved random price fluctuations, which
could have induced a loss aversion effect in consumption rather than a money illusion effect.

13Only declared general risk aversion significantly impacted optimal extraction behavior.
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payoff method, rather than on the random termination method, to implement infinite horizon
in the lab.
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Instructions
Translated from french
[instructions of the z-discounting treatment]

General Framework

In this part, payoffs will be expressed in ECU (Experimental Currency Unit). The conversion
rate of ECUs to Euros will be specified at the end of these instructions.

You initially have a resource of 700 units. At any time, you can extract an amount between 0
and 50 units from this resource. You are free to choose the amount you wish to extract, with
a decimal precision, that is 0, 0.1, 0.2, …, 49.8, 49.9, 50. To make your choice, you must
move a slider similar to the one below. For more precision, you can use the arrows on your
keyboard.

Between two decisions, you can take as much time as you need to think. If you do not touch
the slider, your extraction is maintained at the last level you chose.

Resource Evolution

Throughout the experiment, time will be measured in seconds, meaning that exactly one
second will elapse between two consecutive instants t and t+1. The quantity of available
resource evolves according to two elements: (i) the amount you extract at each instant t,
noted Et, and (ii) a fixed quantity of 3.6 units, added automatically at each instant t. Denoting
Rt as the quantity of resource available at each instant t, the evolution of the resource is
described by the relation:

Rt+1 = Rt - Et + 3.6

In other words, the resource available at instant t+1 (Rt+1) is equal to the resource available
at t (Rt) minus the amount you extracted at t (Et) plus the amount that adds automatically
(3.6).

If at instant t your extraction exceeds the available resource, your extraction for that instant
will be automatically set to 0 by the computer.

Example 1: Let's assume that at instant t, the quantity of available resource is 500 units and
that your extraction is 3 units. At instant t+1, the quantity of available resource will then be
equal to: Rt+1 = 500 - 3 + 3.6 = 500.6 units.



Example 2: Let's assume that at instant t the quantity of available resource is 37 units. You
decide to extract 42 units. The computer will automatically set your extraction level to 0. Of
course, you can choose a new quantity immediately after.

Gain from extraction
Your total gain for the game depends on the gain from extraction at each instant. Your gain
at instant t is the difference between the revenue from extraction at instant t and the cost of
extraction at instant t.

Extraction Revenue
Your revenue depends on your extraction at instant t as illustrated by the figure below.

In the first instance, the higher your extraction, the higher your revenue. This is true as long
as your extraction is less than 44 units. In the second instance, the higher your extraction,
the lower your revenue will be. This occurs if the extraction exceeds 44 units. Specifically, at
instant t, for an extracted quantity Et, the revenue from extraction at moment t, noted RECt,
is equal to RECt = 453.61 Et - 5.15 Et

2.
 

Extraction Cost

The extraction of the resource generates a cost that differs for each extracted unit. The unit
cost of extraction at instant t depends on the quantity of the resource:

● The higher the quantity of available resource, the lower the extraction cost.



● The extraction cost becomes null when the quantity of the resource is equal to or
greater than 1100 units.

The figure below graphically represents the unit cost according to the quantity of available
resource. Specifically, when the resource is less than 1100 units, the unit cost of extraction,
ct, evolves according to the following relation: ct = 550 - 0.5Rt. The cost of extraction at
instant t, Ct, is equal to the extracted quantity multiplied by the unit cost of extraction, that is:
Ct = Et x ct.

Gain at Instant t
The gain at instant t (Gt) is equal to the difference between the revenue from extraction and
the cost of extraction, that is: Gt = RECt - Ct.
 
Example 3: At instant t the quantity of available resource is Rt = 500 units. Your extraction at
instant t is Et = 5 units. The unit cost of the extraction is equal to 300 ECUs. The total cost is
therefore equal to 1500 ECUS and the revenue to 2241.48 ECUs = 453.61 x 5 - 5.15 x 52.
Your gain at instant t is equal to 741.48 ECUs = 2241.48 - 1500.

Example 4 : The table below illustrates with examples several possible situations. The first
row corresponds to example 3.



Gain for the game at Instant t
At any instant t, the computer will calculate the gain for the game. This gain will be displayed
on your screen at each instant. It is calculated based on two elements:

1. Your cumulative gain from all instants since the beginning of the game.
2. Your long-term gain.

1. Your cumulative gain from the beginning of the game
This is the capitalized sum of gains made since the beginning of the game (t=0) until the
present instant (t=p). All the gains you have obtained between the present instant
p and the beginning of the game are converted into gains of the instant p [instant 0]. To do
this, the gains made before instant p [after instant 0], are updated at a rate of 1%.
Concretely, the gain of instant t<p is multiplied by e-0.01(p-t). [of instant t>0 is multiplied by
e-0.01t]

Example 5: Imagine the instant p=60 in the game, and consider a gain Gt = 100 realized at
three distincts instants before p.

● at instant p=60, this gain of 100 ECUs obtained in t=0 will be multiplied by 1.82
(100 x e0.01x60 = 100 x 1.82 = 182)

● at instant p=60, this gain of 100 ECUs obtained in t=10 will be multiplied by 1.65
(100 x e0.01x50 = 100 x 1.65 = 165)

● at instant p=60, this gain of 100 ECUs obtained in t=60 will be multiplied by 1
(100 x e0.01x0 = 100 x 1 = 100)

[
● at instant p=60, this gain of 100 ECUs obtained in t=0 will be multiplied by 1

(100 x e0.01x0 = 100 x 1 = 100)
● at instant p=60, this gain of 100 ECUs obtained in t=10 will be multiplied by 0.9

(100 x e0.01x10 = 100 x 0.9 = 90)
● at instant p=60, this gain of 100 ECUs obtained in t=60 will be multiplied by 0.55

(100 x e0.01x60 = 100 x 0.55 = 55)
]

What should be understood from this principle is that the older past gains have a greater
impact on the game’s overall gain than the more recent past gains. The sum of these
capitalized past gains constitutes your gain of past instants, GCp.

𝐺𝐶
𝑝
=

𝑡=0

𝑝

∑ 𝑒0.01(𝑝−𝑡)𝐺
𝑡

[ ]𝐺𝐶
𝑝
=

𝑡=0

𝑝

∑ 𝑒0.01𝑡𝐺
𝑡

2. Your long-term gain
This is your gain for all future moments relative to instant p. It is calculated based on your
extraction at instant p. Your long-term gain at date p is equal to the potential gain you could
achieve if the game continued indefinitely (from t=p to t=∞) and your extraction remained
fixed forever at the present instant level (Et =Ep). Your future gains are converted into gains



of instant p [instant 0]. To do that, the long-term gain for instant p is obtained by updating the
future gains at the rate of 1%. More precisely, it means that the gain of instant t is multiplied
by e-0.01x(t-p) [by e-0.01t ]. The long-term gain is therefore equal to:

𝐺𝐿𝑇
𝑝
=

𝑡=𝑝+1

∞

∑ 𝑒−0.01𝑥(𝑡−𝑝)𝐺
𝑡

[ ]𝐺𝐿𝑇
𝑝
=

𝑡=𝑝+1

∞

∑ 𝑒−0.01𝑡𝐺
𝑡

The game gain at moment p is therefore equal to the sum of your cumulative gain from all
past moments and your long-term gain: GPp = GCp + GLTp.
 
The gain that will be paid to you at the end of the experiment for this game is your gain
calculated at the last moment of the game, that is at p=300.

Unfolding of the game

Before the game starts, you will need to choose an initial extraction level, which will apply at
the beginning of the game (t=0). Then when the game starts, you can change your extraction
level every second if you wish. To do this, select the slider and move it to the desired
extraction level. The last chosen extraction level will be applied as long as no new extraction
level is chosen. The decision screen includes three charts, in addition to the decision area
with the slider.

● On the left: the evolution of your extraction.
● In the center: the evolution of the resource.
● On the right: the evolution of your gain for the game.



[Scale of the game gain graphic (right-side) range from 0 to 100k]

Final Details
This game consists of 2 rounds. The first round is a trial round and does not count for your
gain for this game. The conversion rate of ecus to euros is 75000 ECUs = €1.00 [7500 ECUs
= €1] if your game gain is positive. If your game gain is negative, the conversion rate is null.



B Understanding, pre-game and post-game questionaires
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Understanding questionnaires

z-Discounting

1. Text: The quantity of available resource is updated every second.
Options: true, false
Solution: true
Explanation: Every second, the resource is decreased by the quantity you have extracted
and increased by 3.6.

2. Text: If your extraction at each instant is 50 units, the quantity of resource decreases over
time and becomes zero before the instant t=300.
Options: true, false
Solution: true
Explanation: If your extraction is 50, as a fixed quantity of 3.6 units is added automatically at
each instant, the quantity of resource decreases by 46.4 units each instant. In less than 20
seconds, the initial 700 units of resource are exhausted.

3. Text: The gain at each instant of the game depends on the quantity of available resource.
Options: true, false
Solution: true
Explanation: The gain at instant t is the difference between the revenue and the cost at
instant t. The revenue depends only on the extracted quantity (see figure 2 of the
instructions), but the cost depends on the quantity of available resource. The unit cost or the
total cost (unit cost x extracted quantity) increases as the resource decreases but is zero
once the quantity of available resource is equal to or greater than 1100.

4. Text: At the instant 60 of the game, which of the following gains contributes the most to
the game's gain?
A) a gain of 10 obtained at instant 5,
B) a gain of 10 obtained at instant 10,
C) a gain of 10 obtained at instant 50
Options: A, B, C
Solution: A
Explanation: The gain obtained at instant 5 will be capitalized over a longer duration than the
gains obtained at instants 10 or 50. Since the present instant is 60, the gain obtained at
instant 5 will be capitalized for 55 seconds, the one obtained at instant 10 for 50 seconds,
and the one obtained at instant 50 for 10 seconds.

5. Text: The gain of the game at the instant t=p is composed of two elements:
(i) the sum of the (capitalized) gains of each instant between t=0 and t=p, and
(ii) the gain calculated from the instant t=p to infinity assuming that the extraction level is
maintained at that of instant t=p
Options: true, false
Solution: true



Explanation: At each instant, the computer gives you the gain of the game if it stopped
immediately, with therefore the two mentioned elements: (i) the instantaneous capitalized
gain from the initial instant (t=0) to the present instant, and (ii) the gain from the present
instant to infinity assuming that the resource continues to evolve according to the defined
rule but that you no longer change your extraction level. Your gain from the experience, for
this part, is therefore your gain of the game at the last instant of play, namely at instant
t=300.

6. Text: The decision screen shows the game's gains (3rd chart on the right). In your opinion,
what is the maximum level of gains that you can obtain at the end of the game (by applying
the best possible extraction strategy)?
Options: 207,000, 172,000, 103,000, 86,000, 43,000, 30,000
Solution: 86,000
Explanation: This is the result that can be obtained by choosing extractions optimally, in
order to maximize the sum of the capitalized gains of the game.

7. Text: Imagine that you are at the instant t=10. At this instant, the gain you realize:
A) is not updated because it corresponds to the instant when you make your decision,
B) is not updated because all gains are converted into gains of the instant t=0,
C) is updated because all gains are converted into gains of the present instant
Options: A, B, C
Solution: C
Explanation: The gains of each instant are converted into the gain of the instant t=0.

8. Text: At the last instant, you realize an instant gain of 100. This gain increases your total
gain by an amount:
A) equal to 100 x e^(-0.01 x 300),
B) less than 100 x e^(-0.01 x 300),
C) more than 100 x e^(-0.01 x 300)
Options: A, B, C
Solution: C
Explanation: Your extraction at each instant contributes not only to your cumulative gain of
past instants but also to your long-term gain.

9. Text: At the instant t=60, which of the following gains is not updated:
A) a gain of 10 obtained at t=0,
B) a gain of 10 obtained at t=60
Options: A, B
Solution: B
Explanation: All gains are converted into the gain of the present instant (t=p), so only the
gain obtained at t=60 is not updated.

p-Discounting
1. Text: The quantity of available resource is updated every second.
Options: true, false
Solution: true



Explanation: Every second, the resource is decreased by the quantity you have extracted
and increased by 3.6.

2. Text: If your extraction at each instant is 50 units, the quantity of resource decreases over
time and becomes zero before the instant t=300.
Options: true, false
Solution: true
Explanation: If your extraction is 50, as a fixed quantity of 3.6 units is added automatically at
each instant, the quantity of resource decreases by 46.4 units each instant. In less than 20
seconds, the initial 700 units of resource are exhausted.

3. Text: The gain at each instant of the game depends on the quantity of available resource.
Options: true, false
Solution: true
Explanation: The gain at instant t is the difference between the revenue and the cost at
instant t. The revenue depends only on the extracted quantity (see figure 2 of the
instructions), but the cost depends on the quantity of available resource. The unit cost or the
total cost (unit cost x extracted quantity) increases as the resource decreases but is zero
once the quantity of available resource is equal to or greater than 1100.

4. Text: At the instant 60 of the game, which of the following gains contributes the most to
the game's gain?
A) a gain of 10 obtained at instant 5,
B) a gain of 10 obtained at instant 10,
C) a gain of 10 obtained at instant 50
Options: A, B, C
Solution: A
Explanation: The gain obtained at instant 5 will be capitalized over a longer duration than the
gains obtained at instants 10 or 50. Since the present instant is 60, the gain obtained at
instant 5 will be capitalized for 55 seconds, the one obtained at instant 10 for 50 seconds,
and the one obtained at instant 50 for 10 seconds.

5. Text: The gain of the game at the instant t=p is composed of two elements:
(i) the sum of the (capitalized) gains of each instant between t=0 and t=p, and
(ii) the gain calculated from the instant t=p to infinity assuming that the extraction level is
maintained at that of instant t=p
Options: true, false
Solution: true
Explanation: At each instant, the computer gives you the gain of the game if it stopped
immediately, with therefore the two mentioned elements: (i) the instantaneous capitalized
gain from the initial instant (t=0) to the present instant, and (ii) the gain from the present
instant to infinity assuming that the resource continues to evolve according to the defined
rule but that you no longer change your extraction level. Your gain from the experience, for
this part, is therefore your gain of the game at the last instant of play, namely at instant
t=300.



6. Text: The decision screen shows the game's gains (3rd chart on the right). In your opinion,
what is the maximum level of gains that you can obtain at the end of the game (by applying
the best possible extraction strategy)?
Options: 2,070,000, 1,720,000, 1,030,000, 860,000, 430,000, 300,000
Solution: 1,720,000
Explanation: This is the result that can be obtained by choosing extractions optimally, in
order to maximize the sum of the capitalized gains of the game.

7. Text: Imagine that you are at the instant t=10. At this instant, the gain you realize:
A) is not updated because it corresponds to the instant when you make your decision,
B) is not updated because all gains are converted into gains of the instant t=0,
C) is updated because all gains are converted into gains of the present instant
Options: A, B, C
Solution: A
Explanation: The gain of the present instant does not need to be updated at the time of the
decision (i.e., at the present instant). It will be, however, from the next instant onwards.

8. Text: At the last instant, you realize an instant gain of 100. This gain increases your total
gain by an amount:
A) equal to 100 x e^(-0.01 x 300),
B) less than 100 x e^(-0.01 x 300),
C) more than 100 x e^(-0.01 x 300)
Options: A, B, C
Solution: C
Explanation: Your extraction at each instant contributes not only to your cumulative gain of
past instants but also to your long-term gain.

9. Text: At the instant t=60, which of the following gains is not updated:
A) a gain of 10 obtained at t=0,
B) a gain of 10 obtained at t=60
Options: A, B
Solution: B
Explanation: All gains are converted into the gain of the present instant (t=p), so only the
gain obtained at t=60 is not updated.

Pre-game questionnaire
1. Do you have an idea of your extraction plan for the 300 instants?
Options: Yes, absolutely | Yes, more or less | No, I will see as it goes | No, no idea
2. Can you describe this plan in two or three sentences? Leave blank if you do not have
a plan.
3. The decision screen shows the level of extraction (on the left), the resource (in the
middle), and the game's gains (on the right) over time. Which information do you plan to
follow primarily? If you could only have one piece of information on the decision screen,
which one would you choose?



Options: the extraction | the resource | the game's gain | the extraction and the resource | the
extraction and the game's gain | the resource and the game's gain | all three
4. If you could only have one piece of information on the decision screen, which one
would you choose?
Options: the extraction | the resource | the game gain
5. How do you plan to exploit the resource?
Options (the same for the three questions a, b, c below: in a practically constant manner
from the beginning to the end | with strong extractions from time to time | with weak
extractions from time to time | in a constant manner by levels, adjusting extractions from time
to time | in a constant manner with occasional more significant extractions if opportune | in a
constant manner with occasional weaker extractions if necessary | with strong extractions
from the beginning to the end | with weak extractions from the beginning to the end | with
strong extractions followed by weak extractions | with weak extractions followed by strong
extractions | adaptively, according to my observations | none of the proposed methods

a. Your first method of doing so (the most important)
b. Your second method of doing so
c. Your third method of doing so (the least important of the three)

6. If you wish to describe how you plan to exploit the resource
7. How often do you think you will need to change your extraction?
Options: at every moment | approximately every 10 seconds | approximately every 20
seconds | approximately every 30 seconds | approximately every minute | the initial
extraction should be kept fixed unless it does not yield the desired result | the extraction
should be changed when the information followed on the screen does not evolve as desired |
none of these frequencies
8. If you wish to indicate the frequency at which you think you will need to change your
extraction
9. Will you perform calculations to develop your extraction plan?
Options: Yes | No, I operate approximately | No, I operate intuitively | No, I will react as
things progress | No, I don't have a plan
10. Please indicate the quantity of resource you aim to have at the end of the 300
instants. Leave blank if you do not know yet.
11. What do you think will be your total gain at the end of the 300 instants, in ECUs?

Post-game questionnaire
1. What is the information on the decision screen that you consulted most often?
Options: the extraction | the resource | the game gain
2. Did you mostly follow the extraction plan that you had initially envisioned?
Options: Yes, rather | No, not really | I didn't really have an extraction plan
3. If not, please explain why



C Additional tables

Extraction Extraction Extraction Extraction
(1) (2) (3) (4)

(Intercept) 3.81∗∗∗ 3.90∗∗∗ 3.89∗∗∗ 4.56∗∗∗

(0.14) (0.26) (0.36) (0.55)
p-discounting 0.32∗ 0.32∗ 0.34∗ 0.36∗

(0.15) (0.16) (0.16) (0.16)
Questionnaire 0.06 0.05 0.05 0.04

(0.15) (0.15) (0.16) (0.16)
Patience (CTB) −0.01 −0.00 −0.00

(0.01) (0.01) (0.01)
Risk (BRET) 0.00 0.00 0.00

(0.00) (0.00) (0.00)
Risk (declared) 0.02 0.03

(0.04) (0.04)
Patience declared −0.02 −0.02

(0.03) (0.03)
Gender (Male) −0.06

(0.17)
Age −0.04

(0.02)
Study level 0.05

(0.05)

AIC 257479.19 257499.96 257513.42 257528.58
BIC 257531.88 257570.22 257601.25 257642.75
Log Likelihood −128733.59 −128741.98 −128746.71 −128751.29
Num. obs. 48160 48160 48160 48160
Num. groups: instant 301 301 301 301
Num. groups: participant 160 160 160 160
Var: instant (Intercept) 0.51 0.51 0.51 0.51
Var: participant (Intercept) 0.90 0.91 0.91 0.92
Var: Residual 12.00 12.00 12.00 12.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 11: Mixed linear models

The table 11 shows mixed linear model regressions of treatment on extraction, with additional
control variables. The treatment effect is significant and positive meaning that extraction is
overall greater under the p-discounting treatment than under the z-discounting treatment. The
questionnaire effect remains absent.
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