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RESEARCH ARTICLE
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The number of leaves at a given time is important to characterize plant growth and development. In this 
work, we developed a high-throughput method to count the number of leaves by detecting leaf tips in 
RGB images. The digital plant phenotyping platform was used to simulate a large and diverse dataset of 
RGB images and corresponding leaf tip labels of wheat plants at seedling stages (150,000 images with 
over 2 million labels). The realism of the images was then improved using domain adaptation methods 
before training deep learning models. The results demonstrate the efficiency of the proposed method 
evaluated on a diverse test dataset, collecting measurements from 5 countries obtained under different 
environments, growth stages, and lighting conditions with different cameras (450 images with over 2,162 
labels). Among the 6 combinations of deep learning models and domain adaptation techniques, the Faster-
RCNN model with cycle-consistent generative adversarial network adaptation technique provided the best 
performance (R2 = 0.94, root mean square error = 8.7). Complementary studies show that it is essential to 
simulate images with sufficient realism (background, leaf texture, and lighting conditions) before applying 
domain adaptation techniques. Furthermore, the spatial resolution should be better than 0.6 mm per pixel 
to identify leaf tips. The method is claimed to be self-supervised since no manual labeling is required 
for model training. The self-supervised phenotyping approach developed here offers great potential for 
addressing a wide range of plant phenotyping problems. The trained networks are available at https://
github.com/YinglunLi/Wheat-leaf-tip-detection.

Introduction

Early seedling vigor is an important trait used to evaluate 
crop implantation and affect its future development [1–3]. 
In cereal crops, the dynamics of the leaf number per plant 
informs about the phenological stage [4]. It is used to compare 
the growth rate between cultivars, cultural practices, and envi-
ronments and then to guide farmers on the optimal cultivation 
methods, such as irrigation and fertilization [5]. Conventional 
methods for measuring the leaf number in the field consist of 

directly counting the leaves on a sample of plants. This process 
is very slow and labor-intensive and is generally associated 
with large uncertainties because of the small samples used 
[6,7]. It is difficult to get accurate estimates of some traits 
derived from leaf counting, such as growth rate or the phyl-
lochron [4,8–10]. The image-based high-throughput pheno-
typing provides a potential alternative to the conventional leaf 
counting methods that are low-throughput, intrusive, and 
sometimes even destructive [11–13]. Deep learning tech-
niques are now routinely exploited to extract specific traits 
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from high-resolution images [14–16]. The objective of this 
study is to develop a high-throughput method for leaf tip 
counting from RGB images taken in the field.

Deep learning has been developed mainly using object 
detection [17,18] or segmentation [19] algorithms. They have 
been developed to estimate the number of plants or organs 
(leaves, spikes, etc.)[20], the canopy cover or the green cover 
[21] , and the emergence rate [22]. Detection algorithms have 
already been used to count the number of leaves [23]. Leaf 
tips are specific features of the leaves well adapted for leaf 
detection and localization. However, leaf tips are typical “tiny 
objects” in images, which is a difficult problem in the field of 
object detection [24]. As a result, existing research on leaf tip 
detection has been carried out mainly under controlled con-
ditions in greenhouses [23,25]. The sparse canopy structure, 
complex soil background, and small size of leaves require a 
very large annotation workload to achieve accurate enough 
leaf counts in the field [26]. Further, monitoring the dynamics 
of the leaf number requires an even larger amount of highly 
accurate annotated images to train the deep learning model 
[27–29]. It is therefore highly desired to get effective methods 
for generating annotated training samples.

Synthetic images have already been used to solve data acqui-
sition challenges while improving the accuracy and robustness 
of the algorithm [30–32]. Crop model simulations provide a 
potential way to tackle the image annotation problem [33]. Crop 
model could directly generate the annotated dataset required 
to train the deep learning model [31,34–36]. Unfortunately, 
crop models are often lacking realism, and deep learning models 
trained only with synthetic data fail to perform well when 
applied to actual images [37,38].

In deep learning, a domain refers to the feature space or 
the distribution of the data. It is the fact that the feature differ-
ence between the simulated dataset and the real dataset, i.e., 
domain gap, that causes the model trained on synthetic images 
cannot generalize well to the actual images. Domain random-
ization [37,39] and domain adaptation [40,41] techniques are 
widely used to further reduce the reality gap [42,43]. The digital 
plant phenotyping platform (D3P) [44] generates wheat crop 
images using a realistic 3-dimensional (3D) canopy structure 
model that simulates the 3D dynamics of wheat canopy structure 

based on the knowledge of several botanical processes [45]. D3P 
uses a physically based ray tracer to render images. It is also 
possible to use texture extracted from leaf and ground elements 
in actual images to improve the realism of the rendering and 
reduce the domain gap problem. Highly realistic training data-
sets can therefore be automatically generated by combining D3P 
model simulations and domain randomization or adaptation 
techniques, avoiding the laborious manual annotation process 
that may be also prone to errors. Generative adversarial net-
works (GAN) are now widely used for domain adaptation, such 
as cycle-consistent GAN (CycleGAN) [46]. However, CycleGAN 
strategies require already a high degree of consistency between 
the simulated and the actual images [47], which place demands 
on the methods to generate simulation data.

This study aims to develop a leaf tip counting method from 
RGB images of the crop under field conditions based on deep 
learning approaches where the training dataset is generated by 
combining RGB image simulations and CycleGAN domain 
adaptation techniques. A large dataset of wheat crop RGB 
images taken in the field under contrasted conditions was col-
lected. A subsample of these images was manually labeled to 
evaluate the performance of the proposed method. Further, the 
factors controlling the realism of the simulated images, the 
impact of the spatial resolution, and the efficiency of CycleGAN 
domain adaptation technique were analyzed.

Materials and Methods

Building the actual RGB images dataset of wheat 
crops at early stages
We collected 2,763 RGB images of wheat field at juvenile stages 
over 11 locations distributed within 5 countries (China, France, 
Japan, United States, and Australia) (Table 1). We use the Haun 
scale to quantitatively describe wheat plant development. It 
corresponds to the number of fully expanded leaves. This data-
set covers wheat development mainly between Haun stages 1 
and 4 before tillering. The images were captured using different 
types of cameras, from high-quality single-lens reflex camera 
to portable action camera or smartphone. In addition, they 
were taken from 0o to 45° view zenith angle, with a spatial 

Fig. 1. Simulating field wheat images with D3P. From left to right, through accounting for more and more factors in the simulation pipeline using D3P (in the top column), the 
simulated image would turn to be more and more realistic (in the bottom column).
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resolution varying between 0.1 and 0.5 mm per pixel. Images 
were taken either from a camera on a fixed pole in the field, 
using hand-held systems, or using a ground vehicle. The data-
set covers a wide range of variability with respect to the canopy 
structure, soil background, and light conditions. A 1,024 × 
1,024 size window was cropped in the center of the images to 
model training. In the following, we will only consider the 
1,024 × 1,024 images. All these images were manually labeled 
for model training or testing. A total of 1,600 of these images 
will be involved in domain-adaptive training, and the remain-
ing images will be used for testing or independent testing.

Generating simulated wheat images
We generated in total of 16,000 simulated wheat images with 
2,461,503 leaf tips annotated automatically using the D3P 
developed in our previous work [44]. D3P consists of 2 parts: 

a functional–structural plant model (FSPM) to generate 3D 
realistic canopy structure and a physically based raytracer to 
simulate images over the virtual 3D canopies. We used the 
state of the art wheat FSPM, ADEL-wheat model [45]. It is 
implemented in the FSPM modeling platform, OpenAlea 
(http://openalea.gforge.inria.fr) [48]. Through manipulating 
the input parameters, D3P could simulate the dynamics of 
various canopy structures corresponding to different cultivars 
and field managements. It provides the 3D meshes of the vir-
tual canopies. The open-source raytracing software POV-Ray 
3.7 (www.povray.org) was then used to simulate the RGB 
images. The settings of the virtual camera were configured 
similarly to the ones used in our actual dataset (Table 1). POV-
Ray can simulate images under different light conditions and 
with different optical properties of the leaf, stem, and soil back-
grounds, including rendering the texture. Note that the soil 

Table 1. Detailed description of the RGB wheat images dataset used for model training and testing.

Country Sites Latitude Longitude Camera
Field of 

view

Ground 
sampling 
distance 
(mm per 

pixel)

Image 
size 

(pixels)
Number 

of images
Shooting 

mode
Note Vector

China Yangling 34.3°N 108.1°E HUNT-
ERCAM_

H881

45° 0.3–0.4 4,068 × 
3,456

73 Fixed Testing Fixed pole

Jinan 36.4°N 117.0°E HUNT-
ERCAM_

H881

45° 0.3–0.4 4,068 × 
3,456

60 Fixed Testing Fixed pole

Xinxiang 35.2°N 113.6°E HUNT-
ERCAM_

H881

45° 0.3–0.4 4,068 × 
3,456

60 Fixed Testing Fixed pole

Xuzhou 34.2°N 117.1°E SONY 
RX0 II

45° 0.3–0.4 5,472 × 
3,648

689 Auto-
matic

Training Handheld 
system

Jurong 31.9°N 119.2°E SONY 
RX0 II

45° 0.3–0.4 5,472 × 
3,648

309 Auto-
matic

Training Handheld 
system

Baima 31.6°N 119.2°E SONY 
RX0 II

0°,45° 0.3–0.4 5,472 × 
3,648

1,385 Auto-
matic

Training Handheld 
system

France Toulouse 43.5°N 1.5°E Sigma 
SD14

45° 0.2–0.3 4,068 × 
3,072

40 Auto-
matic

Testing Handheld 
system

Paris 48.8°N 1.9°E NIKOND 
5200

45° 0.1–0.2 6,000 × 
4,000

20 Auto-
matic

Testing Handheld 
system

Avignon 43.9°N 4.8°E Sigma 
SD14

45° 0.1–0.2 4,068 × 
3,072

27 Auto-
matic

Testing Handheld 
system

Australia Queens-
land

27.4°N 153.0°E GECKO-
CAM

45° 0.4–0.5 4,032 × 
3,024

40 Fixed Testing Fixed pole

Japan Tokyo 35.4°N 139.4°E Canon 
EOS X5

0°,45° 0.1–0.2 5,184 × 
3,456

30 Fixed Testing Fixed pole

United 
States

Lincoln, 
Nebras-

ka

40.8°N 96.7°W Smart 
Phone

45° 0.1–0.2 3,024 × 
4,032

30 Auto-
matic

Testing Handheld 
system
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background and leaf texture were added through projecting 
actual background and leaf images onto the corresponding 
object surface in the 3D scene (Fig. 1). Finally, D3P allows to 
play with 6 types of factors to simulate the synthetic images: 
(a) 3D canopy structures, including the parameters describing 
leaf dimensions, leaf inclination, sowing density, or tiller num-
ber; (b) development stages controlled by the cumulative ther-
mal time after emergence; (c) leaf texture, manipulated using 
the scanned actual leaf images; (d) soil background, manipu-
lated using actual bare soil images taken in the field; (e) light 
conditions, including parameters to describe the illumina-
tion geometry and the composition of direct and diffuse 
light; (f ) configurations of the virtual camera including the 
image resolution, field of view, and viewing direction.

As suggested in our previous work [49], the camera config-
uration was fixed with 45o viewing angle at 1.8 m in height with 
a 5,472-pixel × 3,648-pixel images. These original images were 
divided into 1,024-pixel × 1,024-pixel subimages using sliding 
windows with some overlap between consecutive subimages. 
We therefore considered only the 5 first factors to build the 
synthetic images dataset. We sampled more than 27 times from 
the parameter space using Latin hypercube sampling and 8 
stages (including 227 parameters) [44]. We generated 15,000 
images (1,024 × 1,024 subimages) using 40 h with our local 
computer (2× Titan V, 2× Intel Xeon Platinum 8180). Bounding 
boxes of 12-pixel × 12-pixel labels were automatically placed 
on the leaf tips for each image.

Generating Sim2Real wheat images
The CycleGAN [50] domain adaptation technique was selected 
to translate the source domain of the simulated dataset (X) into 
the target domain of the real images (Y). The translated dataset, 
including 16,000 images, would be called Sim2Real dataset 
hereafter. Basically, CycleGAN trains simultaneously the trans-
lator G: Real → Sim and another translator F: Sim → Real with 
a cycle consistency loss that encourages images generated in 
the source domain and is indistinguishable from images in tar-
get domain (Fig. 2). The simulation results of the source domain 
image are compared with the target domain image in each 
round. The training is not terminated until the Euclidean dis-
tance is less than 10 (see the Evaluation of the gap after domain 
adaptation section for details of the Euclidean distance). This 
is a long process, because, importantly, CycleGAN respects the 
boundary of leaves, consequently preserves the position of the 
leaf tips, and ensures that the labels generated automatically in 
the simulation process are valid for the Sim2Real images. The 
CycleGAN was implemented with default parameters (using 
the adversarial loss and consistency loss with 1.2 weight of size) 
for training, and 5,000 simulated and 5,000 actual 1,024 × 1,024 
images were used as source and target domains, respectively.

The convolutional neural networks models 
considered
We considered 6 states of the art object detection models for 
leaf counting (Table 2). The first 4 models were trained over 
15,000 images from the Sim2Real dataset using the CycleGAN 
domain adaptation technique described earlier. Conversely, the 
last 2 models were trained over the Sim (15,000 images) and 
Real (1,500 images) datasets based on enhanced adaptation 
techniques. More detailed model description is given in the 
Supplementary Materials. To evaluate the possible added value 

of the domain adaptation techniques, we also trained the first 
4 object detection models over the simulated dataset (Sim, 
15,000 images) or actual dataset (Real, 1,500 images). The same 
set of hyperparameters was used for all the training modalities, 
and all the images in the dataset are the same size with 1,024 × 
1,024.

Accuracy assessment
Evaluation of the gap after domain adaptation
To measure the differences between Sim and Real datasets, we 
visualization the domain gap between the datasets using the 
t-distributed stochastic neighbor embedding (t-SNE) [51]. The 
t-SNE is one of the most popular algorithms for dimensionality 
reduction of high-dimensional data. The similarity between data 
is expressed by transforming the high-dimensional Euclidean 
distance between data in a dataset into a conditional probability. 
In addition, we calculated the Euclidean distance between the 
datasets, which is calculated as follows:

Evaluation of deep learning models
The performances of the leaf counting models were evaluated 
in 2 phases: In the development phase, the accuracy of all the 
6 models was evaluated over 400 images taken from the test-
ing sites in China. This allowed selecting the best performing 
model that was then further evaluated over the other world-
wide distributed testing sites presenting a large diversity of 
situations (Table 1).

We used the mean absolute error (MAE), root mean square 
error (RMSE), and R2 as assessment metrics. It is calculated 
using precision (p) and recall (r):

where TP(t) indicates the number of instances detected with an 
intersection over union (IoU) of >0.5; FP(t) is the number of 
instances detected with an IoU of  ≤0.5 while corresponding to an 
actual instance; and FN(t) is the number of instances not detected. 
The MAE, RMSE, and R2 for leaf counting accuracy assessment 
were defined as follows:

(1)Euc. =

√√√
√

n∑

i=1

(
xi−yi

)2

(2)p =
TP(t)

TP(t) + FP(t)

(3)r =
TP(t)

TP(t) + FN(t)

(4)MAE =
1

n

n∑

i=1

||yi − ŷl
||

(5)RMSE =

√√√
√ 1

n

n∑

i=1

(
yi − ŷl

)

(6)R2 = 1 −

∑n
i=1

�
yi−y�

i

�2

∑n
i=1

�
yi− ŷi
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D
ow

nloaded from
 https://spj.science.org on M

arch 04, 2024

https://doi.org/10.34133/plantphenomics.0041


Li et al. 2023 | https://doi.org/10.34133/plantphenomics.0041 5

Fig. 2. Translating the simulated wheat images (Sim dataset) into Sim2Real dataset using CycleGAN.
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where n denotes the number of objects to be compared, yi 
indicates the value of the manual measurement result, ŷi denotes 
the values of the model, and y′

i
 indicates the mean of manual 

measurement results.

Factors impacting the leaf counting models
We investigated the impact of some of the factors used to 
generate the simulated images on the leaf tip counting perfor-
mances. This was done using the selected best performing model 
with evaluation over 400 actual images taken from the testing 
sites in China (Table 1).

Realism of the simulated dataset
Soil background, leaf texture, and illumination conditions are 
the main factors determining the realism of the Sim dataset. 

Subsequently, they may impact the efficiency of the domain 
adaption strategy and the performance of the model trained 
using Sim2Real dataset. To quantify this impact, we conducted 
in silico experiments with D3P by considering several combi-
nations of these 3 factors: (a) leaf texture only, (b) illumination 
conditions only, (c) soil background only, (d) leaf texture and 
illumination conditions, (e) leaf texture and soil background, 
and (f) illumination conditions and soil background. When 
the factors are not considered, they are set to default values, 
i.e., set as the same standard soil background, the standard leaf 
texture, and the constant fully diffused illumination conditions. 
For each in silico experiments, 5,000 images were simulated to 
generate the Sim2Real dataset using CycleGAN along with the 
1,500 real images.

Spatial resolution
The impact of the spatial resolution was evaluated using the best 
performing model and the most realistic simulated images (var-
iation in soil background and illumination conditions while 
using realistic leaf texture). We simulated a set of wheat images 
with 0.1- to 2.0-mm spatial resolution by 0.1-mm steps. This was 
achieved by adjusting the height of the virtual camera (POV-Ray 
3.7). The complete processing including CycleGAN and detec-
tion model training was applied for each spatial resolution image.

Results

Domain adaptation techniques drastically improve 
the capacity to detect leaf tips
When trained over the simulated dataset without any domain 
adaptation, all the 4 detection models considered are perform-
ing very well when applied to actual other simulated images (see 
Table S1). This demonstrates the capacity of these convolutional 
neural network (CNN) to identify well the leaf tips. However, 
when they are applied to actual images, they are performing 
very poorly (Table 3). A slight improvement is observed when 
the models are trained over the actual images (Table 3). Although 
the training dataset used for the actual images was limited (400 
images as compared to 15,000 for the simulated dataset), the 
realism of the images appears to be a key feature when training 
for a relatively complex problem such as the leaf tip detection. 
The 4 detection models trained over the Real dataset perform 

Table 3. Performances of all the models for leaf tip detection and the counting. The colors indicate the goodness of the performances (dark 
green, the best; dark red, the poorest) for each metrics. All the models were evaluated over the Chinese dataset (400 images).

No domain adaptation Domain adaptation

Training dataset Sim Real Sim2Real

Detection model MAE RMSE R2 MAE RMSE R2 Model MAE RMSE R2

YV5 — — — 18 25.4 0.51 CG-YV5 16.4 23.8 0.68

FRCNN 25.7 34.8 −3.30 14.1 19.0 0.61 CG-FRCNN 6.0 8.7 0.94

TNV2+ 35.8 43.8 −0.90 16.0 22.3 0.58 CG-TNV2+ 14.9 20.3 0.74

P2P 47.4 59.8 −1.10 15.5 23.5 0.68 CG-P2P 7.2 9.8 0.90

DA-FRCNN 15.9 21.1 0.66

SFA 10.3 13.4 0.81

Table 2. Object detection models and domain adaptation tech-
niques used.

Detection 
model

Domain 
adapta-

tion

Model 
name

Training dataset
Refer-
enceSim + 

Real
Sim-
2Real

YoloV5 Cycle-
GAN

CG-YV5 √ [51]

FRCNN CG-
FRCNN

√ [52]

Tassel-
NetV2+

CG-
TNV2+

√ [20]

P2PNet CG-P2P √ [53]

FRCNN H-diver-
gence

DA-
FRCNN

√ [54]

DETR SFA SFA √ [26]
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similarly, with a small advantage for Point-to-Point Network 
(P2P) and Faster-Regions with Convolutional Neural Network 
Features (FRCNN). However, the best performances are observed 
when domain adaptation techniques are applied (Table 3), par-
ticularly for the latest stages when the leaf tip detection is more 
difficult.

We used t-SNE to visualize the features learned after training 
the FRCNN model with the 3 datasets. The features are mainly 
derived from the output of the Region Proposal Network (RPN). 
RPN is the main feature extraction network for FRCNN. 
Therefore, the features from RPN layer are representative. The 
features extracted over the Sim dataset only capture a small part 
of those extracted over the Real dataset (Fig. 3). Conversely, 
when CycleGAN is applied to the simulated images to generate 
the Sim2Real dataset, the features extracted are much closer. 
The disparity between the features extracted by the several mod-
els was quantified using the Euclidian distance, d. The dis-
tance is reduced for the domain adapted training dataset 
[d(Real, Sim2Real) = 7.9] as compared to the raw simulated 
dataset [d(Real, Sim) = 10.2], demonstrating the efficiency 
of the CycleGAN domain adaptation technique.

CG-FRCNN outperforms the other models
The CycleGAN (CG)-FRCNN model trained using the Sim2Real 
dataset performs the best (RMSE = 8.7, R2 = 0.94), providing 
very consistent accuracy from Haun stages 1 to 4 (Table 3 and 
Fig. 4). Conversely, domain adaptation (DA)-FRCNN performs 
the worst among the 6 models with domain adaptation. These 
2 models use the same FRCNN object detector but differ in the 
domain adaptation technique. This demonstrates that both the 
detection model and domain adaptation strategies are important 
for the success of the approach developed here. While all the 
models perform relatively accurately for the earliest stages (Fig. 
4), most of the differences are observed for the latest stages where 

the identification problem is more difficult because of partly 
overlapping leaves (Fig. 4, top). In this case, the domain adapta-
tion strategy remarkably improves the overall accuracy of leaf 
counting, due to its success in enriching the training dataset 
while keeping a high level of realism.

Impact of the realism on leaf tip detection and 
counting performances
The impact of 3 main factors used to render realistic images 
including light condition, leaf texture, and soil background was 
evaluated on the performances of leaf tip detection and count-
ing. This was achieved using the CG-FRCNN model that was 
previously demonstrated to be the most accurate one (Table 3 
and Fig. 4). Performances were evaluated over the 400 test 
images extracted from the China dataset (Table 1).

Results show that the light condition is the most important 
single factor to account for, while adding leaf texture is the less 
important one (Table 4). Most of the problems occur for the 
latest Haun stages with a clear underestimation of the leaf tip 
numbers (Fig. 5), i.e., leaf tips not detected by the model. The 
realism of the simulated images could be also well quantified 
using the Euclidian distance computed on the t-SNE feature 
plane (Table 4). CycleGAN adaptation domain technique 
appears more efficient when the simulated images have already 
a high degree of realism.

When considering the combination of 2 factors, leaf 
texture and soil background provide the lowest realism, 
confirming that light conditions is the most important sin-
gle factor. Light conditions interact with the shadows of 
the leaves that add a high degree of complexity in the 
images. Best realism is obtained by combining light con-
ditions and leaf texture (Table 4). However, the combina-
tion of the 3 factors together still improves the realism 

Fig. 3. Distribution of the features learned using a model trained over a given dataset using the t-SNE technique. On the left, the features extracted from the Sim and Real 
datasets are presented. On the right, the features extracted from the Sim2Real and Real datasets are presented.
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(Euclidian distance) and the overall performances (RMSE 
and R2), with no systematic underestimation of the leaf tip 
number.

Impact of the spatial resolution on the performances
We investigated here the role of the spatial resolution of the sim-
ulated images on leaf tip detection and counting performances. 
The CG-FRCNN model was used, with the best realism for 
image rendering. Results show that the estimation accuracy 
stays at its maximum up to a spatial resolution of 0.6 mm per 
pixel (Fig. 6, left). This corresponds roughly to the lowest res-
olution of the actual images of the test dataset (0.4 mm per 
pixel; see Table 1) and to the resolution required to clearly 
identify the leaf tips (Fig. 6, left). When the size of the pixels 
increases, the performances degrade quickly, with even no 
capacity to detect leaf tips for resolution larger than 1.7 mm 
per pixel, when it is even impossible to identify them visually 
(Fig. 6, right).

The model CG-FRCNN is robust across a large range 
of conditions
The robustness of the CG-FRCNN model was further evaluated 
using the 6 independent sites distributed across 4 countries 
(Table 1). Results show that the estimation of leaf tip counting 
was very accurate for all the sites and all the growth stages 
considered (Fig. 7B). Performances are very consistent with 
those reported for Chinese test dataset alone (Fig. 7A), with 
even slightly higher R2 and lower RMSE. The performance 
degrades marginally when the number of leaf tips is high, cor-
responding to around Haun stage 4. The CG-FRCNN model 
trained over the Sim2Real dataset therefore appears very robust 
across all the wide range of conditions represented by the 

Fig. 4. Performances of the models as a function of the development stage. When no domain adaptation is applied, the results displayed correspond to models trained with 
the real dataset.

Table 4. Performance of the leaf counting model trained de-
pending on the degree of realism of the simulations. Three 
single factors and their combinations were considered in the 
generating of the Sim2Real dataset, including leaf texture (LT), 
soil background (SB), and light condition (LC). d means the 
Euclidean distance. For each metrics, the colors indicate the 
goodness (dark green, the best; dark red, the poorest). In this 
experiment, we considered all stages. Thus, each factor con-
tains 4 stages of wheat images.

Factors RMSE R2 d(Real, Sim)
d(Real,  

Sim2Real)

LT 44.5 0.17 22.96 21.34

SB 31.2 0.43 20.12 18.78

LC 27.3 0.48 19.86 16.66

LT + SB 23 0.53 17.83 15.86

LC + SB 17.4 0.66 14.37 12.52

LC + LT 16.6 0.78 10.41 9.23

LC + LT + SB 8.7 0.94 10.23 7.94
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Fig. 5. Visualisation results of different domain adaption strategies and the performance of the mode trained using Sim2Real dataset.
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11 sites available. Note that the dataset used here is fully inde-
pendent from the test dataset used to compare the model per-
formance in Table 1. Moreover, the resolution of images used 
in this further evaluation is slightly higher than that in the 
preliminary test. This can explain the better counting accuracy 
(R2 = 0.97) than the preliminary test (R2 = 0.94).

Discussion

Novelty and efficiency of the proposed method
The capacity of characterizing crop traits under field conditions 
is highly desired by plant breeders who need to compare the 
performances of the genotypes under realistic environments 
[52,53]. We developed deep learning methods for detecting 

leaf tips of wheat from RGB images taken under field condi-
tions. In a related study, Vishal et al. [23] used YOLOv3 model 
to detect the leaf tips of rice under greenhouse conditions. 
Field conditions are generally more difficult as compared to 
greenhouse-controlled conditions since the illumination con-
ditions and the background may be very variable. However, 
our method proved to be efficient under a large range of 
field conditions.

While deep learning methods are considered as a break-
through for the interpretation of high-resolution images, their 
success heavily depends on the size and representativeness of 
the training dataset. Supervised learning often assumes that 
both the training and test data come from the same distribution 
[42,54]. It requires a representative and accurate training data-
set that often means a large quantity with a rich variation. 

Fig. 6. The impact of different spatial resolutions on the estimation accuracy (left). On the right, a simulated image with different spatial resolutions.

Fig. 7. Prediction accuracy of the leaf counting model. (A) The distribution of all the sites where the Chinese dataset was collected. For each site, the results of leaf counting were 
visualized with red points on the leaf tip; (B) the prediction accuracy of the leaf counting model, CG-FRCNN, over the worldwide (France, Japan, Australia, and United States) dataset.
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However, this is not always achievable with dataset collected 
from the field and labeled manually. First, under field condi-
tions, the variation of the canopy structure and the soil back-
ground (sometimes with weeds) aggregates the variation of 
image contents. This causes very large and diverse images 
required to be representative. Second, the labeling task espe-
cially for small objects is very time-demanding. Last, the man-
ual labeling of images may be also prone to errors. Fortunately, 
some recent platforms such as D3P simulate very realistic RGB 
images while providing automatic labeling of the desired traits 
[44]. The resulting generation of simulated RGB images and 
the associated automatic leaf tip labels allowed building a 
much larger and more diverse training dataset. Unfortunately, 
the detection and counting performances were still very poor 
because of the significant domain shift that separates the sim-
ulated RGB images from the actual ones as we visualized by 
the t-SNE method.

Deep domain adaptation has emerged as a new learning 
paradigm to address the challenges above. We used simulated 
and real images to train domain adaption techniques. Among 
the several techniques, CycleGAN appears very efficient and 
allows us to get a much better match between the source 
(actual images) and the adapted simulated images (called 
Sim2Real here) as shown with the t-SNE method. Among the 
6 deep learning models and adaptation techniques considered, 
the combination of CycleGAN and FRCNN provided the best 
performances for leaf tip detection and counting with R2 > 
0.88 as observed across 4 Haun stages and a wide range of 
conditions.

The resulting proposed method appears very attractive since 
it eliminates the tedious, expensive, and sometimes inaccurate 
labeling task by simulating images for which the labels are auto-
matically generated, while the realism of the images was 
improved using domain adaptation techniques. Such a combi-
nation of models to simulate images and domain adaptation 
techniques to improve their realism appears to be an innovative 
approach that has not yet been reported in the plant phenotyp-
ing community. It could be applied to a large number of other 
phenotyping problems.

Limitations of the approach
The leaf counting is based on the area covered by each individual 
image. The proposed method should thus include the knowl-
edge of the corresponding ground spatial resolution to get the 
leaf density, i.e., number of leaves per unit area. Although 
domain adaptation techniques allow improving the realism of 
the simulated images, it is necessary to provide images that are 
already sufficiently realistic enough as a basis. The ablation study 
that we conducted shows that the realism of the background, 
leaf texture, and illumination conditions impacts the perfor-
mances of the detection model. Further, we demonstrated that 
the spatial resolution impacts the performance of the leaf tip 
detection, requiring the resolutions better than 0.6 mm per 
pixel.

The accuracy of the method tends to degrade as the Haun stage 
progresses. Even so, up to Haun stage 4 when tillering is just start-
ing, the counting performances are still good. This is explained 
by the increased difficulty of finding tips in a more complex envi-
ronment and by the fact that some tips may be masked by over-
lapping leaves. For later stages (after Haun stage 4) with a higher 
density of leaf tips, regression techniques may be more efficient 

than detection ones as demonstrated by Velumani [55] in the case 
of wheat head counting.

Importance of the approach without human 
annotations
With the development of deep learning, great strides have been 
made in the accuracy of plant phenotype resolution. However, 
trained models often have poor generalization capabilities when 
used in completely novel scenarios. For this reason, large-scale 
commercial plant phenotyping is difficult. We found that the 
reason for this is the lack of large-scale training sets of real data 
with annotations. However, annotating large-scale real data is 
often time-consuming and laborious. Therefore, in recent years, 
the field of computer science has started to focus on training 
with large synthetic datasets to achieve generalizable model 
building [56].

We propose a more practical application of the plant phe-
notype resolution task, i.e., how to train models that generalize 
to unknown scenarios C using a large-scale labeled synthetic 
dataset A and an unlabeled real dataset B. This task no longer 
relies on manual annotation of real data and can therefore be 
extended to larger and more diverse real data, thus improving 
the generalization ability of the model. The method is claimed 
to be “self-supervised” since no manual labeling is necessary 
for the training process. It can learn well from labeled virtual 
data and unlabeled real data. Experiments show that this method, 
which does not require any manual annotation, is comparable 
to methods that require manual annotation in terms of gener-
alization ability. It is a more promising and cost-effective solu-
tion among approaches to achieving plant phenotype resolution.

Interests for physiological and genetic research
The growth potential of wheat seedlings, partly associated with 
the early vigor, reflects the gene–environment interactions 
[57,58]. The early vigor is characterized by a large leaf devel-
opment at a given (early) stage. While the leaf area index may 
be accurately estimated using indirect methods [59], it can be 
decomposed into the number of leaves per unit area and the 
average leaf area. This decomposition may provide a better 
handle for the breeders to associate genes with these more 
detailed traits. Another trait that may be derived from the leaf 
tip counting is the phyllochron, defined as the time interval 
between the appearances of 2 consecutive leaves. The moni-
toring of the leaf tip number using fixed high-resolution RGB 
cameras or near-daily observations using any vehicle will allow 
estimating this trait and better understand its variation with 
the environment and the genome. This will be the objective of 
the next study.
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