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Abstract 

A plant’s response to external and internal nitrogen signals/status relies on sensing and 
signaling mechanisms that operate across spatial and temporal dimensions. From a 
comprehensive systems biology perspective, this involves integrating nitrogen responses in 
different cell types and over long distances to ensure organ coordination in real time and yield 
practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) 
sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in 
the model Arabidopsis.  The temporal aspects span: transcriptional responses to N-dose 
mediated by Michaelis-Menten kinetics; the role of the master NLP7 transcription factor as a 
nitrate sensor, its nitrate-dependent TF nuclear retention, its “hit-and-run” mode of target gene 
regulation and temporal transcriptional cascade identified by “Network Walking”. Spatial aspects 
of N-sensing/signaling have been uncovered in cell type-specific studies in roots  and in root-to-
shoot communication. We explore new approaches using single cell sequencing data, trajectory 
inference and pseudotime analysis as well as machine learning and artificial intelligence 
approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen 
sensing/signaling networks across species from model-to-crop could pave the way for 
translational studies to improve nitrogen-use efficiency in crops.  Such outcomes could potentially 
reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and 
greenhouse gas emissions.  
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Introduction 

This special Plant Cell issue commemorates 100 years of ASPB. Our review focuses on the 
spatial dynamics of nitrogen sensing and signaling networks: it’s about time. Aptly, more than 100 
years ago, Michalis-Menten’s classic paper published in 1913 sought “to achieve the final aim of 
kinetic research; namely, to obtain knowledge of the nature of a reaction from a study of its 
progress”  (Michaelis and Menten, 1913; Michaelis et al., 2011). Inspired by this, our review 
focuses on systems biology studies conducted in real time and space. Such studies have 
uncovered the mechanisms by which plants sense and respond to nitrogen (N) signals within 
minutes to evoke changes in N-signaling networks in specific cell types that influence plant growth 
and development. Such discoveries of N-sensing/signaling reside in Pasteur's Quadrant, a field 
of inquiry that aims to gain a fundamental understanding of a scientific problem while also 
providing immediate societal benefits (Stokes, 1997), in this case improvements in nitrogen use 
efficiency (NUE). 

The advent of synthetic fertilizers has brought significant advantages to agricultural 
practices by boosting crop yield, but at both economic and environmental costs (Menegat et al., 
2022). Approximately half of applied fertilizers are effectively used by plants, while the remaining 
portion is prone to run-off, resulting in groundwater contamination and eutrophication (Bijay-Singh 
and Craswell, 2021). Moreover, excess fertilizer application can lead to the production of nitrous 
oxide, a potent greenhouse gas (Mahmud et al., 2020; Menegat et al., 2022). Considering these 
challenges, a key objective of nitrogen research is to develop plants with enhanced nitrogen-use 
efficiency (NUE). Achieving this objective would not only reduce the need for excessive fertilizer 
usage but also support optimal plant growth in nitrogen-limited soils worldwide. 

Nitrogen - the rate limiting element for plant growth - is often found in the soil as nitrate 
(NO3-) and/or ammonium (NH4+). Organic forms such as amino acids and urea can also play 
important roles in specific contexts (Yang et al., 2021b). Nitrate - the main form of nitrogen found 
in aerobic soils - also acts as a N-signal sensed by a nitrate transceptor in roots (Crawford and 
Forde, 2002).  As such, nitrate sensing/signaling has been widely studied by using biochemical, 
molecular genomics, genetics and systems biology approaches (Wang et al., 2018; Gaudinier et 
al., 2018; Vidal et al., 2020; Lamig et al., 2022; Krouk et al., 2010). Herein, we explore studies 
that use systems biology approaches to examine the temporal and spatial mechanisms behind 
nitrogen sensing and signaling, largely in the model Arabidopsis. We especially highlight progress 
in this area published after  the "Nitrate in 2020" Plant Cell Review, which includes an extensive 
timeline of milestone publications on nitrate signaling up to 2020 (Vidal et al., 2020). In addition 
to studies that explore the primary N-response (nitrate sensing/signaling), we include  temporal 
studies that examine the plant response to ammonium nitrate, the source of nitrogen in the widely 
used Murashige and Skoog cell culture medium (Murashige and Skoog, 1962; Varala et al., 2018; 
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Brooks et al., 2019; Swift et al., 2020; Alvarez et al., 2021). Plants respond differently to sole 
sources of nitrate versus ammonium; therefore, we recommend referring to the following excellent 
reviews for details on specific ammonium responses not covered herein (Liu and Von Wirén, 
2017; Hachiya and Sakakibara, 2017). 

For further insights into advances in nitrogen sensing/signaling, we recommend recent  
reviews which encompass other aspects such as nitrogen transport (Wang et al., 2018; Tegeder 
and Masclaux-Daubresse, 2018), local and systemic nitrogen signaling (Zhang et al., 2020), post-
translational modifications and nitrogen signaling components (Wang et al., 2021a; Muratore et 
al., 2021), nitrogen-dependent developmental responses (Weber and Burow, 2018; Fredes et al., 
2019), nitrogen regulation of root system architecture (Jia and von Wirén, 2020; Hu et al., 2021), 
nitrogen interactions with other nutrients (Li et al., 2021; Oldroyd and Leyser, 2020), nitrogen and 
hormone interactions (Sakakibara, 2021; Xing et al., 2023), and nitrogen responses under abiotic 
stress (Araus et al., 2020; Plett et al., 2020). 

This review briefly touches upon nitrogen response networks in crops (Ueda et al., 2020), 
and translational studies of nitrogen signaling networks - from model-to-crop (Obertello et al., 
2015; Cheng et al., 2021). We also recommend more extensive recent reviews on crops for a 
comprehensive understanding of nitrogen signaling in agricultural contexts (Jia and von Wirén, 
2020; Hou et al., 2021; Sandhu et al., 2021; Gao et al., 2022; Hu et al., 2023). 

This review focuses novel insights gained from systems biology approaches to uncover 
the temporal and spatial mechanisms of nitrogen sensing and signaling.  These include the 
discovery that Michaelis-Menten kinetics mediates N-dose dependent transcriptome responses 
(Swift et al., 2020).  This finding echoes earlier time-based studies which showed that Michaelis-
Menten kinetics mediate N-dose dependent nitrogen uptake (Ho et al., 2009; McNickle and 
Brown, 2014), and plant growth responses (Lana et al., 2005). Furthermore, we examine recent 
studies that have uncovered the time-dependent mechanisms involving the master transcription 
factor (TF) NLP7, as a nitrate sensor (Liu et al., 2022), the nitrate-dependent nuclear localization 
of NLP7/6 (Marchive et al., 2013; Guan et al., 2017; Liu et al., 2017; Cheng et al., 2023), the “hit-
and-run” model of transient interactions of NLP7-target genes (Alvarez et al., 2020), and the 
regulation that NLP7 exerts over a temporal cascade of downstream TF2s - uncovered using a 
method called “Network Walking” (Brooks et al., 2019, 2020; Alvarez et al., 2020).  

We also explore new  spatial approaches can identify how nitrogen sensing, transport, 
and signaling, is governed by cell type specificity in different organs. This includes the cell type-
specific signaling responses to nitrate (Chen et al., 2022; Contreras-López et al., 2022), as well 
as studies that examine nitrate root-to-shoot communication and how plants integrate the shoot 
and root nitrogen status to systematically regulate nutrient uptake in the roots (Tabata et al., 2014; 
Ohkubo et al., 2017; Ota et al., 2020; Abualia et al., 2022). 
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To facilitate and inspire future advances in nitrogen research in space and time we review 
advancements in single-cell sequencing technology can be applied to plant N-sensing/signaling 
(Rich-Griffin et al., 2020; Cole et al., 2021). For example, the use of single cell (sc) RNA-seq 
assays could enable (i) tracking of the nitrogen signal from root-to-shoot and (ii) determination of 
cell fate trajectories using pseudotime analysis (Denyer et al., 2019; Shahan et al., 2022; Nolan 
et al., 2023). Additionally, we explore how to utilize computational methods like machine learning 
of gene-to-NUE trait across a model and crop (Cheng et al., 2021) and how artificial intelligence 
(Gao et al., 2021) may augment experimental nitrogen research endeavors. 

Overall, this ASPB Centennial review provides an overview the spatiotemporal dynamics 
of nitrogen sensing and signaling as an integrated system in plants. These temporal based 
systems biology approaches can also be applied to study any sensing and signaling network in 
plant and crop biology. 

Nitrogen dose sensing as a function of time 

How an organism senses and responds to changes in nitrogen nutrient dose is a basic 
unanswered question in biology with special relevance to agriculture. Exploiting time to uncover 
mechanisms underlying N-sensing/signaling in plants derives inspiration from the now classic 
Michaelis-Menten (MM) paper, which aimed “to obtain knowledge of the nature of a reaction from 
a study of its progress” (Michaelis et al., 2011; Michaelis and Menten, 1913). Importantly, MM 
kinetics have also previously been shown to mediate nitrogen uptake (Figure 1A) (Ho et al., 2009; 
McNickle and Brown, 2014) and plant growth (Figure 1C) (Lana et al., 2005). Inspired by this, 
Swift et al (2020) applied the MM kinetic concept to study the molecular basis for N-dose sensing 
in Arabidopsis, exposing seedlings to a matrix of four increasing  N-doses of ammonium nitrate 
over five time points (Swift et al., 2020; Ahmed, 2020; Akmakjian and Bailey-Serres, 2020). 
Modeling of the resulting RNA-seq data revealed that 3,818 genes increased or decreased their 
expression in proportion to N-dose over time. Moreover, they found that for a subset of these 
genes, the N-dose-dependent gene responses mirror simple enzyme kinetics described by 
Michaelis-Menten (MM) in 1913, where changing levels of enzyme abundance will affect the 
maximum rate of reaction (Vmax) (Michaelis and Menten, 1913; Michaelis et al., 2011; Swift et 
al., 2020). Specifically, N-dose response genes whose expression pattern significantly fit the MM 
model, allowed to estimate the maximum rate of transcript change (Vmax), as well as the N-dose 
at which half of Vmax was achieved (Km) (Figure 1B) (Swift et al., 2020). Indeed, the classic MM 
kinetic model was able to explain the expression of 30% of N-dose responsive genes in 
Arabidopsis (1,153 MM modeled N-dose responsive genes) (Figure 1B), whereas the remaining 
70% genes could be explained by more complex kinetics and/or other regulatory mechanisms 
(Swift et al., 2020). This finding suggests that transcription factors (TFs) that regulate MM 
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response genes can be analogized as catalytic enzymes in the MM model since they establish 
the rates at which transcription takes place in response to N-dose (Swift et al., 2020). To support 
this, in vivo studies showed that the overexpression of TGA1, an early N-responsive TF,  led to 
an increase in Vmax of N-dose responsive mRNAs (Figure 1B), which was translated as an 
accelerated plant growth in response to N (Figure 1C) (Swift et al., 2020). Uncovering the 
molecular mechanisms that underlie the transcriptome kinetics responding to changes in N-dose, 
now connects N-uptake (transport)  to output (biomass), and thus has the potential to enhance 
plant growth and improve N-use efficiency in crops (Figure 1).   

 
 
Figure 1. The N-dose-dependent regulation of N-uptake, N-signaling, and N-growth follows 
Michaelis-Menten (MM) kinetics. A) The rate of N-uptake by NRTs and AMTs is regulated by 
MM kinetics (Ho et al., 2009; McNickle and Brown, 2014). B) Swift et al., 2020 demonstrated that 
the transcriptional response to N-dose also follows MM kinetics in Arabidopsis wild-type plants 
(Swift et al., 2020). Moreover, TGA1 overexpression and tga1/4 mutant analysis revealed that a 
portion of this MM-mediated N-dose transcriptional response is mediated by the master 
transcription factor TGA1, which affects plant growth rate (Swift et al., 2020). C) N-dose-regulated 
growth responses measured by biomass is also regulated by MM kinetics (Lana et al., 2005). 
Thus, transcriptome kinetics responding to changes in N-dose has the potential to enhance plant 
growth. Figure adapted from Swift et al. 2020. Figure created with BioRender.com. 
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Time- and space-dependent modes-of-action for NLP7 as a master regulator of 
nitrate signaling 

NLP7 is a master regulator of the early nitrate response, acting as a transcriptional regulator of 
genes involved with nitrate transport, nitrate assimilation, and signal transduction (Marchive et al., 
2013; Alvarez et al., 2020). New time-based studies have shown that NLP7 is not only a master 
transcription factor for mediating nitrate responses, but it can also bind nitrate and act as an 
intracellular nitrate sensor, as identified using the split mCitrine-NLP7 nitrate biosensor (sCiNiS) 
(Liu et al., 2022) (Figure 2A). The fluorescence signal for NLP7 binding of nitrate was detected 
after 5 minutes of nitrate-treatment in mesophyll cells of cotyledons and also in primary root tips, 
showing that NLP7 acts as an intracellular nitrate sensor to initiate nitrate responses (Liu et al., 
2022). The nitrate-binding domain on NLP7 is an evolutionarily ancient domain that is conserved 
among plant NLPs and bacterial nitrate sensors like NreA (Niemann et al., 2014). Nitrate directly 
interacts with NLP7 through its amino terminus, inducing its conformational change to activate 
transcription (Liu et al., 2022) (Figure 2A).  

The role of NLP7 as a nitrate sensor is an additional level of NLP7 regulation to the known 
post-translational modifications that regulate NLP7 in the nucleus in response to nitrate (Marchive 
et al., 2013; Liu et al., 2017; Guan et al., 2017) (Figure 2B). Once nitrate is transported inside the 
cell by NRT1.1, a rapid wave of Ca+2 cause the activation of group III calcium-sensor protein 
kinases (CPKs) in seconds, which in turn phosphorylates NLP7 to retain it in the nucleus, 
activating early nitrate-response genes within minutes (Marchive et al., 2013; Liu et al., 2017) 
(Figure 2B). A recent study by Cheng et al 2023 finds that both NLP7 and another NLP family 
member, NLP6, are both retained in the nucleus in response to nitrate (Cheng et al., 2023) 
(Figure 2B). Moreover, they showed that that nitrate-dependent nuclear accumulation of NLP7 
and NLP6 act independently of each other. To do this, they constructed translational fusion 
proteins for both GFP-NLP6 and GFP-NLP7, expressed in nlp7 or nlp6 mutant background, 
respectively, accumulated in the nucleus in response to nitrate and in the absence of either 
endogenous NLP7 or NLP6 proteins (NLP6 experimental set-up is shown as an example, Figure 
2B) (Cheng et al., 2023). While previous reports show that NLP7 and NLP6 heterodimerize in the 
cytosol in response to nitrate (Guan et al., 2017), Cheng et al 2023 show that the nuclear retention 
of NLP7 and NLP6 in response to nitrate is independent of each other (Figure 2B) (Guan et al., 
2017; Cheng et al., 2023).  

Recent studies also implicate NLP7 in initiating a cascade of early N-responsive 
downstream transcription factors (Alvarez et al., 2020). Specifically, gene expression changes in 
response to nitrogen occur rapidly (minutes to hours) and are divided into primary and secondary 
responses (Medici and Krouk, 2014; Alvarez et al., 2021). Primary N-response genes are i) rapidly 
induced by nitrate (minutes), ii) do not require de novo protein synthesis, and iii) are typically 
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involved in nitrate transport, assimilation, and signaling (Medici and Krouk, 2014). Secondary N-
response genes are induced later (hours) and depend on the transcriptional products of the 
primary response genes. How the primary and secondary nitrogen response is regulated was 
recently revealed to involve rapid, transient protein-DNA interactions by TFs that follow the “hit-
and-run” model of regulation (Figure 2C), which includes the TFs bZIP1 (Para et al., 2014; Doidy 
et al., 2016) and  NIN LIKE PROTEIN 7 (NLP7) (Alvarez et al., 2020). As a pioneer or triggering 
TF, NLP7 is at the top of the nitrate signaling hierarchy following the “hit-and-run” model of 
transcriptional control (Figure 2C). It was shown that the transient TF2 targets of NLP7, initiate a 
temporal cascade of genome-wide changes in the nitrate response in planta (Marchive et al., 
2013; Alvarez et al., 2021).  

The “hit-and-run” model suggests that a TF trigger/pioneer can form a stable 
transcriptional complex (the “hit”), allowing transcription to continue even after the initiating TF is 
no longer bound (the “run”) (Figure 2C) (Schaffner, 1988; Para et al., 2014; Doidy et al., 2016; 
Alvarez et al., 2020). Genome-wide evidence for the “hit-and-run” model of transcription for 
transient TF-target gene interactions was validated for two master TFs involved in the  nitrate 
response, first identified with bZIP1 and more recent evidence for NLP7 (Para et al., 2014; Doidy 
et al., 2016; Alvarez et al., 2020). Time-series ChIP-seq experiments showed that bZIP1 and 
NLP7 were transiently bound to early nitrate-response genes, and 4-thiol-uracil labeling of nacent 
mRNA confirmed the active transcription of these hit-and-run targets (Para et al., 2014; Doidy et 
al., 2016; Alvarez et al., 2020). 

Importantly, the plant cell-based TARGET assay (Transient Assay Reporting Genome-
wide Effects of Transcription factors) used in these studies can capture early and transient TF-
target gene regulation events often undetected in planta (Para et al., 2014; Doidy et al., 2016; 
Brooks et al., 2019; Alvarez et al., 2020). The TARGET TF-assay involves transient expression 
of a TF fused to a glucocorticoid receptor (GR) in plant cell protoplasts.  The TF-GR protein is 
held in the cytoplasm by HSP90 binding to the GR domain (Bargmann et al., 2013) (Figure 2C, 
Table 1). The addition of the GR-ligand dexamethasone (DEX) displaces HSP90 binding, allowing 
nuclear entry of the TF-GR fusion protein.  When DEX treatment is performed in the presence of 
cycloheximide, to inhibit the synthesis of proteins encoded by direct target genes (e.g. TF2), direct 
targets of a TF can be identified with RNA-seq, compared to empty vector (Figure 2C, Table 1) 
(Bargmann et al., 2013; Brooks et al., 2019, 2023). 
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Figure 2. Time- and space-dependent modes-of-action for NLP7 as a master regulator of 
nitrate signaling. A) NLP7 binds to nitrate and acts as a nitrate sensor as determined using the 
genetically encoded split mCitrine-NLP7 nitrate biosensor (sCiNiS) assay (Liu et al., 2022). 
Fluorescent signal was detected 5 minutes after nitrate treatment in both mesophyll and primary 
root tip cells (Liu et al., 2022). B) Both NLP7 and NLP6 accumulate in the nucleus in response to 
nitrate as determined with TF-fusion proteins expressed in their respective mutant backgrounds, 
showing that accumulation of either TF in the nucleus is independent of each other, but dependent 
on nitrate (Marchive et al., 2013; Liu et al., 2017; Guan et al., 2017; Cheng et al., 2023). C) The 
“hit-and-run” model of transcription posits that a pioneer TF transiently binds to the promoter of a 
target gene to open the chromatin and allow for other partner TFs to bind the promoter, thereby 
making NLP7 available to bind the next target gene (Para et al., 2014; Alvarez et al., 2020). The 
TARGET assay combined with ChIP-seq and DamID was used to identify these highly transient 
NLP7 target genes (Alvarez et al., 2020). Figure created with BioRender.com. 
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Table 1. Systems biology techniques and tools applied to studying TFs and their targets 
involved in nitrogen sensing and signaling.    
Technique/Tool Description Reference 

TARGET 
(TF→direct target regulation 
in plant cells) 

Transient Assay Reporting 
Genome-wide Effects of 
Transcription factors (TARGET) is a 
plant cell-based assay used to 
identify direct TF target gene 
interactions with timed nuclear entry 
of the TF (Figure 2).  

(Bargmann et al., 
2013; Brooks et al., 
2019; Alvarez et al., 
2020; Brooks et al., 
2023) 

DamID-Seq 
(TF→Target interaction in 
vivo) 

DNA adenine methyltransferase 
identification (DamID) uses DNA 
methylation of promoters to detect 
highly transient TF-DNA binding 
interactions. 

(Steensel BV. and 
Henikoff S., 2000; 
Alvarez et al., 2020) 
 

DAP-seq 
(TF→target interaction in 
vitro) 

DNA affinity purification sequencing 
(DAP-seq) is a high-throughput TF-
DNA binding assay that uses 
genomic DNA and TFs expressed in 
vitro.   

(O’Malley et al., 
2016) 

Precision/Recall (AUPR) 
(Validation of inferred 
TF→target interactions) 

Precision/Recall (PR) analysis with 
area under precision recall (AUPR) 
curve uses validated TF-target gene 
data (TF-binding and/or regulation 
data) to determine the PR of 
predicted TF-target genes in gene 
regulatory networks (GRNs) (Figure 
3A).  

(Brooks et al., 2019; 
Shanks et al., 2022; 
Brooks et al., 2021) 

Network Walking 
(TF1→direct TF2s→indirect TF1 
targets) 

Network Walking is a GRN method 
that charts a path from the direct 
target genes of a TF1 to their indirect 
target genes via a TF2 (Figure 3B).  

(Brooks et al., 2019, 
2021) 

 
The plant cell-based TARGET TF perturbation system allowed the identification of 

transient NLP7 targets that were undetected by time-series chromatin immunoprecipitation (ChIP) 
(Alvarez et al., 2020). By coupling the DNA adenine methyltransferase identification (DamID) 
method (Gutierrez-Triana et al., 2016) to the TARGET TF perturbation system, it was possible to 
capture NLP7 binding to highly transient targets that were missed by time-course ChIP (Alvarez 
et al., 2020) (Figure 2C, Table 1). DamID uses a fusion protein of DNA adenine methyltransferase 
(Dam) to detect TF-DNA binding events by leaving a stable methylation mark at the adenine base 
in the GAmeTC sequences near (within 1 kb) to protein-DNA binding sites as soon as the TF 
touches down on the promoter (e.g. even transiently).  This adenine methylation at GAmeTC allows 
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for the binding and DNA cleavage using the DpnI restriction enzyme. DpnI fragments are mapped 
to the promoter regions to identify genes “touched” by the TF. Thus, this DNA methylation 
approach overcomes the limitations of biochemical methods such as ChIP-seq and other 
antibody-based techniques that are biased for stably bound TF-DNA interactions (Figure 2C, 
Table 1) (Steensel BV. and Henikoff S., 2000; Alvarez et al., 2020). Using the TARGET and 
DamID-Seq methods, the study by Alvarez et al., 2020 confirmed that transient interactions of 
NLP7 initiate active transcription of its targets, consistent with a “hit-and-run” transcription model 
(Figure 2) (Alvarez et al., 2020). Overall, the multiple levels of NLP7 regulation highlight the 
important role of NLP7 in primary nitrate response to ensure a fast and broad adaptation by the 
plant to fluctuating nitrate levels (Figure 2).  

Temporal nitrogen response networks: Generation and validation 

In addition to the master TFs discussed above, TGA1, bZIP1, and NLP7, which are critical 
for signaling N-dose over time, gene network analysis studies and mutant screens have identified 
40 plus TFs that are involved in propagating the nitrate signal, for review see (Vidal et al., 2020). 
Thus, we must understand the temporal regulatory connections between these TFs and the 
nitrate-responsive genes they control to obtain a complete temporal picture of nitrate signaling 
events. Combining computational and experimental approaches that consider time in gene 
expression analysis has proven to be a powerful approach to uncovering the temporal 
mechanisms of transcriptional responses in plants. 

The goal of gene regulatory network (GRN) inference models is to connect a regulator 
(i.e. TF) to each of the genes it regulates in the genome. As causality moves forward in time, time-
series experiments are a valuable resource to infer GRN models that can predict TF-target gene 
relationships at future untested time points, a main goal of systems biology. To account for the 
different times of captured gene regulation in time-series data, specialized network inference 
algorithms have been developed to account for the added factor of time in the data and can be 
based on correlation (Time-lagged, Random Forest (DynGenie3 and Outpredict), and other 
regression models (Nguyen and Braun, 2018; Huynh-Thu and Geurts, 2018; Cirrone et al., 2020).  

Over the last ten years, several studies have exploited time-dependent responses to 
investigate nitrogen signaling networks in Arabidopsis using fine-scale time series (Krouk et al., 
2010; Patterson et al., 2016; Walker et al., 2017; Varala et al., 2018; Brooks et al., 2019; Alvarez 
et al., 2021). In multiple of these time-based N-response network studies, a state-space model, 
which is a model that uses first-order differential or difference equations to describe a system, 
called Dynamic Factor Graph was applied to fine-scale nitrogen response time series (i.e., many 
time-points close together) datasets to predict regulatory interactions between N-responsive TFs 
and N-responsive genes in shoots (Varala et al., 2018) or roots (Krouk et al., 2010; Brooks et al., 
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2019). In general, state-space models are algorithms that model dynamic data (e.g. gene 
expression) by assuming that data is generated from underlying ‘hidden states’ (Krouk et al., 
2010; Brooks et al., 2019). In the case of time series experiments, the data of gene expression 
consider several time points (e.g. every five minutes, from 5 to 20 minutes) as consecutive hidden 
states that form a Markov chain (a mathematical system that statistically modulates random 
processes). Consequently, each transition in the Markov chain corresponds to a stationary (time) 
dynamic model. The resulting GRNs revealed the temporal networks operating in each tissue and 
implicated a hierarchy to the TFs involved (Vidal et al., 2020).  

In the first fine-scale time-series study of nitrate signaling, Krouk et al. examined very early 
(3-20 minutes) gene expression responses to nitrate supply in roots (Krouk et al., 2010), whereas 
20 min is the earliest time point that had previously been examined at the genomic level (Wang 
et al., 2000). The Krouk et al. 2010 study demonstrated that nitrate-triggered gene expression 
responses occur within as early as 3 minutes, and that transient changes are missed if plants are 
only sampled at later time points. In a subsequent study, Varala et al performed a time-series 
experiment that included ammonium nitrate treatments across early-to-late time points (starting 
from 5 minutes for up to 120 minutes) and identified 2,737 genes responding to nitrogen as a 
function of time (NxTime) response genes in shoots (Varala et al., 2018), and 1,458 NxTime 
response genes in roots (Brooks et al., 2019). Moreover, the concept of “just-in-time” (JIT) 
analysis developed and deployed in these two studies, identified the first time-point that a gene 
was induced > 1.4 fold by N-treatment. The JIT analysis bins NxTime genes that are differentially 
regulated by N for the first time point in the time-series experiment. Analysis of these JIT genes 
uncovered not only a temporal cascade of enriched cis-elements at each consecutive time point 
but also GO terms resulting from N-signaling that evolves over time (Varala et al., 2018; Brooks 
et al., 2019).  

A strength of the N-response time-series GRN generated in shoots (Varala et al., 2018) 
and roots (Brooks et al., 2019) was in assessing the precision and recall accuracy of the TF--
>target gene GRN predictions using AUPR (area under the precision-recall curve) analysis 
(Figure 3A) (Table 1). The benefit of AUPR analysis is that it uses validated TF-target interactions 
to empirically determine precision cutoffs for the TF-target gene predictions in the GRN.  By 
contrast, other methods arbitrarily select the top 1-10% of interactions – to prune the GRNs for 
higher-confidence TF-target edge predictions (Figure 3A). To conduct the AUPR analysis, the 
TF-target gene interactions predicted by the GRN for each TF and target gene are ranked based 
on an edge score computed by each network inference method (Figure 3A). Next, to determine 
the accuracy of these predictions, the inferred TF-target gene interactions are compared with 
validated TF-target gene interactions, for a subset of TFs in the network, as determined by 
methods like DAP-seq for TF-target binding interactions in vitro (O’Malley et al., 2016) or direct 
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TF-target gene regulation based on the TARGET TF Assay in protoplasts (Table 1) (Figure 3A) 
(Varala et al., 2018; Brooks et al., 2019). This analysis then determines which predicted TF-target 
edges are supported by experimentally validated data. The validation data is then used to 
calculate the precision and recall for predicted TF-target gene interactions in the GRN 
(Schrynemackers et al., 2013). These values are used to produce the AUPR curve, which is then 
used to select a cutoff edge score for the GRN predictions (Figure 3A). The selected cutoff edge 
score from the AUPR curve is used as a threshold to “prune” for high-confidence edge predictions 
in the GRN. Using the above outlined time-series N response GRNs as examples for AUPR 
analysis, ConnecTF (connectf.org) is a web-based platform that offers automated AUPR functions 
where researchers can upload their own networks, select a precision cut off and download the 
high-confidence TF-target gene predictions (Brooks et al., 2021) (Table 1) (Figure 3A). 

Figure 3. Determining high-confidence GRNs by AUPR and use in Network Walking. A) (A1) The 
predicted TF-target gene interactions are first ranked according to edge score, and then compared to 
validated TF-target gene interaction data to calculate precision and recall. (A2) The values are then plotted 
on the AUPR curve to select a cutoff TF-target edge score. The edges in the predicted network (blue line) 
were significantly more likely to be true (i.e., validated) edges than when the edge order ranking was 
randomized (gray lines). The graph is a screenshot from the automated AUPR analysis feature in 
connectf.org (Brooks et al., 2021). (A3) The edge score cutoff is used to “prune” the network for high-
confidence interactions. B) Network Walking charts a path between direct to indirect target genes of a TF1 
via TF2s (Brooks et al., 2019, 2021). In this example, the TF NLP7 directly regulates TF2s as identified with 
the TARGET cell-based assay (Alvarez et al., 2020). The target genes for each TF2 can be determined 
using predicted GRN edges from the NxTime network and/or using validation data from methods like the 
TF-TARGET Assay and/or TF-target binding by DAP-seq (Table 1). Bottom panel adapted from Brooks et 
al, 2019 (Brooks et al., 2019). 

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koae038/7608181 by IN

R
A user on 23 February 2024



13 

The use of validated TF-target data to prune GRNs for high-confidence TF-target gene 
predictions is important for identifying key regulatory control points in the absence of 
comprehensive validated TF-target data. While there is now experimentally validated TF-target 
gene binding and regulation data for over 500 Arabidopsis TFs, primarily from DAP-seq (O’Malley 
et al., 2016) this is still only approximately a quarter of all predicted TFs in Arabidopsis (see data 
housed in ConnecTF, Brooks et al 2021). This means that for any given signaling pathway 
studied, it is likely that most of the TFs involved do not have validated target genes. For example, 
the N-response time-course experiments described above revealed that 326 TFs respond to N-
treatment in roots and/or shoots (Varala et al., 2018), but only 95 of those TFs have experimentally 
validated target genes. Furthermore, for the TFs that lack experimental validation data, it is 
unclear if the TFs are activators or repressors of their target genes in the network. To address 
this question, the authors of Hummel et al., 2023 used synthetic biology approaches coupled with 
this systems biology analysis to determine which TFs in the Varala et al. NxTime GRN are 
activators or repressors of N-responses by using the reporter genes, nitrate reductase 1 (NR1) 
and nitrite reductase 1 (NIR1) (Varala et al., 2018; Hummel et al., 2023). 

A further complication to interpreting TF signaling pathways is that in planta gene 
expression responses in TF mutants and constitutive TF overexpressors reflect both direct and 
indirect effects of the TF being perturbed. To determine how the N-responsive TFs work to 
propagate the N signal in a temporal network, Brooks et al developed a “Network Walking” 
approach to chart a temporal network path for a TF of interest (Brooks et al., 2019, 2021) (Figure 
3B, Table 1). Network Walking connects direct target genes of a focus TF of interest (i.e., genes 
identified in plant cells with the TARGET TF Assay) with their indirect target genes (i.e., genes 
identified only in planta) via their directly regulated TF2s (Figure 3B). In the Network Walking 
approach, the TF2s directly regulated by the focus TF being perturbed are then used to explain 
the response of the indirect target genes in planta. Because many of these TF2s lack experimental 
data, the high-confidence TF-target gene predictions from the time-series inferred network are 
crucial to identify the most important TF2s that mediate the N-response signaling pathway and 
guide further studies (Brooks et al., 2019, 2021) (Figure 3B). For example, the Network Walking 
approach was used to chart a path between direct and indirect target genes for the N-response 
TFs, TGA1 (Brooks et al., 2019), CRF4 (Brooks et al., 2019), and NLP7 (Alvarez et al., 2020; 
Brooks et al., 2021). 

Learning nitrogen-dependent gene regulatory networks at a temporal level has helped to 
unravel how shoots integrate multiple root-derived signals. The fine-scale (i.e. many time-points 
close together) time-series N-response data from Varala et al. has been particularly useful for 
shoot and root network comparisons as gene expression was measured from both organs for the 
same sets of Arabidopsis plants (Varala et al., 2018). This study found a significant overlap 
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between shoot and root N-responsive genes and TFs, yet a large set of genes were also specific 
to each organ (Varala et al., 2018). The timing of expression between the overlapping shoot and 
root genes often differed, suggesting that the N-responsive signaling networks had some degree 
of organ-specificity. Additionally, a subset of N-responsive TFs displayed organ specificity in their 
N-responsive target genes using the TARGET assay (Brooks et al., 2019). For example, CRF4 
regulated early N-responses specifically in the shoot, while LBD37 regulated N-responses 
specifically in the root (Brooks et al., 2019). Furthermore, this fine-scale time-series N-response 
data (Varala et al., 2018) was used to identify the causal relationship of N-responsive genes 
between organs using Granger-causal analysis (Heerah et al., 2021). Using this analysis, Heerah 
et al predicted 1,007 root- and shoot-expressed genes that influenced gene expression in the 
other organ (Heerah et al., 2021). Interestingly, the list of predicted genes included a significant 
number (384 genes) of causal genes that are known or predicted mobile transcripts (Heerah et 
al., 2021). These GRN findings show a coordination between root and shoot N-responses that 
can be used to determine how these responses coordinate physiological outcomes. 

The dynamics of nitrogen responses in specific cell types 

The plant’s ability to sense and respond to the fluctuating N status of the soil is governed by cell 
type-specific responses (Liu et al., 2020; Jia and von Wirén, 2020; Hu et al., 2021). Three studies 
have examined cell type-specific nitrogen responses in roots by treating GFP-marked cell lines 
with nitrogen followed by FACS and transcriptomic analysis (Gifford et al., 2008; Walker et al., 
2017; Contreras-López et al., 2022). Consistently, these studies found that nitrate responses in 
the root are largely cell type-specific and highlight the need for routine cell type studies, as whole 
root studies will miss a significant portion of the plant response to an environmental stimulus such 
as nitrate. 

The most recent study to examine cell type-specific nitrate responses identified 5,231 
differentially expressed genes and a rapid transcriptome reprogramming, with 1,572 genes 
responding early 12 min after nitrate treatment (Contreras-López et al., 2022). Moreover, 42.5% 
of regulated genes were localized in the endodermis cell type, suggesting that endodermis might 
have a role as a regulatory hub for nitrate signaling since it is embedded with the Casparian strip, 
being a nutritional checkpoint for the vascular system (Palmgren, 2018; Contreras-López et al., 
2022). Analysis of gene ontology (GO) terms found that nitrate responses initiate in the epidermis 
and cortex as outermost cell types, followed by innermost cell types in later time points (Figure 
4A), which is in line with nitrate uptake and transport (O’Brien et al., 2016; Contreras-López et al., 
2022). The first biological processes to be enriched include “response to carbohydrate stimulus”, 
“glycolysis, “response to reactive oxygen species”, “response to lipid”, “response to abscisic acid”, 
and “response to nitrate”, which are initiated from the epidermis and then move toward inner cells 
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(Figure 4A). For instance, the nitrate transceptor NRT1.1/NPF6.3 and NRT2.1, are rapidly 
induced by nitrate in the epidermis and then within all cell types at later time points (Figure 4B) 
(Contreras-López et al., 2022). This is in line with previous studies that identified the cell type 
specificity of nitrate transporters in the epidermis (Tegeder and Masclaux-Daubresse, 2018; 
Wang et al., 2018; Muratore et al., 2021; Lhamo and Luan, 2021). At later times, expression of 
genes involved in “nitrate assimilation” are enriched from inner cell types towards the epidermis 
(Figure 4B), while expression of genes involved in “root system development” are localized in 
epidermis and endodermis, consistent with their role in lateral root growth and root hair 
development, showing a localized and transient response to nitrate (Ramakrishna et al., 2019; 
Liu et al., 2020) (Figure 4B). Furthermore, by integrating the spatiotemporal transcriptomic data 
with TF-target gene interactions, Contreras-López et al found that 62% of TF-target interactions 
were predicted to occur in the endodermis, being an important cell type for transcriptional 
regulation. The transcription factors ABF2 and ABF3, previously investigated for their role in ABA-
mediated signal transduction, were revealed to be master regulators of nitrogen responses in the 
endodermis, displaying lateral root growth inhibition in abf2, abf3, and abf2/3 plants in response 
to nitrate (Contreras-López et al., 2022). This phenotype is, in part, due to an altered development 
of lateral root primordium. Overall, these results highlight the importance of spatiotemporal 
analysis to uncover how the nitrate signal is dynamically propagated in the root and reveal new 
molecular mechanisms controlling nitrogen responses in specific cell types, which otherwise 
would be missed. 

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koae038/7608181 by IN

R
A user on 23 February 2024



16 

 
Figure 4. Spatiotemporal responses after nitrate treatments in Arabidopsis root cells are highly 
dynamic and localized. A) During nitrate treatments, the first cell type to respond is epidermis, followed 
by cortex. Consistent with their outermost location and first layers of nitrate acquisition. At later times of 
treatment, nitrate responses are present in all major root cell types (Contreras-López et al., 2022). B) 
Transverse view of root cells shows gene ontology (GO) enrichment after nitrate treatments. The first 
enriched GO term is “response to nitrate”, moving from epidermis toward innermost cell types. At later 
times, “nitrate assimilation” and “root system development” go from inner to outermost cell types. 
Transcriptomic analysis and GO terms were obtained from sorted root cells by Contreras-López et al. 
(2022). C) Nitrate-demand signaling model. When roots are grown on limited nitrate levels, C-terminally 
Encoded Peptides (CEPs) and tZ-type cytokinins (CK) are translocated to the shoot, increasing the 
expression levels of CEPD1/2 and CEPD-L2. In turn, shoot-derived CEPD1/2 and CEPD-L2 descend back 
to the root and increase the expression of nitrate transporters NRT3.1 and NRT1.1/NPF6.3 and NRT2.1 to 
compensate for the lack of nitrate in the soil. This highly coordinated system results in plant growth 
adaptation according to the changing nutrient levels (Tabata et al., 2014; Ohkubo et al., 2017; Ota et al., 
2020).  
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Complementary with the identification of cell-type transcriptional responses to nitrate over 
time, the authors of Chen et al developed a nitrate biosensor to visualize the spatial and temporal 
distribution of nitrate in the Arabidopsis root (Chen et al., 2022). To accomplish this, Förster 
resonance energy transfer (FRET) sensors were developed as a (1) fusion fluorescent protein 
possessing a sensor domain (FRET acceptor protein) and a (2) fused FRET donor fluorescent 
protein. Once the donor protein is excited, energy is transferred to the FRET acceptor protein. 
When the sensor domain from the acceptor protein interacts with its target molecule, a 
conformational change occurs. This conformational change in return, alters the efficiency of 
energy transferred from the FRET fusion donor protein to the FRET fusion acceptor protein. 
Hence, by measuring the ratio change, as the change between the fluorescence intensity of the 
donor and the acceptor protein, it is possible to report the concentration of the target (Chen et al., 
2022). The FRET sensor developed by Chen et al. used the bacterial protein NasR 
(NitraMeter3.0), which is a soluble receptor protein containing a nitrate and nitrite sensing domain 
as a FRET acceptor protein fused to a modified Aphrodite (edAFP) protein. On the other hand, a 
modified cyan fluorescent protein was used as a FRET donor protein (edeCFP) (Chen et al., 
2022). When Arabidopsis plants expressing the nitrate biosensor were exposed to exogenous 
nitrate treatments for 5 minutes, the fluorescence emission ratios increased in the epidermis, 
cortex, pericycle and stele cells, with the highest emissions ratio increase in the cortex cells, 
suggesting a higher nitrate uptake or transport function in this cell type. These results are in line 
with the reports of nitrate import and signaling in multiple root cell types (Gifford et al., 2008; 
Walker et al., 2017; Contreras-López et al., 2022). Additionally, the mutant for the nitrate 
transceptor, nrt.1.1/nfp6.3, displayed lower emission ratios in all root zones, supporting its role as 
a major nitrate transporter (Chen et al., 2022). The emissions ratio of the endodermal cell layer 
remained high when roots were grown under low nitrate conditions and increased slowly 
compared to other cell types, which coincides with the previous result of the endodermis as a 
nitrate regulatory hub for plants to respond and adapt to their environment (Chen et al., 2022; 
Contreras-López et al., 2022).  

In addition to cell type-specific nitrate responses in the root regulating plant growth and 
development, there are also nitrate responses localized in the shoot. For example, 
NRT1.1/NPF6.3 and NLP7 drive stomatal opening by controlling the entry of nitrate into guard 
cells, resulting in nitrate-induced depolarization and increased nitrate levels during stomatal 
opening (Guo et al., 2003; Castaings et al., 2009). Indeed, nrt1.1/npf6.3 and nlp7 plants are 
impaired in nitrate content, reducing stomatal opening and water loss, resulting in improved 
drought tolerance (Guo et al., 2003; Castaings et al., 2009; Araus et al., 2020). However, the role 
of nitrate signaling mediated by NRT1.1/NPF6.3 and NLP7 in the control of stomatal opening 
remains to be elucidated.  
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  These studies have shown us how cell type-specific nitrate responses can modulate root 
and shoot growth, raising the need to implement single-cell level approaches to understand 
organ-level plasticity. As an in silico approach at single-cell resolution, Lhamo and Luan (2021) 
profiled putative nitrate transporters in root cell types to understand nitrate uptake and 
translocation from the soil (Denyer et al., 2019; Ryu et al., 2019; Lhamo and Luan, 2021). The 
dual-affinity transporter NRT1.1/NPF6.3 and high-affinity transporters NRT2.1, NRT2.2, NRT2.4 
and NRT2.5, were highly expressed in epidermis and root cap cells, concomitant with the role of 
sensing NO3- changes in soil (Ho et al., 2009), and uptake function respectively (Lhamo and Luan, 
2021). NPF1.1 and NPF1.2 were expressed in procambium cells, indicating that they could be 
participating in loading NO3- to phloem and xylem cells in developing roots (Jouannet et al., 2015; 
Lhamo and Luan, 2021). These results indicate that in the future we will be able to generate maps 
of local and systemic nitrate sensing/signaling from root-to-shoot and vice-versa by using single-
cell approaches. 

Nitrogen responses across organs: Root-to-Shoot communication 

Because nitrogen availability in the soil changes constantly, plants have developed 
communication systems that regulate nitrate uptake from the root according to the nutritional state 
of the soil and the plant. In response to changes in nitrate availability, the nitrate-response targets 
the fast reallocation of resources to rebalance biomass between below- and above-ground 
organs, as well as the regulation of physiological activities such as root nitrate transport. For 
example, heterogeneous nitrate supply leads to greater development, growth, and nitrate 
transport stimulation in the roots that are locally exposed to nitrate (Ruffel et al., 2011). Such 
integrated/adapted responses result from a combination of i) continuous and long-distance 
exchange of signals through the vascular system and ii) organ specific GRNs. Currently, the 
challenge is to understand how these multiple signals interact and converge toward regulating 
central physiological and developmental processes in respective organs. 

Nitrate-related long-distance signals are just starting to be understood and as of now 
belong to the following classes of molecules: hormones (e.g., root-to-shoot trans-zeatin cytokinin 
signal) (Poitout et al., 2018), small peptides (e.g., root-to-shoot C-terminally Encoded Peptides; 
CEP) (Tabata et al., 2014), and microRNAs (so far only functionally characterized in legumes to 
regulate the nodulation) (Gautrat et al., 2021). The coordination of root/shoot communication and 
growth responses may rely on other types of long-distance signals that remain to be characterized 
such as ions or metabolites. However, connections between the known systemic signals and the 
discovered nitrate-related local and systemic signaling pathways are starting to be proposed. 
Thereby, improving our mechanistic understanding of the nitrate signaling network. In addition to 
the nitrogen-regulated systemic response of root activity, it has been known for a long time that 
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root nitrate supply is a main input for shoot growth. Interestingly, recent findings indicate that once 
again, multiple signals likely co-exist to properly coordinate the activity of this aerial organ. Several 
studies have reported that nitrate in the root induces the synthesis of cytokinins (CK) like tZ-type, 
which are then translocated to the shoot (Osugi et al., 2017; Poitout et al., 2018). Interestingly, 
this “CK neo-synthesis” in the root has recently been shown to be under the control of the master 
nitrate signaling regulator NLP7, contributing with CK translocation to the shoot and upregulation 
of cytokinin response factors (CRF) (Abualia et al., 2022). In this manner, CRFs directly induce 
the expression of auxin transporters (PINs), resulting in auxin transport and shoot growth (Abualia 
et al., 2022).  

A very sophisticated example of interaction between systemic signals and nitrate signaling 
is the case of CEP peptides. CEPs act as root-derived peptides that ascend the nitrate starving 
signal to the shoot, where the production of a nitrate descending signal induces the expression of 
root nitrate transporters NRT2.1, NRT3.1 and the transceptor NRT1.1/NPF6.3 to compensate for 
the lack of nitrate in the soil (Figure 4C) (Tabata et al., 2014). Years later, Ohkubo et al. identified 
the nitrate descending signal as a polypeptide named CEP Downstream 1 (CEPD1) and CEPD2 
(Figure 4C) (Ohkubo et al., 2017). In 2020, it was also established that CEPD-like 2 (CEPD-L2), 
together with CEPD1 and CEPD2, contributes to the nitrate demand systemic signaling (Ota et 
al., 2020). Interaction between tZ-type CK and these peptides also occurs as a response to nitrate 
starvation. Indeed, the presence of root-synthesized tZ-type CK is necessary in shoots to induce 
maximal expression levels of shoot-to-root CEPD1/2 and CEPD-L2 peptides, which are mainly 
induced by the nitrate starvation signal (Figure 4C) (Ota et al., 2020). Moreover, CEPD-L2 
positively regulates the expression of high-affinity nitrate transporters and NRT1.5, which loads 
nitrate into the xylem layer, demonstrating that these peptides have an important role in nitrate 
uptake and translocation to the shoot under starving conditions (Ota et al., 2020). Altogether, 
these new findings illustrate that shoots can also perceive and integrate nitrate-related signals, 
first by receiving a nitrate status signal (e.g. starvation) from the root and responding by sending 
another signal back to the root (e.g. peptides) to optimize their activity. For future studies, moving 
on from organ-specific nitrate-responses to cell-specific nitrate-response networks using single-
cell data will aid in our understanding of root-shoot-root communication in response to N.  

New aspects of N-response in time-and-space: Single-cell analysis   

Single-cell RNA-sequencing (scRNA-seq) has emerged as an important tool to better understand 
dynamic cellular processes such as spatiotemporal gene expression and developmental 
trajectories from heterogeneous cell populations in a single snapshot (Figure 5). As outlined 
above, previous studies that have examined the response of nitrate in specific cell types over time 
have relied on the use of GFP-marked cell lines followed by bulk RNA-seq (Walker et al., 2017; 
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Contreras-López et al., 2022). The use of single-cell sequencing over GFP-marked lines offers 
the following advantages, 1) to profile nitrate responses in all the cell types composing an organ, 
2) to track nitrate responses in cell types according to their developmental time in a single 
snapshot, 3) to examine nitrate responses in all cell types over time in a single experiment without 
the need for individual experiments for each GFP-marked cell line, and 4) to examine the effect 
of nitrate specific cell types of mutants without the need to develop multiple mutant lines crossed 
with specific GFP-marked cell lines. Despite these promising advantages, single-cell (sc) RNA-
sequencing data is still highly sparse due to cell dropouts. To capture the dynamic cell-specific 
response to nitrate that regulates multiple plant developmental processes, future studies should 
examine the cell type-specific responses over multiple time points using single-cell sequencing.  

The root has been widely used as a model for scRNA-seq due to its wide characterization, 
availability of reporter lines and cell type marker genes (Ryu et al., 2019; Zhang et al., 2019; 
Denyer et al., 2019; Jean-Baptiste et al., 2019; Shahan et al., 2022).  Indeed, the root is distributed 
in different developmental zones, including the less differentiated meristem zone, elongation 
zone, and the most differentiated maturation zone (Figure 5A). Therefore, we can analyze a 
gradient of cell differentiation from the root in a single experiment (Figure 5B). Single-cell 
transcriptomes offer the unique opportunity to generate computational ‘developmental 
trajectories’ (Figure 5C), in which we can order cell type progression from the beginning of cell 
fate until the final development of mature cell types. Once the developmental trajectory of a 
specific cell type is established, gene expression throughout development as ‘pseudotime’ can 
be graphed (Figure 5D). For example, Denyer et al observed that during trichoblast development, 
genes expressed at the beginning of cell fate (e.g., meristematic cells) were enriched for biological 
processes like DNA replication, cell proliferation, and ribosomal functions, whereas more 
differentiated trichoblast cells were enriched in expression of genes controlling unidimensional 
growth, root hair elongation, and maturation (Figure 5C) (Denyer et al., 2019). Furthermore, 
pseudotime trajectories coupled with GRNs also contributed to identifying the developmental 
time-regulated TFs that modulate the expression of target genes in a spatiotemporal manner 
(Denyer et al., 2019). Using the same trichoblast developmental trajectory, we find that 
NRT1.1/NPF6.3 expression exhibits a gradual increase as cells become differentiated into mature 
trichoblasts, which supports the function of nitrate signaling and uptake in this cell type (Figure 
5C, D). These current single-cell transcriptomic profiles represent plants grown in standard MS 
media, therefore, expression profiles under changing nitrate conditions need to be examined in 
future studies. 

Multiple studies in Arabidopsis have created root and/or shoot cell atlases from scRNA-
seq data with web-based platforms to examine the cell-specific expression profile for genes of 
interest (Table 2). To develop a comprehensive Arabidopsis root single-cell expression atlas, 
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Shahan et al analyzed single-cell data for 110,427 Arabidopsis root cells, including root data from 
previously published single-cell studies, to determine cell-specific gene expression over 
developmental time in each cell type (Denyer et al., 2019; Ryu et al., 2019; Shahan et al., 2022) 
(Table 2). In addition to single-cell studies, single-nuclei (sn) sequencing has also been used as 
an alternative method to avoid the limitations of developing protoplasts. To provide a holistic view 
of the Arabidopsis transcriptional response over plant development, Lee et al analyzed single-
nuclei data for 801,276 nuclei that represented seed-to-seed development across all major organs 
during the Arabidopsis life cycle (Lee et al., 2023) (Table 2). Furthermore, other researchers have 
developed web-based interfaces to explore gene expression in smaller-scale single-cell 
experiments, which include analysis of hormone-treated tissues and/or developmental trajectory 
analysis (Ma et al., 2020; Denyer et al., 2019; Ryu et al., 2019; Kim et al., 2021; Wendrich et al., 
2020; Graeff et al., 2021) (Table 2).  

The accessibility to single-cell datasets such as these, provide useful tools to form 
hypotheses on nitrate signaling and explore the spatiotemporal profiles of nitrate-responsive 
genes in roots/shoots under non-stress cell conditions (Figure 5). For instance, to understand 
nitrate uptake and translocation from the soil at single-cell resolution, Lhamo and Luan profiled 
putative nitrate transporters in root cell types using published single-cell transcriptomic data from 
Arabidopsis (Denyer et al., 2019; Ryu et al., 2019; Lhamo and Luan, 2021). Additionally, we can 
use the tools outlined in Table 2 to examine the expression profiles of genes of interest for nitrate 
response, such as the transceptor NRT1.1/NPF6.3, in roots (Figure 5C, D). We find that 
NRT1.1/NPF6.3 is expressed in trichoblast, atrichoblast, and lateral root cap, which is also 
supported with previous studies (Guo et al., 2003; Yang et al., 2008; Denyer et al., 2019). This is 
also in line with the function of NRT1.1/NPF6.3 in nitrate uptake and signaling, the location of 
NRT1.1/NPF6.3 expression in the outer cell layers allows for easy access to nitrate in the soil 
(Contreras-López et al., 2022). 
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Table 2. Web browsers available to visualize cell type-specific gene expression 
from single cell/nuclei datasets in Arabidopsis. 

Name Description URL References 

Arabi Atlas data 

Single cell gene expression 
in specific root cell types 
over developmental time for 
each cell type 

https://phytozome-
next.jgi.doe.gov/too
ls/scrna/ 

(Denyer et al., 2019; 
Ryu et al., 2019; 
Goodstein et al., 2012; 
Shahan et al., 2022) 

Arabidopsis 
Developmental 
Atlas Viewer 

Single nuclei transcriptome 
data for cell type-specific 
expression of genes 
throughout plant 
development stages 

http://arabidopsisde
vatlas.salk.edu/ (Lee et al., 2023) 

Plant sc Atlas 

Resource and visualization 
tools for multiple single cell 
datasets in roots and shoots 

https://bioit3.irc.uge
nt.be/plant-sc-atlas/ 

VIB Ghent University, 
(Wendrich et al., 2020b; 
Graeff et al., 2021; 
Yang et al., 2021a; 
Nguyen et al., 2023) 

The Plant scRNA-
seq Browser 

Single cell gene expression 
in roots and shoot cell types 
including trichoblast, 
atrichoblast, and cortex 
pseudotime 

https://www.zmbp-
resources.uni-
tuebingen.de/timme
rmans/plant-single-
cell-browser/ 

(Ma et al., 2020; 
Denyer et al., 2019; 
Kim et al., 2021) 

 
  

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koae038/7608181 by IN

R
A user on 23 February 2024



23 

Figure 5. Investigating spatiotemporal gene expression using single-cell RNA sequencing 
in Arabidopsis thaliana. A) Longitudinal view of the root shows different developmental zones 
from young (meristematic) to mature (maturation zone), which is used as a model for single-cell 
analysis to construct developmental trajectories in a single experiment (Denyer et al., 2019; Rich-
Griffin et al., 2020). B) Thousands of protoplasts or nuclei at different developmental stages are 
used for single-cell library construction (Swift et al., 2022). C) Computational analysis of scRNA-
data allows the construction of ‘developmental trajectories’ of root cells expressing a gene of 
interest (red dots), NRT1.1/NPF6.3 using The Plant scRNA-seq Browser with representative 
screenshots from this tool (Denyer et al., 2019; Ma et al., 2020) (Table 2). D) ‘Pseudotime’ 
expression of NRT1.1/NPF6.3 from young meristematic cells to mature cells show that NRT1.1 
expression is highly expressed in differentiated trichoblast (Denyer et al., 2019; Ma et al., 2020). 
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Building upon the ‘pseudotime’, cell type-specific gene expression can be monitored in 
“real-time” by adding time-series response data taken throughout development or in response to 
environmental stimuli (Swift et al., 2022). For example, Nolan et al generated brassinosteroid (BR) 
treated time-series expression data of 210,856 single-cell transcriptomes, and used GRNs 
analysis to identify new TFs that activate cell wall-regulated genes in cortex cells to promote 
elongation (Nolan et al., 2023). Using this approach, it is possible to determine the dynamic nature 
of how nitrate regulates developmental processes like lateral root and root hair development in 
time and space. We propose future studies that incorporate both single-cell profiling and time-
series nitrate response assays. Using time-series nitrogen response single-cell data can create 
cell type-specific developmental trajectories and GRNs to identify the TFs that regulate cell 
development during early and late nitrate responses, together with their predicted target genes. 
Thus, enhancing our understanding of how the plant assimilates and responds to nitrate supply 
to engineer plants with enhanced NUE at the single cell type level.  

Following pseudotime and GRN analysis, scRNA-seq of mutant plants will provide new 
layers of information on nitrate transport and signaling. To date, there are a few studies including 
single-cell sequencing of mutants to follow changes in developmental trajectories from 
Arabidopsis roots (Shahan et al., 2022; Nolan et al., 2023). For instance, SHR and SCR are 
important TFs for cell identity and differentiation, whereas BRI1 is an important receptor for BR 
signaling (Shahan et al., 2022; Nolan et al., 2023). The analysis of shr and scr single-cell 
transcriptomes revealed that there is a putative loss of pericycle identity in shr mutant and a 
putative trans-differentiation from cortex to endodermis cells in the scr mutant (Nolan et al., 2023). 
While Nolan et al (2023) generated cell-specific bri1 CRISPR mutants by guiding Cas9 expression 
into cortex or epidermis cells using as background a bri1 plant complemented with 
pBRI1:BRI1:mCitrine. The cortex mutant lines displayed shorter cortex cells in the mature zone 
but not in the meristem zone, whereas the epidermis mutant lines presented shorter cortex cells 
in both zones, suggesting that BR signaling is necessary in both epidermis and cortex to promote 
cell expansion by modulating cell-wall genes in the elongation zone (Nolan et al., 2023). These 
results demonstrate that scRNA-seq can address cell identity and signaling pathways in the 
context of space and time, being also an interesting approach for future N-response studies. 

Together with scRNA-seq, single-cell sequencing of accessible chromatin sites will 
contribute to more resolutive GRNs and will shed light on TFs involved in spatial and temporal 
regulation during nitrogen responses. Cell type-specific regulation of gene expression is in part 
modulated by a dynamic chromatin state that responds to development and environment. 
Changes in the chromatin landscape are reversible and affect the binding of regulatory proteins, 
such as TFs, controlling gene expression. With single-cell assay for transposase-accessible 
chromatin (scATAC-seq) as a strategy to uncover putative TF-binding sites during nitrate-
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responses, we can obtain highly resolutive GRNs considering cellular heterogeneity, resulting in 
cell type-specific accessibility variance and TF-target regulation (Buenrostro et al., 2015). 
Moreover, together with scRNA-seq approaches, it is possible to correlate chromatin regulation 
over gene expression across cell types as determined recently by the human ENCODE project 
and Arabidopsis roots (Buenrostro et al., 2015; Farmer et al., 2021; Gulko and Siepel, 2019; 
Dorrity et al., 2021). Single-cell ATAC-seq in roots has also revealed more accessible and 
dynamic sites than bulk ATAC-seq, suggesting that a more resolutive network needs to be 
accompanied by single-cell expression of TFs (Dorrity et al., 2021). Indeed, by integrating 
snATAC-seq and snRNA-seq from Arabidopsis roots, Farmer et al. led to the identification of 
11,858 genes overlapping with chromatin-accessible sites. A high correlation (p < 10E-05) was 
obtained when comparing sn/scRNA-seq and snATAC-seq of root marker genes (Farmer et al., 
2021). Overall, in the future, both open chromatin sites and gene expression profiles could be 
used as biological markers for cell type identity and differentiation level under different nitrogen 
conditions or time series. 

Model-to-crop: Nitrogen sensing and signaling and its impact on agricultural 
outcomes 

How can we use results from model species such as Arabidopsis to have an impact on 
NUE in crops? In reference to this question, a follow-up document to the United States White 
House’s Executive Order 14081, a set of goals for “Harnessing Research and Development to 
Further Societal Goals” were established and includes multiple goals to improve NUE in 
agricultural practices (The White House Office of Science and Technology Policy, 2023).  
Specifically, the goals in the White House Report are highly relevant to current and future NUE 
studies, which include, reducing nitrogen emissions in agriculture by engineering plants with 
increased nitrogen use efficiency, improving fertilizer practices, and manipulating plant 
microbiomes to produce plants capable of growing in nutrient-poor land. To accomplish these 
goals, we review current research that focuses on i) how we can apply our knowledge of nitrogen 
in the model system Arabidopsis to crop species and ii) understanding how microbial communities 
affect nitrogen uptake and availability in agriculture. 

Advances in our base knowledge of nitrogen uptake, transport, and signaling have greatly 
benefited from studies in the model Arabidopsis, however, we must develop ways to apply this 
knowledge base to crops. With the substantial progress in omics technology and the availability 
of bulk- and single-cell RNA-seq datasets accumulated in the past two decades, cross-species 
comparisons of genetic information have been gaining momentum (Table 3) (Katari et al., 2010; 
Alvarez et al., 2021; Xu et al., 2022; Fu et al., 2022; Chen et al., 2021). The interspecific 
comparisons, which can be made at the level of genomic sequences, gene expression, co-
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expression networks, expression atlas, expression quantitative trait loci (eQTL), and gene 
regulatory networks, open the possibility of knowledge transferring from model organisms to 
economically important species. For example, in Obertello et al., a cross-species N-regulatory 
network between rice and Arabidopsis was constructed by; i) identifying the N-responsive 
differentially expressed genes in one species as the starting point; ii) constructing the edges using 
metabolic interactions, protein-protein interactions, and correlated expression; and iii) only retaining 
the nodes whose orthologs were also N-responsive in another species (Obertello et al., 2015). The 
identified rice candidate TFs targeting the conserved N-regulatory network including, 
HYPERSENSITIVITY TO LOW PHOSPHATE-ELICITED PRIMARY ROOT SHORTENING 1 
/NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR  (HRS1/NIGT1) (HRS1 
HOMOLOGs (HHO), OsHHO3 and OsHHO4) and TGA (OsbZIP11) transcription factors were later 
functionally validated as key regulators of N-deficiency responses in planta (Ueda et al., 2020). 

In more recent rice studies, nitrogen-dose sensing in the field was examined as the 
interaction between nitrogen (N) and water (W) (Swift et al., 2019). It was discovered that nitrogen 
dose is sensed as either moles (N-moles), molarity (N/W), or the synergistic interaction with nitrogen 
and water (NxW) (Swift et al., 2019). Notably, it is the interaction between N and W (N/W or NxW) 
that positively correlates with phenotypic outcomes such as grain yield and water-use-efficiency in 
the field (Swift et al., 2019). These conclusions were determined using linear models that analyzed 
RNA-seq and phenotypic data from rice exposed to a factorial matrix of N-by-W conditions of 
different rice varieties in both laboratory and field conditions (Swift et al., 2019). Using this N-by-W 
expression and phenotype dataset, Shanks et al 2022 identified the TFs, OsbZIP23, and Oshox22, 
as regulators of NUE grain yield (NUEg)  by developing gene regulatory networks that linked TFs 
to target genes to field NUEg phenotypes (Swift et al., 2019; Shanks et al., 2022).  

Another widely used approach to uncover gene-to-trait relations from the network 
perspective is by associating co-expression network modules with either functional information or 
phenotypes. Cross-species weighted gene co-expression network analysis (WGCNA) 
(Langfelder and Horvath, 2008) has identified an N-regulatory network conserved between maize 
and sorghum, despite the difference in genome size and phylogenetic distance between these 
two species (Du et al., 2020).  Notably, ZmHPP, a top-ranked TF in regulating the conserved N-
regulatory modules, has an Arabidopsis homolog ATNITR2;2 (AT3G47980) which is also a hub 
gene (nodes with the most edges) in another co-expression network module for nitrogen signaling 
(Canales et al., 2014). Overall, these results consistently support the importance of conserved N-
regulatory networks in regulating the phenotypic response. 

Although tools exist to aid in orthology analysis, (Table 3) (Huerta-Cepas et al., 2019), the 
cross-species analyses are limited by the ortholog conversion methods, most of which assume 
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the sequence-based orthologs to have similar functions, the so-called Ortholog Conjecture, which 
is arguably applicable to all species as orthology inference tends to be more complicated than a 
straightforward one-to-one relationship due to genome duplication (Gabaldón and Koonin, 2013). 
This phenomenon is especially prominent in plant species that follow a pattern of genome 
evolution involving polyploidization followed by the loss or partial retention of duplicated genes 
(Wendel et al., 2016). As a result, plant genomes have highly complex gene families, making the 
identification of a single ortholog conceptually impossible. Considering that gene expression can 
serve as a proxy for gene function, a novel type of approach has been proposed to classify genes 
based on not only sequence similarity (genes in the same orthogroup) but also expression 
patterns (Das et al., 2016). Kasianov et al. constructed a pipeline that trained an XGBoost-based 
machine learning classifier using developmental transcriptome profiles and sequence-based 
ortholog information and was able to provide functional correspondence between genes from 
phylogenetically distinct species (Arabidopsis-maize and Arabidopsis-buckwheat) (Kasianov et 
al., 2023). This method has the potential to enable the selection of functionally similar orthologs, 
which is approximated by the expression patterns, even for species with distinct morphologies. 
Furthermore, conservative gene function is not always found between species, which is why 
mutant analysis and validation must be performed.  

In Cheng et al (2021), the authors exploited the evolutionary conservation of the N-
responses across species to identify genes of importance to NUE in a model (Arabidopsis) and 
crop (maize) (Cheng et al., 2021). Specifically, this study integrated the sequence-based and 
expression-based similarity in orthologs with machine learning modeling to infer gene-to-NUE 
phenotype relations in Arabidopsis and maize. To do this, the N-response differentially expressed 
genes (N-DEGs) conserved in Arabidopsis and maize, as determined by sequenced-based 
orthology, were used as gene features (predictors) in the machine learning, gradient boosting-
based method XGBoost (Chen and Guestrin, 2016). The output of XGBoost gives each gene 
feature an importance score for how that gene contributes to a trait (i.e. NUE) (Cheng et al., 2021). 
The top-ranked TFs in the XGBoost models that were important in predicting gene-to-NUE 
relations were functionally validated using the T-DNA loss-of-function mutants in Arabidopsis. 
Remarkably, a model-to-crop validation was performed using maize nfya3 mutant whose 
Arabidopsis ortholog NF-YA6 (AT3G14020) is the top TF in Arabidopsis XGBoost model and 
displayed enhanced grain NUE compared to wild-type counterparts in the field experiment (Cheng 
et al., 2021). In addition, the gene regulatory networks were constructed using a Random Forest-
based algorithm GENIE3 to identify the TFs regulating the conserved N-DEGs predictive of NUE. 
Functional validation using Arabidopsis mutants defective in the TF hubs (nodes with the most 
edges) displayed higher NUE (Cheng et al., 2021). These results demonstrated the utility of cross-
species transcriptome analyses in optimizing machine learning models and constructing GRNs. 
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Table 3. Web-based platforms for analysis of genomic data across plant species.  
Name Description URL References 

The Bio-Analytic 
Resource for Plant 
Biology (BAR) 

User-friendly tools to explore, 
visualize, and analyze large 
datasets from plants 

https://bar.utoronto.c
a 

University of 
Toronto, Waese 
and Provart 2017 

VirtualPlant 

Resource that integrates plant 
genomic data with visualization 
and analysis tools 

http://virtualplant.bio.
nyu.edu/cgi-
bin/vpweb/ 

(Katari et al., 
2010) 

EggNOG 

Database for orthology 
relationships, gene evolutionary 
relationships and functional 
annotations for multiple species 

http://eggnog5.embl.
de/#/app/home 

(Huerta-Cepas et 
al., 2019) 

ConnecTF 

Platform that integrates 
genome-wide studies to develop 
and validate networks with 
AUPR analysis https://connectf.org 

(Brooks et al., 
2021) 

ChIP-Hub 
Application to explore the plant 
regulome and epigenome 

https://biobigdata.nju.
edu.cn/ChIPHub/ (Fu et al., 2022) 

Plant Single Cell 
Hub 

Single cell data repository for 
plant species 

http://jinlab.hzau.edu.
cn/PsctH/ (Xu et al., 2022) 

PlantscRNAdb 

Database and browser single 
cell expression from multiple 
species including marker gene 
selection and analysis for 
specific cell types  

http://ibi.zju.edu.cn/pl
antscrnadb/index.php 

(Chen et al., 
2021) 

 
Given the importance of developing high-confidence cross-species networks, the 

ConnecTF platform (connectf.org) was developed for researchers to perform interactive and 
automated Precision/Recall analysis (AUPR) on their uploaded networks, as well as to build and 
visualize networks, and compare validated datasets for one or more TFs in Arabidopsis, rice, and 
maize (Brooks et al., 2021) (Table 3). To facilitate these analyses, the open-source ConnecTF 
web platform includes the validated TF-target gene data generated using the plant cell-based 
TARGET system, along with published in planta TF perturbation data, ChIP-seq, and DAP-seq 
data. Examples of how ConnecTF can be used to develop high-confidence networks using AUPR 
analysis have been published for Arabidopsis (Brooks et al., 2021) and rice (Shanks et al., 2022). 

In addition to cross-species networks and machine learning, single-cell RNA-seq data can 
be utilized to uncover conserved regulatory programs and key regulators in specific cell types 
between species (Chen et al., 2021; Xu et al., 2022) (Table 3). Cell type-specific N-responses in 
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crops have been examined on plants grown under low N stress conditions using single-cell RNA-
sequencing (scRNA-seq). Like Arabidopsis, studies in crops like maize and rice also show cell 
type-specific responses to N in the root using single-cell sequencing technology (Li et al., 2022; 
Wang et al., 2021b). For example, in maize studies, the nitrate assimilation genes like ZmGS2 
(glutamine synthetase 2), and ZmNAR2.1 (high-affinity nitrate transporter) were induced 
specifically in the epidermis (Li et al., 2022). One limitation of single-cell studies in crop species 
compared to Arabidopsis is the lack of well-defined cell-specific marker genes derived from cell 
type-specific studies and transcriptomes (Birnbaum et al., 2003; Efroni et al., 2015). To address 
this issue, databases that include single-cell studies in multiple plant species offer tools to identify 
marker genes for specific cell types in multiple crop species (Chen et al., 2021; Xu et al., 2022) 
(Table 3). Additionally, the new PHYTOMap (plant hybridization-based targeted observation of 
gene expression map) technique was developed as a fluorescence in situ hybridization method 
for whole-mount tissue that can be applied to single-cell data for spatial analysis of gene 
expression and to define marker genes for specific cell types (Nobori et al., 2023). This technique 
developed in Arabidopsis has the potential to be applied to crops to assist in cluster gene 
annotation from single-cell studies and marker gene validation without the need to develop time-
consuming transgenic reporter lines (Nobori et al., 2023). Furthermore, this method is developing 
rapidly and can be applied to identify the spatial cell type-specific nitrogen response. How plant 
host-microbe interactions are affected by nitrogen levels in the soil is another area of nitrogen 
research that can benefit from single-cell technology as the colonization of microbes is a cell type-
specific response (Cole et al., 2021). For example, multiple studies have examined how 
nodulation in legumes is initiated in the cortex cells (Walker et al., 2017; Mahmud et al., 2020). 
During nodulation, legumes will recruit microbes that can perform biological nitrogen fixation 
(BNF), in which microbes use the enzyme nitrogenase to catalyze the conversion of abundant N2 
gas in the atmosphere into ammonia that can be assimilated by the host plant via glutamine 
synthase to form glutamine (Gautrat et al., 2021). To reduce the reliance on excess synthetic 
fertilizers, future research is examining how to harness nitrogen fixation by microbes and apply 
this process to benefit non-legume crops like maize, rice, and wheat (Mahmud et al., 2020; Wen 
et al., 2021). One way this can be accomplished is by engineering non-legumes to form nodules 
with N-fixing bacteria (Mahmud et al., 2020; Wen et al., 2021). Alternatively, crops can be 
engineered to secrete specific root exudates, which is a mixture of sugars, amino acids, fatty 
acids, and vitamins, to either recruit beneficial microbes that help improve nitrogen acquisition or 
to inhibit the colonization of microbes that might compete with nutrient acquisition (Hartman and 
Tringe, 2019). In addition to engineering the crop itself, there is also an effort to use specific 
microbial inoculants as biofertilizers (Klimasmith and Kent, 2022). This can be done by either 
adding microbes in the soil that will form endosymbiotic relationships with the plant to increase 
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nitrogen fixation or by adding free-living microbes that offer greater nitrogen availability to the 
plant in the soil (Klimasmith and Kent, 2022; Cole et al., 2021).   

Nitrogen research in the Age of Artificial Intelligence (AI) 

Since Alan Turing first proposed the concept of machines capable of self-learning and 
self-instruction in 1950, the field of artificial intelligence (AI) has experienced explosive growth. 
AI, in general, refers to the ability of machines to simulate the intelligence observed in complex 
organisms.  

Increasingly, AI is intersecting with the field of biology. Machine learning and in particular 
AI, mainly in the form of Deep Neural Net (DNN) (Lecun et al., 2015), are transforming the way 
science is performed. While traditional model-driven methods still play a valuable role in analyzing 
biological data, they often lack the capacity to effectively harness vast amounts of available data, 
including big data, to extract information, forecast data behavior, and comprehend complex data 
relationships. Particularly over the last decade, we have seen a dramatic increase in the number 
of large, highly complex datasets being generated from biological experiments, quantifying 
molecular variables such as gene, protein, and metabolite abundance, microbiome composition, 
and population-wide genetic variation, to name just a few. Community efforts across research 
disciplines are regularly generating petabytes of data. The nitrogen signaling field has been very 
active to use and develop new algorithms to decipher the obvious complexity of the nitrogen 
signaling pathway even before the rise of the DNN. The nitrogen community has been particularly 
keen on using several mathematical models to decipher and predict the actual interactions 
between transcription factors and their target genes, or to model solute transport and 
developmental processes. These approaches ranged from linear models (Krouk et al., 2009; 
Gutiérrez et al., 2007; Ristova et al., 2016), state-space modeling (Krouk et al., 2010; Brooks et 
al., 2019; Alvarez et al., 2020), to “ordinary differential equations” (ODEs) embedded in organ and 
tissue models (Ötvös et al., 2021; Boer et al., 2020). DNNs are very good at image classification 
and segmentation as they were originally developed for computer vision (Lecun et al., 2015).  This 
is why now an important trend is rising as it relates to the measure of N content on plants from 
image analysis. Most of the time these approaches use multi-spectral images to classify the N 
content of different crops including maize (Nguyen et al., 2023; Wijewardane et al., 2023), cotton 
(Xiao et al., 2022), or sorghum (Wijewardane et al., 2023).  

Impressive advancements in AI in biology have been made, for example, in precise 
identification of the three-dimensional structure of biological molecules, such as AlphaFold, a 
critical task with significant implications for biological research (Jumper et al., 2021; Lin et al., 
2023) and now widely used in biology. But the potential for AI to replicate the capacities of living 
systems, particularly human intelligence, represents a significant achievement and a turning point 
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in how science is performed. AI is now capable of object recognition and decision-making, utilizing 
cognitive and perceptual abilities akin to those observed in biological systems. A relatively more 
recent branch of neural networks called “natural language processing” (NLP), originally developed 
to understand human languages (including translating one language into another), has been 
applied to biological questions and to published articles or written information and sequence-
related data, including DNA or protein sequences. In the context of NLP, self-supervised large 
language models, such as “generative pre-trained transformer 3” (GPT-3) (Brown et al., 2020) or 
“pathways language model” (PaLM) (Chowdhery et al., 2022), have demonstrated impressive 
abilities to extract meaningful pieces of world knowledge from being exposed to an extremely 
large quantity of text (billions of words). A relevant challenge is related to how to access the 
knowledge encoded by the internal representation of a large AI model. Suprisingly, recent 
research (Gao et al., 2021) has found that it is possible to steer these large models to output 
relevant knowledge from a novel target task using just a prompt. Specifically, by using a prompt 
that provides the model with a human language description or several examples of what one 
wants them to do, the model can output meaningful knowledge related to a target task. This 
learning strategy, referred to as contextual prompting, offers a new degree of control to selectively 
access the knowledge encoded in the internal representations of a large language model. 
Nevertheless, it remains to be assessed how useful and in which way tools like NLP models or 
ChatGPT, trained specifically with scientific literature, will be for scientific research. 

AI-based algorithms and programs continue to emerge with diverse applications from 
basic research to precision farming. Precision farming has the potential to revolutionize various 
agricultural practices, ranging from soil management and water analysis to accurate modeling of 
fertilizer requirements, as well as the optimization of pesticides, insecticides, herbicides, yield 
projections, and overall crop management. These advancements in AI intervention can play a 
pivotal role in meeting the increasing demands for food from a growing global population. Early 
prediction and identification of agricultural problems, as well as optimization of production 
practices, are key areas that can greatly benefit from AI applications. Such approaches not only 
have the potential to save significant costs but also mitigate environmental impacts, leading to 
more sustainable agricultural practices. 

Conclusions 

In this review, we examine how studies of nitrogen sensing and signaling over time and 
space have begun to uncover the underlying dynamic regulatory networks that mediate changes 
in plant metabolism and development. We also explore how emerging experimental and 
computational techniques can be applied to advance nitrogen research. This includes leveraging 
new experimental approaches such as single-cell sequencing to unravel the relay of nitrogen 
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signaling in specific cell types over time and its effect on crucial processes, like cell differentiation, 
to modulate organ development. On the other hand, computational methods like machine learning 
and artificial intelligence will augment experimental nitrogen research endeavors to uncover the 
mechanisms by which plants sense and respond to nitrogen sources in their environment.  We 
also highlight how model-to-crop translational studies can be used for practical gain in enhancing 
NUE in agriculture. 
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