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RESEARCH ARTICLE
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Head (panicle) density is a major component in understanding crop yield, especially in crops that produce 
variable numbers of tillers such as sorghum and wheat. Use of panicle density both in plant breeding and 
in the agronomy scouting of commercial crops typically relies on manual counts observation, which is 
an inefficient and tedious process. Because of the easy availability of red–green–blue images, machine 
learning approaches have been applied to replacing manual counting. However, much of this research 
focuses on detection per se in limited testing conditions and does not provide a general protocol to utilize 
deep-learning-based counting. In this paper, we provide a comprehensive pipeline from data collection to 
model deployment in deep-learning-assisted panicle yield estimation for sorghum. This pipeline provides 
a basis from data collection and model training, to model validation and model deployment in commercial 
fields. Accurate model training is the foundation of the pipeline. However, in natural environments, the 
deployment dataset is frequently different from the training data (domain shift) causing the model to 
fail, so a robust model is essential to build a reliable solution. Although we demonstrate our pipeline in 
a sorghum field, the pipeline can be generalized to other grain species. Our pipeline provides a high-
resolution head density map that can be utilized for diagnosis of agronomic variability within a field, in a 
pipeline built without commercial software.

Introduction

Plant phenotyping is the foundation of breeding selection 
process for grain crops and has historically been comprised 
of a combination of observations by skilled, trained breeders 
(estimates of crop phenology, disease/pest resistance, visual 
scores, and counts of heads per planted row) and machine-
guided measurements (yield [using a plot harvester], grain 
size [auto counting and weighing of samples], and grain qual-
ity measures with near infrared instruments; for example, [1]). 
While these standard measures easily capture the yield and 
grain number per unit area and grain size, they miss the head 
number per unit area, which is a function of plant sowing 
density and tillering of plants during growth. Since about 
2000, plant phenotyping has started to be augmented using 
cameras on various ground or aerial vehicles to capture image-
based observations of the number of plants in field plots [2], 
the numbers of grains in panicles [3], and various structural 
aspects of crops and crop canopies [4–6]. Early detection of 
head density could replace or augment breeding programs 

where it is sometimes impractical or inefficient to harvest 
thousands of plots when the breeder only intends to progress 
with a small proportion of those plots and may not need 
the seed at all in the case of a hybrid breeding program. 
Technologies that allow the estimation of head density also 
have a practical application in the practice of field scouting 
to estimate yield during the weeks before the crop matures. 
Typically, agronomists will make several estimates of head 
number per unit area (or row) and then, after gauging the size 
or grain number per head, will multiply these numbers to 
approximate yield. Hence, accurate estimation of head density 
using high-throughput image collection becomes of practical 
use to both plant breeders and field agronomists.

There have been multiple attempts to augment grain yield 
estimation with machine learning (ML) methods, among which 
counting/detection methods are predominant in measuring 
components of Grain yield per unit area = average grain mass * 
average grain number per head * head number per unit area. 
These methods can be roughly categorized into regression 
[7–9], detection [10–12], and segmentation models [13], among 
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which detection models are the most applicable because the 
bounding-box ground truth is easier to achieve than boundary 
for segmentation, while providing extra size information that 
dot-label-based regression fails to provide. Depending on if 
there is a region of interest proposal step, deep-learning-based 
detectors can be categorized into 1-stage detectors. Depending 
on whether there is a region of interest proposal step, deep-
learning-based detectors can be categorized into 1-stage detec-
tors [11,14] and 2-stage detectors [12,15]. Generally, 1-stage 
detectors are believed to be more lightweight and efficient than 
2-stage ones, although the latter is considered more accurate. 
A recent important milestone in real-time 1-stage detectors is 
You Only Look Once (Yolo) [14], which later was optimized 
and evolved into several versions, v2 [16], v3 [17], and v4 [18]. 
All these implementations were based on Darknet [19]. Later, 
another PyTorch implementation was proposed in [10]. Two-
stage detectors have had a longer history. Starting from region-
based convolutional neural network (R-CNN) [20], which was 
proposed to address the problem of selecting the most repre-
sentative regions by selective search, Fast R-CNN [21] replaces 
the searching-based region proposals with a convolutional net-
work and then the region proposals are input to a region of 
interest polling layer to output a fixed size. Faster R-CNN [12] 
further improves the first-stage frame by using region proposal 
network, and it became the baseline of later improvements, such 
as region-based fully convolutional network [22] and mask 
R-CNN [15].

ML methods have been applied to various grain species. The 
availability of Global Wheat Head Detection dataset [23,24], 
composed of 4,700 box-annotated red–green–blue (RGB) 
images of wheat field images collected over various different 
locations. The Global Wheat Head Detection attracted the atten-
tion of many ML researchers and practitioners in 2 competitions 
[25,26]. Most methods use existing detection models, such as 
the Yolo series, Faster R-CNN, and EfficientDet, while Khaki 
et al. [26] modified Mobilenet [27] detection model to provide 
a lightweight network. Fourati et al. [25] proposes a Faster 
R-CNN-based [12] and EfficientDet-based [11] pipeline, which 
adds a few engineering tricks for the competitions, such as data 
cleaning, model ensemble, and adding pseudo-labeling to test 
data. A detailed explanation of engineering tuning methods 
were discussed by Wu et al. in 2020 [28]. In order to improve 

the detection performance in different domains, domain adap-
tation solutions [29,30] have been proposed. Ayalew et al. [29] 
modified domain-adversarial neural network [31] by combining 
U-Net [13] with gradient reversal layer [32]. James et al. [30] 
applied a style transfer method, contrastive unpaired translation 
[33], on source domain data to make it the same style as the 
target domain. After using a label cleaning pipeline, the detec-
tion model was retrained for adapting to the new target domain. 
In maize tassel counting, both regression- and detection- 
based models have been applied, where together with various 
bounding-box-label-based detection models. Lu et al. propose 
TasselNet [8] and TasselNetV2 [9], which applied CNN-based 
regression models to dot-annotated images to count maize 
tassels; additionally, they released the Maize Tassels Counting 
dataset, which is composed of 361 dot-annotated maize field 
images. A detailed comparison between bounding-box-based 
detection and dot-based regression was discussed in [34].

Sorghum is another grain species that attracts ML methods 
for aerial RGB images, similar to the previous 2 grain types 
(wheat and maize). Guo et al. [35] propose a framework to 
detect sorghum heads, which uses a decision tree-based image 
segmentation model to binarize the image into sorghum head 
and nonhead regions, followed by a quadratic support vector 
machine to classify the regions into heads and nonheads on the 
basis of geometric features of the segmented regions; the model 
was evaluated with an F1 score of 0.92 and 0.89 on 2 separate 
test sets, and the authors made the dataset publicly available 
which is composed of 1,440 annotated images of sorghum plots. 
Sarkar et al. [36] successfully trained a RetinaNet [37] model 
to detect sorghum heads, and the model was evaluated on the 
dataset collected by Guo et al. [35] with a mean average preci-
sion (mAP) of 0.914 at 0.5 IOU (intersection over union). Since 
sorghum has a relatively simpler head structure when compared 
with other grain crops such as wheat and maize (a single large 
head), it requires comparatively less effort to manually label the 
boundary of the head in images. Therefore, semantic segmen-
tation methods have also been applied for detecting and 

A B

Fig. 1. Illustration of 2 image acquisition types. (A) Ground-level acquisition. (B) UAV 
acquisition.

Fig.  2.  Example comparisons of UAV and ground-level images obtained from the 
same plot.
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counting sorghum heads. Lin et al. [38] applied a U-Net [13] 
model for segmentation of sorghum head regions, followed by 
contour detection for separating instances of sorghum heads; 
the model achieved a mean absolute percent error of 0.15 on 
the test set. Similarly, Malambo et al. [39] trained a 3-class 
(head, vegetation, and soil) SegNet [40] model to segment RGB 
images and applied a combination of watershed and connected 
component detection to separate individual instances; the 
model achieved 0.94 accuracy for head counting on the test set. 
Segmentation-based models achieved the best accuracy when 
compared to regression and detection methods due to the extra 
dimension that boundary labeling provides. Although sorghum 
head boundaries are comparatively easier to label, it is still 
expensive and time-consuming to manually label pixel-level 
boundaries. To avoid this, Ubbens et al. [41] propose a crop 
agnostic unsupervised segmentation model for crop organs; 
the model uses a CNN to recursively label the superpixel seg-
mentation results from simple linear iterative clustering [42] 
algorithm, and the algorithm achieves an r2 value of 0.79 for 
counting sorghum heads on the [35] dataset. Besides sorghum, 
rice is another important grain species. Because of the irregular 
shape of the rice grains, most rice yield estimation methods 
were either based on time-series vegetation index [43] or fur-
ther explored vegetation index feature points [44]. There are 
few articles at present working on direct rice grain detection, 
which were based on segmentation and clustering methods 
[45,46].

Although these methods provide various models designed 
for crop panicle detection, which can be used in assisting grain 
yield estimation. There is no proposal for a standard pipeline 
that discusses an end-to-end solution, which outlines the pro-
cedure starting from data collection and preparation, to model 
inference and yield specific statistics calculation. In this work, 
we propose a standardized pipeline to assist deep-learning-
based yield and head density estimation for sorghum from RGB 

images collected via unmanned aerial vehicle (UAV). Our pipe-
line discusses data collection, data labeling, model training, 
augmentation techniques, model evaluation, and finally model 
testing on new field images, and deriving grain yield-related 
statistics from model inference. We present results from 2 
experiments in this work. In the first experiment, we discuss a 
scenario where a pretrained model trained from a publicly 
available dataset does not work well for the target domain and 
provide a guideline for new training data preparation and 
model evaluation. In the second experiment, we consider a 
scenario where pretrained models work well for the new target 
domain, and we demonstrate how to derive head density esti-
mation from the detection results.

The rest of the paper is organized as follows. Materials 
and Methods introduces the field description, data collection, 
data preprocessing, data preparation, and the deep learning 
pipeline. Results of the model evaluation and deployment are 
described in Results and are discussed and summarized in 
Discussion.

Materials and Methods
We aim to provide an end-to-end pipeline for applying a robust 
detection model on the field images to detect sorghum panicles, 
so as to estimate the head density across field accurately. To 
achieve this goal, we could either use publicly available training 
data or prepare a new dataset from scratch to train a model. In 
the first experiment, we discuss new dataset preparation. Where 
RGB images will be collected, preprocessed, and labeled, fol-
lowed by training and validating the new model. Ground-level 
images are recommended for training the model because of its 
high adaptability. In the second experiment, we discuss when 
a suitable dataset is available and how it will be used in an ML 
pipeline to run inference on target field images and calculate 
head density-related statistics to assist yield estimation.

A B 
Fig. 3. Illustration of sorghum ground images and coarse labels. (A) Illustration of sorghum ground imagery. (B) Coarse sorghum head labels by initial model.
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Fig. 4. Illustration of the training set for initial model.

Fig. 5. Illustration of the training and test set for different scale images.
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Experiment 1: Image acquisition and training  
data preparation
Preparing training data is not a necessary step if suitable public 
datasets are available. In this experiment, we consider a sce-
nario where training data needs to collected for a target field, 
and we propose a guideline for data acquisition, model training, 
and evaluation.

Image acquisition - Training data
There are generally 2 types of RGB image datasets depending 
on the imaging devices, i.e., ground images and UAV images, 
as shown in Fig. 1A and B respectively. UAV images are nor-
mally captured on higher view (10 to 25 m) than ground images 
(1.5 to 3 m), thereby having a higher coverage rate and are less 
time-consuming. However, there is difference between object 
scales and resolution between 2 imagery types. As shown in 
Fig. 2, if the grain heads are rescaled into similar scale, UAV 
images (right-hand side) are blurry compared to ground-level 

images (left-hand side), where the axes show the original res-
olution pixels. Analysis of the different impact on detection 
model for maize was compared in [47]. Similarly, we expect 
that, for other crop types, due to the loss of texture features, 
training on high-view blurry UAV images would not achieve 
as good performance as ground-level images.

Therefore, we provide an example of ground-level image 
collection for a sorghum field, and it can be generalized to any 
crop type. We collected ground level from a breeding trial in 
December 2021, the crops were in early-mid flowering stage 
during image acquisition, and the trial was located at the Gatton 
campus of the University of Queensland (UQ), Australia. The 
images were collected using an OpenCV OAK-1 camera at 
ground level. The camera has a 12-MP sensor, and the images were 
captured at a square 2,160-pixel resolution (4K). The camera was 
attached to a 1.5-m pole and held on top of the sorghum cano-
pies to capture approximately nadir view images. Additionally, 
while collecting the images, we placed a reference object in the 
frame of view. The reference object was used to estimate ground 
sample distance for the captured images. We used a black card-
board rectangle with a width of 30 cm and a height of 15 cm. 
Figure 3A shows captured images from sorghum canopies. The 
pixel count for the size of the reference objects in the images 
(width of the rectangle) was used to calculate the ground sam-
pling distance (GSD) of the images. The sorghum plants were 
in the early stages of their development; hence, the color of the 
heads were green. A total of 165 images of sorghum canopies 
were collected.

Initial model
The initial model was trained on an open-source sorghum data-
set collected by Guo et al. [35] (the dataset is described further 
in experiment 2, “Detection model training with data augmen-
tation” section). Before training the initial model, the original 
images in the dataset were cropped into square patches along 
the length of the plot, using the resolution of the width of the 
plots. After cropping the images, the size of the dataset was 
3,717 images, and there were on average 28 heads per image. 
These cropped images were used to train a “S” (small) version 
YoloV5 model [10] (https://github.com/ultralytics/yolov5), 
with the default yolov5 augmentation pipeline; this would be 
the initial model. A total of 3,567 images were used as training 

Fig. 6. Examples of challenging heads to label in UAV test set.

Table  2. Experiment 2: Train and Test set image acquisition  
details

Dataset Camera Sensor
Raw 

resolu-
tion

Alti-
tude

GSD

Train/
Valid

Sony 
DSC-

RX100M3

20.1 
MP,13.2 
× 8.8 
mm

5,472 × 
3,648

20 M
0.45 

cm/px

Infer-
ence

DJI 
Phantom 

4 Pro

20 
MP,24 

mm

5,472 × 
3,648

22 M
0.60 

cm/px

Table 1. Experiment 1: Train and Inference set image acquisition 
details

Dataset Camera Sensor
Raw 

Resolu-
tion

Alti-
tude

GSD

Train/
Valid

OpenCV 
OAK-1

12 
MP,11.04 

mm

4,032 × 
3,040

1.5 m 
(ap-

prox)

0.028–
34 cm/

px

Test
DJI 

Matrice 
300

45 MP, 
35.9 × 
34 mm

8,192 × 
5,460

20 m
0.25 

cm/px
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set and 150 images were used as the validation set. The input 
resolution for the model was 360 by 360 pixels. The weights 
for the model were initialized using pretrained MS COCO 
(Microsoft Common Objects in Context Dataset) [48] weights, 
and the model was trained for 500 epochs. Figure 4 shows the 
training set for the initial model. The initial model weights were 
used to initialize the weights for training the baseline model.

Additionally, another model was trained, the “X” version of 
YoloV5 using the same dataset, which was used to automatically 
label the newly collected high-resolution dataset described in 
the previous section. The next section discusses image preproc-
essing and annotation steps.

Image preprocessing and labeling - Training data
In order to reduce the labeling effort, the images can be partially 
annotated using pretrained models. If there is no such pre-
trained model, this step is skipped and all heads need to be 
manually labeled. In this example, we used the initial model 
described in the previous section to prelabel the collected 
ground images. Figure 3B shows the pretrained model predic-
tions for the newly acquired sorghum imagery.

From Fig. 3B, we can see that the sorghum model over-
estimates the number of heads present in the image. The sor-
ghum model mistakes patches of ground as heads. This is due 
to the domain shift between the data collected in the field and 
the dataset used for training the initial model. The initial model 
was trained on images collected for mid-late flowering stage 
sorghum canopies via a UAV, while the new data was collected 
for early flowering stage sorghum canopies via a ground cam-
era. The labels and the images were imported to VGG Image 
annotator, which is an open-source image annotation tool, and 
the labels were manually corrected by removing false labels and 
adding missing ones.

Finally, to obtain a consistent dataset, all images need to be 
regularized to a similar standard. One of the most important 
characteristics is object scale, i.e., the size of grain heads 
in pixels. All images need to be rescaled on the basis of their 
different GSDs, to keep grain heads in a consistent scale. 
Therefore, all the images were rescaled to match the GSD 
(0.25 cm per pixel) of the UAV test set (described in the “Initial 
model” section). Additionally, in order to reduce the edging 
distortion that is caused by the camera, all images were center 
cropped by removing 10% edges.

Figure 7 provides an overview of data preparation, model 
training, and evaluation.

Image acquisition - Testing data
The test set (UAV images) is composed of sorghum plot photos 
extracted from the raw imagery captured by the DJI Matrice 300 
drone. The drone was flown at 20-m height, and the GSD for the 
raw imagery was 0.25 cm per pixel. The plots were extracted 
from the raw imagery and then cropped into 360 by 360 pixel 
patches. The test set was composed of 97 plot patches that were 
manually labeled. Figure 5 shows the test set and train set image 
resolutions. It is worth noting that there is a considerable decrease 
in the spatial resolution of images when moving from ground 
to UAV images. As a result, physical presence of some heads in 
the images needed to be verified in the field, especially for the 
smaller heads, as shown in Fig. 6. Table 1 provides the raw image 
acquisition details for the experiment.

Experiment 2: Deep learning pipeline demonstration
Here, we propose a standardized deep-learning-based pipeline 
for sorghum head detection, to assist grain yield estimation. In 
this experiment, we consider a different scenario for another 
field, where a publicly available dataset is suitable for the target 

Fig. 7. Overview of the source data preparation and model training/evaluation.
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domain. We provide an example of training a model on an 
existing dataset, followed by running inference on new images 
and calculating relevant statistics.

An overview of the pipeline
The deep-learning pipeline is as illustrated in Fig. 8, to train a 
model and test on any new coming fields. In order to maximize 
the model performance and robustness, augmentation methods 
would be applied before training (offline augmentation) or 
during training (online augmentation). The common augmen-
tation methods were reviewed in [49]. After data augmenta-
tion for the training sets, we train either a regression model 
(CSRnet [7], TasselNet [8]), or a detection model (YoloV5 [10], 
EfficientDet [11], and Faster R-CNN [12]) for head counting. 
However, even with augmentations, the model performance 
often deteriorates when working in another dataset (domain) 

because of domain shifts between 2 datasets. Hence, domain 
adaptation methods could be applied in specific cases (espe-
cially when the target domain is significantly different from the 
available dataset in terms of image acquisition) to solve this 
problem [29,30]. Finally, the output is deployed in new field 
images, and count estimation statics are calculated.

Experiment materials
Training data: The UQ dataset was collected by the UQ at the 
QDAF Hermitage Research Station near Warwick, Queensland, 
Australia (28.21°S, 152.10°E) and was all manually labeled and 
cross validated by the University of Tokyo [35]. Most of the 
sorghum plants in the field were in the heading stage at the 
time of capture. The raw images were collected via a drone 
flying at 20-m altitude, with a commercial RGB camera with a 
native resolution of 5,472 × 3,648 pixels, which resulted in an 

Fig. 8. Pipeline of ML-based grain heads detection.

Fig. 9. Overview of the study area. (Left) Long-term median yield (2000 to 2020) estimated at shire level for the Australian sorghum production area extending over more than 
1,000 km from lower yielding areas in Central Queensland (approximately 23.5°S, shorter-season and lower-water-capacity soils) to higher yielding areas on longer-season, 
deeper-soil areas in northern New South Wales (NSW) (32.2°S), red marker-approximate trial location [54,55]. (Right) RGB ortho-mosaic imagery of site. QLD, Queensland.
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average GSD of 0.45 cm per pixel. The raw images were stitched 
to construct an orthomosiac image of the field. The dataset is 
composed of images of pairs of plots extracted from the ortho-
mosaic image, so the final resolution of the plot photos in the 
dataset is variable because of the plot extraction algorithm. The 
height of the images approximately ranges between 1,100 and 
1,600 pixels and the width of the images ranges between 300 
and 500 pixels. There are 1,161 images in total, among which 
1,000 images are used for training, while the rest are used for 
validation.

Testing dataset: The test dataset was collected from an exper-
imental trial located on an experimental farm at Jondaryan, 
Australia (27.45°S, 151.53°E), during the late flowering stage 
in February 2021, as shown in Fig. 9. Sorghum was sown at 
a planting density of 80 k/ha with a row spacing of 75 cm. The 
images were captured with DJI Phantom 4 Pro flown at an 
altitude of 22 m, at a native resolution of 5,472 x 3,648 pixels, 
resulting in an average GSD of 0.60 cm per pixel. Table 2 pro-
vides the image acquisition details for training and testing data.

Detection model training with data augmentation
For robust detection performance, the data is normally aug-
mented before training. Here, we recommend using the same 
augmentation pipeline with YoloV5 [10], so as to imitate real 
situations in fields. The augmentation pipeline includes mosaic 
augmentation (imitating various light conditions or cloud 
occluding sunlight), cutout augmentation (imitating empty 
growing patches and reducing head density per image), rotating 
(imitating tilted grain row captures), scaling (different capturing 
heights and different head sizes), and color augmentation (dif-
ferent lighting conditions and growing stages). After confirming 
the augmentation pipeline, we can choose either online aug-
mentation or offline augmentation by applying individual or a 
combination of different augmentation methods to a portion of 

the training images. Here, we applied online augmentation with 
the following configuration: every image in a batch will be aug-
mented with a probability of 0.66. Every image selected for aug-
mentation will be first augmented with 1 randomly chosen 
augmentation out of the aforementioned methods, followed by 
being augmented by the remaining augmentation methods with 
an independent probability of 0.2. This configuration allows the 
model to be trained with a combination of original images, 
images augmented with multiple combinations.

As discussed earlier, all dot-regression, object detection, and 
pixel-level semantic segmentation methods can be used in this 
case. Here, we consider 2 object detection methods, YoloV5 
and Faster R-CNN. If the number of the training dataset is 
small or it is required to train the model quickly, YoloV5 is 
preferred. On the other hand, if there is sufficient training data 
and inference time for the model is not a constraint (for exam-
ple, deploying the model in the field for real time counting), 
Faster R-CNN can be considered.

Domain adaptation (optional): If the new domain is 
extremely different from the training set, e.g., datasets of 2 dif-
ferent genotypes, the pretrained model may not perform well 
even after simple image processing techniques. Therefore, 
domain adaptation can be applied to improve detection perform
ance, so as to facilitate later procedures. This extra domain 
adaptation method is unsupervised, i.e., no extra labeling is 
required. Given training dataset as source domain and new field 
as target domain, source domain data are first transformed into 
target style with contrastive unpaired translation generative 
adversarial network [33] that is trained on unlabeled data from 
both domains, and then the original labels are corrected before 
being used for training a new detection model that adapts to 
target domain. In data-label-correction stage, manual cleaning 
is not necessary, but with a small amount of manual cleaning, 
the detection performance will be further improved. More 

Fig. 10. Deployment pipeline.
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details can be found in [30], and it demonstrates a boost of both 
detection accuracy and robustness with domain adaptation. 
Because of the similarity between the training dataset and new 
field data in this experiment, domain adaptation is not neces-
sary in this case.

Model inference
Here, we provide an example of deploying the pretrained 
model that is trained on an available sorghum dataset (transfer 
learning), i.e., UQ dataset [35], on a new sorghum field. The 
deployment pipeline is shown in Fig. 10. After collecting UAV 
images in a new field, 10% edges of all images are removed 
before testing on the pretrained Faster R-CNN. The detection 

results are used as row detection input. The row detection 
method that we use here is RANdom SAmple Consensus 
(RANSAC). Row direction is a key indicator of accurate row 
detection, especially for scattered images. Therefore, running 
RANSAC on the densest part per image is performed before 
on the entire image to locate the dominant direction. Then, 
all detected rows are compared with the dominant direction, 
and the image is corrected to be horizontal, to construct the 
quasi-mosaic field image. Finally, statistics, including image-
wise and field-wise row/area density, are calculated on the 
basis of on each image or entire field.

Grain head detection: Grain head detection is the most 
important step, as it highly influences later procedures. Besides 
an accurate detection model, it is also important to make test 
domain images to be similar to the training domain images. 
Firstly, to remove potential edge distortions, images of new 
fields are center cropped with removing 10% edges. Then, the 
image is rescaled to have similar GSD with the training dataset, 
so that it has similar head density per image, thereby maximiz-
ing the detector performance. If the image attributes of training 
set are different from the test set, i.e., for testing images have 
higher resolution than training images, Gaussian blurring can 
be applied to the test set [47].

Planting row detection: After achieving all head detection, 
we use RANSAC [50] on detection results for locating rows. 
RANSAC randomly select n points out of data points to try to 
find a model that could accommodate most points, where all 
points that fit the model within the threshold t are called inliers. 
In case that the number of data point are too large and we aim 
to avoid iterating all data points, it is often set a maximum num-
ber k of iterations that is allowed in the algorithm and a number 
d of close data points that are required to assert that a model 
fits well to data. In our work, we use the center point of each 
head detection bounding box as the data point and iteratively 
use the generic RANSAC algorithm for each row until it finds 
all row models that fit all data points. Row models are a series 
of lines, and each line i is represented by:

where ai is the slope and bi is the line intersection with the left 
edge of the image. The pseudo-code is described in Algorithm 1.

(1)yi = ai ⋅ xi + bi

A B

Fig. 11. Missed heads and wrong detections by model. Top: Zoomed view of missed 
head. Middle: Original image with detection boxes, wrong detection (magenta patch), 
missed detection (orange patch). Bottom: Zoomed-in wrong detection.

Table 3. Head count performance of various models (104 aver-
age heads per image)

Category Model MAE RMSE
# of million 

params

Regression 
model

CSRnet 2.74 3.23 16

1-stage 
detector

YoloV5-L 2.95 3.50 47

2-stage 
detector

Faster 
R-CNN-

ResNet 101

2.87 3.64 60

MAE, mean absolute error; RMSE, root mean square error
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Quasi-mosaic image construction: “Quasi-mosaic” is the 
term used in this paper to refer to a composite image of the 
entire field, constructed by roughly stitching the raw UAV 
images together. For UAV images, 2 consecutive images nor-
mally overlap, and the percentage of overlaps greatly depend 
on the UAV flying speed. In order to better visualize the entire 
field and demonstrate the statistics across the entire field, 
the quasi-mosaic image is constructed by combining all field 
images and removing the overlaps. This method is much faster 
and less intensive compared to applying methods based on 
feature-matching algorithms to stitch images together.

Firstly, a grid of size mx × my, where mx and my are smaller 
than the image coverage respectively, is built for the entire field. 
Given that the Global Positioning System (GPS) location of 
each grid center (i,j) is L(i,j), the location of each grid is within 
L(i,j) ± mx/2 from west to east and L(i,j) ± my/2 from north to 
south. Therefore, the image that is closest to the grid center is 
selected to fill in the grid location and construct the quasi-
mosaic field image. All the images are reoriented, by rotating 
them along the planting row direction (calculated in the pre-
vious step). Provided that the GPS location of each image selec-
tion Li,j and GSD G, field coverage of each image is known, the 
rotated images are cropped and plugged into their respective 
grid locations. Alternatively, if a more visually accurate and 
consistent representation of the field is required, mature structure-
from-motion-based photogrammetry software like Pix4D or 
Agisoft may be considered.

Statistics calculation: After the previous procedures, sta-
tistics for each image and for the entire field can be calculated 
to better explain the sorghum yield estimation. For each image, 
headcounts Cr along the row and headcounts across the image 
Ci are calculated for understanding the head density, while gaps 
that are greater than 50 cm counted across the images to 
account for significant gaps. Provided that all planting rows are 
horizontal in the image, and GSD G of image of size W × H is 
known.

and head density across image

For the entire field, we can visualize the panicle density by 
showing the moving average / moving sum of the head count 
per meter/square meter.

Algorithm 1 RowDetection

1: function RowDetection(data, model, n, k, t, d) 
2:	 allBestFits = [] 
3:	 while point numbers of data > n do
4:	      iterations = 0 
5:	      bestF it = Null
6:	      bestErr = 9999999 
7:	      while iterations < K do
8:	          maybeInliers := n randomly selected values from data 
9:	          maybeModel := model parameters fitted to maybeInliers
10:	          alsoInliers := Ø 
11:	          for every point ∈ data & ∈/ maybeInliers do
12:	             if point fits maybeModel with an error < t then
13:	                 add point to alsoInliers
14:	          if the number of elements in alsoInliers > d then
15:	             betterModel := model parameters fitted to all 
points in maybeInliers                    & alsoInliers
16:	             thisErr := a measure of how well betterModel 
fits these points 
17:	             if thisErr < bestErr then
18:	                 bestF it := betterModel
19:                              bestErr := thisErr iterations+ = 1 
20:	      append bestF it to allBestFits
21:	      remove all points ∈ (maybeInliers & alsoInliers) in 
data 
22:	      iterations = 0
23:	      bestF it = Null
24: 	      bestErr = 9999999 
25:	 return allBestFits

(2)
Dr =

Cr

W ⋅ G
,

(3)Di =
Ci

W ⋅H ⋅ G2
.

A B C

Fig. 12. Detection model performance. Left: Precision-recall curve for detection model on validation set. Middle: Precision-recall curve for detection model on test set. Right: 
Precision-recall curve for detection model (retrained with increased scale augmentation) on test set.
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Results

Experiment 1: Model training and evaluation for new 
dataset
In this section, we train the model on the ground imagery that 
we collected and evaluate the model performance on UAV 
images. At the site, 164 ground images were collected to create 
the training set for the baseline model. Of these, 154 images 
were used for training, and 10 validation images were selected 
to sample the diversity of head size, color, and structure and 
were manually labeled (i.e., edited after partial automatic label
ing) as described in the materials and methods section “Image 
preprocessing and labeling - Training data”. We rescaled the 
images in the new training dataset (ground images) to match 
the resolution of the test set. The test set (UAV images) is com-
posed of sorghum plot photos extracted from the raw imagery 
captured by the DJI Matrice 300 drone, with a GSD of 0.25 cm 
per pixel. A total of 97 plot patches were extracted and manually 
labeled, as described in the materials and methods section 
“Image acquisition - Testing data”.

Figure 12A shows the performance on the validation set 
(ground images), and Fig. 12B shows the performance of the 
model on the test set (UAV images). The mAP for model detec-
tions falls from 0.958 to 0.851 when going from ground to UAV 
images. Upon manual inspection of the results, it was found 
that for UAV images the model missed small heads that were 
in the very early stages of development; furthermore, in some 
instances, the model also wrongly detected the midrib of the 
leaves and patches of soil as heads. These issues may be primar-
ily attributed to the altitude of the drone during image capture. 
The spatial resolution of the drone images is lacking detail for 
the model to accurately detect and classify very small heads in 
some instances; even during the manual labeling of these 

images, it was challenging to ensure the veracity of labels as 
discussed in the “Initial model” section.

To attempt to remedy the scale issue, the model was trained 
with a stronger image scale augmentation configuration of 
−50% to +50% image rescaling, as opposed to the initial con-
figuration of −10% to +10% image rescaling. This led to a slight 
increase in model performance, the mAP increased from 0.851 
to 0.871, as shown in Fig. 12C. However, the model still con-
tinued to struggle with missing and wrongly detecting small 
heads. The examples demonstrated in Fig. 11 shows the heads 
missed and wrongly detected by the model.

Experiment 2: Deep learning pipeline - Inference  
and statistics
Various models are trained and tested on the available sorghum 
dataset [35], as shown in Table 3. As there are only bound-
ing-box labels for the UQ dataset, the segmentation model is 
not included in the comparison and 1 representative model 
of each category is compared, i.e., regression models: CSRnet, 
1-stage detectors: YoloV5, and 2-stage detections: Faster 
R-CNN. According to the performance on the validation set, 
Faster R-CNN is selected to test on the new sorghum field data-
set. It is observed that regression models have better accuracy 
than detectors. The error histograms of models are shown in 
Fig. 13. Both detection models are prone to under detect, while 
the regression model (CSRnet) is more balanced. Also, it is 
worth noting that if the detection models are to be deployed in 
a real time counting application, like counting from live video 
feeds, 1-stage detector models should be preferred over 2-stage 
detectors as they have fewer parameters to train, and faster 
inference time, Table 3 also compares the total number of train-
able parameters for all models.

In order to calculate the field-wise statistics, quasi-mosaic 
is constructed according to GPS locations of each image accord-
ing to the quasi-mosaic construction method in the “Model 
inference” section. The quasi-mosaic image for this sorghum 
field is shown in Fig. 14. It is good enough to depict the entire 
field and show the head count information across the entire field. 
In order to show the details of the detection and row connec-
tions between 2 grids, a zoom-in area is shown in Fig. 15. It 
shows that after row detection and rotation, rows of each grid 
connect well with their neighbor grid, so it is effective to use 
GPS information of UAV to construct the quasi-mosaic images 
with grids. Figure 15B shows the zoomed in head detections. 
Furthermore, we evaluated the accuracy of the model detec-
tions based on a small test, composed of 50 plots sampled from 
the raw UAV images that were manually annotated. The model 
had an over all accuracy of 93.59% on the test set.

On the basis of the trained Faster R-CNN model, sorghum 
heads are detected in all new field images and are predicted as Fig. 13. Error histogram of various models.

Fig. 14. Quasi-mosaic image for the entire field.
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bounding boxes. The centers of the predictions are provided to 
RANSAC model for row detection, as shown in Fig. 16A, and 
later statistics calculations are based on these detection results. 
Image-wise headcount calculation for Fig. 16A is illustrated in 
Fig. 16B and C, and visualization of head density across row / 
area is shown in Fig. 16D and E. The GSD of the field images 
is 0.53 cm/pixel, so we rescale the image, so that each pixel of 
the image is 1 cm. The unit of the density is head counts/m and 
counts/m2 respectively for Fig. 16D and E.

Figure 17 displays the density map of heads in the field. An 
area of 100 × 100 pixels represents 1 m × 1 m in field. Therefore, 
heads are counted continuously within the area of 100 × 100 
across the quasi-mosaic image, and the counts move 1 step 
from left to right and up to bottom to calculate headcounts 
across the entire field. In order to smooth the final results, a 
two-dimensional Gaussian filter with a size of 100 × 100 is 

applied on the counts. The filter sliding window convolution 
multiplies with 100 × 100 head counts of the quasi-mosaic 
image. The sum of the Gaussian filter is 1 in a 1 m × 1 m scale 
and convolution, so that it only smoothes the visualization and 
does not influence the physical meaning of the headcount den-
sity. Therefore, the unit of density is head counts/m2, and head 
counts vary from 0 to 6.68/m2.

Discussion
In this work, we introduce a comprehensive pipeline to apply 
deep-learning detection models for sorghum head counting, 
to assist grain yield estimation via RGB UAV images. Our work 
is complementary to existing literature for crop head detection. 
We take various real-world variables into consideration, includ-
ing data preparation, model validation, inference, and deriving 

A

B

Fig. 15. Row detection showing in quasi-mosaic image. (A) Row detection showing in quasi-mosaic image. (B) Zoomed-in detections.
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A

B

C

D E
Fig. 16. Image-wise head density visualization. (A) Head detection and row detection. (B) Dot regression on nearest row. (C) One-dimensional moving sum head count and 
Gaussian smoothing for each row. (D) 3D display of head density per row. (E) Head density across entire image.
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yield-specific metrics. We aimed to outline a practical and end 
to end pipeline from prototype to inference, for sorghum head 
detection.

For training a suitable model for your target field, you can 
either collect your own dataset or you can start with a suitable 
public dataset. We consider both these scenarios in the 2 exper-
iments presented in our paper.

In our first experiment, we propose a pipeline for dataset 
preparation and model evaluation for a new target field. We 
collect a dataset for a field with sorghum plants in the early 
stage of heading. Models trained on publicly available sorghum 
datasets, which focus on mid to late flowering sorghum plants, 
were not suitable for our target field. Therefore, we collected a 
new ground image dataset, followed by using a combination of 
semiautomatic and manual labeling to annotate the dataset. 
Finally, we adapt our ground image dataset to train a model to 
detect heads from UAV images. We train and validate our 
model only on ground images, and we evaluate our model on 
a separate test composed only of UAV images, in order to 
observe the generalization capability of the model. We found 
that the mAP of the model dropped from 0.958 (when evalu-
ated on ground images) to 0.871 when evaluated on UAV 
images. The model performance dropped because of poor 
detection performance for small heads in the early stages of 
development. Indicating the spatial resolution of the (for this 
specific experiment) UAV images may not be optimal for the 
detection of early-stage small heads. One apparent solution is 
to increase the spatial resolution of the images to improve the 
detection performance. Alternatively, for future work, we sug-
gest including deep-learning-based super resolution methods 
to improve spatial resolution [51].

In our second experiment, we provide a pipeline describing 
the deployment of deep-learning-based detection models on 
another sorghum field. The overview of the pipeline is as fol-
lows: (a) Multiple deep learning methods are considered and 
compared. If only accurate head counts are needed, regression 
models could provide more accurate results than detectors. 
However, if the field needs to be analyzed with more details, 
detector models are necessary. (b) We propose a RANSAC 
model for row detection, which uses the head detection results 
identify planting rows, in order to analyse gaps between rows 
and variation in head density. (c) Heading density /m2 head 
counts are visualized on a per-image basis and across field.

Although our work tries to provide a comprehensive head 
number estimation pipeline from collecting data to final anal-
ysis visualization, it might still encounter additional problems. 
For instance, 1 limitation is that the RANSAC-based row detec-
tion method is fully contingent on the head detection results, 
which enlarges the error for row detection results. Later, it 
could be replaced with deep models of semantic row detection 

based on the raw images directly. In addition, research on 
semantic row detection will be conducted. Finally, it is also 
worth mentioning that the detection models, image preproc-
essing, and data augmentation techniques discussed in this 
paper are focused on popular CNN-based architectures. As 
research progresses in the field of computer vision and object 
detection, and newer frameworks and architectures are intro-
duced, e.g., transformer architecture-based models like the 
Swin tranformer [52], image preprocessing and augmentation 
methods must be carefully reconsidered and examined in light 
of newer model architectures [53], before incorporating newer 
state of the art models into the pipeline. For our future work, 
we intend to test our pipeline on tasks of more grain types, e.g., 
wheat and maize yield estimation.
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