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Introduction

Measuring gene expression: Microarrays and RNA-seq

High-throughput biological assays can measure the abundance of DNA or
RNA sequences for tens of thousands of genes simultaneously

Microarrays (1995 - )

Sequence abundance is a function of the flouresence level recovered
after a hybridization process: continuous data ⇒ we typically model
log2 intensities using normal distributions

RNA sequencing (∼2008 - )

Number of sequenced reads (counts) mapping to a gene is considered
to be linearly related to the abundance of the target feature: count
data
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Introduction

Overview of RNA-seq experiment and analysis

RNA-seq experiment and analysis

1 Experimental design

2 Experiment: sequencing (library) preparation, manufacturer
protocols, etc.

3 Pre-processing steps: alignment/assembly, quality assignment

4 Expression quantification: per-gene or per-transcript

5 Analysis: normalization, differential analysis (estimation, testing),
clustering, prediction, ...
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Introduction

RNA-seq experimental design

Randomization and Control

How many experimental conditions to be compared? (pairwise vs.
multiple comparisons)

How many biological or technical replicates can we afford to have?
($$)

How many sequencing runs/flowcells (with 8 lanes per flowcell)?

Type of sequencer (Solexa/Illumina, 454, SOLiD)

Multiplexing?
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Introduction

Technical versus biological replicates

Technical replicates:

Multiple sequencing lanes for the same individual

Enables an estimation of technical effects

⇒ Inference about a particular RNA sample

Biological replicates:

mRNA extractions from separate organisms or cell lines under the
same experimental condition

More variable: technical + biological variation

⇒ Inference about a biological population
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Introduction

RNA-seq pre-processing steps

After performing the RNA-seq experiment, bioinformatics takes over:

Calling base pairs (A, C, G, or T?)

Alignment: figuring out which sequencing reads belong to which
gene by aligning them to a reference sequence using annotation

ANRV386-GG10-07 ARI 29 July 2009 0:56

of each base is determined from the fluorescent
readout of two successive ligation reactions. An
advantage of the two-base encoding scheme
is that each position is effectively probed
twice, in principle allowing for the distinc-
tion of sequencing error from a true sequence
polymorphism.

APPLICATIONS OF
NEW-GENERATION
TRANSCRIPTOME SEQUENCING

Protein-Coding Gene Annotation

Despite the availability of complete genome
sequences from humans and other organisms,
much of these genomic data are not fully or
even well understood (13). A complete genome
annotation would require knowledge of all
transcription start and polyadenylation sites,
exon-intron structures, splice variants, and
regulatory sequences. Despite recent advances,
complete annotation information is not avail-
able for the majority of metazoan genes (13).
Sanger-based transcriptome sequencing in the
form of ESTs or FLcDNAs has provided an ac-
curate and effective means for annotating many
of the more abundant protein-coding genes
(1, 31, 60). However, the limitations of the
Sanger sequencing method restrict the utility
of these approaches to the annotation of most
abundantly expressed genes. For instance, it
has been estimated that most EST studies using
Sanger sequencing detect only about 60% of
transcripts in the cell and thus do not provide a
complete representation of the transcriptome

(13). This information gap can be addressed
using the next-generation sequencing tech-
nologies. For instance, a single run on the 454
machine is capable of generating 400,000 ESTs
(6) compared to 720 ESTs generated by Sanger
sequencing in earlier studies (41).

In genome annotation studies, ESTs are
aligned to reference genome sequences, thus
revealing the presence of exons, introns, exon
junctions, and transcription boundaries for the
captured genes (Figure 3). The transcriptome
sequences can be aligned to the genome of ei-
ther the same species (cis alignment) or a re-
lated species (trans alignment) if a reference
genome sequence is not available. To date,
next-generation sequencing technologies have
been used to generate EST libraries for many
model organism species and human tissues (see
Reference 45 for a review).

EST sequencing is particularly fruitful at
providing sequence and annotation informa-
tion for species where no reference genome se-
quence is available. In such cases, annotations
can be made by comparative analysis of the de-
rived EST sequences with reference genomes of
related species (trans alignment). For instance,
a recent study used 454 technology to gener-
ate 148 Mb of EST data from Eucalyptus gran-
dis, a tree species with little genomic informa-
tion available (52). The 454 technology has also
been used to provide annotation information
for the genome of wasp Polistes metricus (70)
and maize Zea mays (20). Due to the longer
read length compared to that produced by other
new sequencing technologies (Table 2), ESTs
generated by 454 can be effectively used for de

Reference genome sequence

Sequencing
reads

Exon2Exon1 Intron1 Intron2 Exon3

Potential
novel exon 

Potential
novel intron

Figure 3
Protein-coding gene annotation using transcriptome sequencing data. This figure illustrates how novel
exons and introns can be discovered by mapping transcriptome sequencing reads to an annotated reference
genome sequence.
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Introduction

Quantifying gene expression

Ambiguity in reads (multireads, align to more than one isoform)

Gene 1 Gene 2

Isoform 1

Isoform 2

Isoform 1

Isoform 2

Longer genes yield more reads (as they have a higher sampling rate)

Gene 1 Gene 2

Gene counts depend on total number of sequences (= “library size”)

Gene 1 Gene 2

Gene 1 Gene 2

Sample 1

Sample 2
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Introduction

Quantifying gene expression

The quantification of gene expression is still an open and active
area of research: isoform-specific expression, strand-specific
expression, ambiguity in mapping, ...

Generally, focus on analysis of gene-level count-based measures of
expression
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Introduction

Data For Statistical Analysis (Raw Counts)

        -Group A-     -Group B- 

Gene  1 2 3 1 2 3 

13CDNA3 4 0 6 1 0 5 

A2BP1  19 18 20 7 1 8 

A2M  2724 2209 13 49 193 548 

A4GALT  0 0 48 0 0 0 

AAAS  57 29 224 49 202 92 

AACS  1904 129 4 507 3 965 

AADACL1 3 13 239 683 158 40 

[ ... ] 
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Introduction

Some statistical challenges for RNA-seq data

High dimensionality (large number of genes, few replicates)

Discrete, positive, and skewed data

Large dynamic range among genes (106 orders of magnitude),
presence of 0 counts

Typically remove absent genes (those with 0 counts for all samples)

Sequencing depth (= “library size”) varies among samples
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Exploratory analyses

Example data: 2 ×2 factorial experiment in chickens

Genotype (G, M) × diet (H, B) in two tissues (liver & adipose tissue
to be analyzed independently)

4 replicates per combination of factors
Goal is to identify genes that are differentially expressed:

Between genotypes, between diets
Interaction effect (genotype × diet)

andrea.rau@inrae.fr 12 / 97



Exploratory analyses

Example data: 2 ×2 factorial experiment in chickens

Genotype (G, M) × diet (H, B) in two tissues (liver & adipose tissue
to be analyzed independently)

4 replicates per combination of factors
Goal is to identify genes that are differentially expressed:

Between genotypes, between diets
Interaction effect (genotype × diet)

andrea.rau@inrae.fr 12 / 97



Exploratory analyses

Example data: 2 ×2 factorial experiment in chickens

Genotype (G, M) × diet (H, B) in two tissues (liver & adipose tissue
to be analyzed independently)

4 replicates per combination of factors
Goal is to identify genes that are differentially expressed:

Between genotypes, between diets
Interaction effect (genotype × diet)

andrea.rau@inrae.fr 12 / 97



Exploratory analyses

Example data: 2 ×2 factorial experiment in chickens

Genotype (G, M) × diet (H, B) in two tissues (liver & adipose tissue
to be analyzed independently)

4 replicates per combination of factors
Goal is to identify genes that are differentially expressed:

Between genotypes, between diets
Interaction effect (genotype × diet)

andrea.rau@inrae.fr 12 / 97



Exploratory analyses

Example data: 2 ×2 factorial experiment in chickens

Genotype (G, M) × diet (H, B) in two tissues (liver & adipose tissue
to be analyzed independently)

4 replicates per combination of factors
Goal is to identify genes that are differentially expressed:

Between genotypes, between diets
Interaction effect (genotype × diet)

andrea.rau@inrae.fr 12 / 97



Exploratory analyses

Example data: 2 ×2 factorial experiment in chickens

Genotype (G, M) × diet (H, B) in two tissues (liver & adipose tissue
to be analyzed independently)

4 replicates per combination of factors
Goal is to identify genes that are differentially expressed:

Between genotypes, between diets
Interaction effect (genotype × diet)

andrea.rau@inrae.fr 12 / 97



Exploratory analyses

R and Bioconductor

What is Bioconductor? (http://www.bioconductor.org)

Open-source and open-development software package implemented in
R for analysis of genomic data

Installing Bioconductor in R:

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("DESeq2")

> library(DESeq2) ## RNA-seq differential expression

> vignette("DESeq2")

andrea.rau@inrae.fr 13 / 97
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Exploratory analyses

Take an initial look at the chicken data

We will begin by loading necessary packages and data into R...

Create a matrix containing counts with gene IDs as row names

Create a design matrix identifiying the combination of factors for each
sample

Look at the first few rows of dataTP and designTP. What are the
dimensions of dataTP?

How many genes have zero counts for all samples? Remove them
now. How many genes remain?

What are the minimum and maximum counts?
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Exploratory analyses

Exploratory data analysis

Common to find biases, systematic errors (e.g., sample labels
accidentally switched), and unexpected variability (e.g., samples run
in two different batches) in genomic data

Graphing data may help detect such problems:

Histograms of log(counts+1)
Boxplots log(counts+1)
Barplots of library sizes
Scatterplots

After transforming data (regularized log transformation):

Principal components analysis or multidimensional scaling
Hierarchical clustering of samples
NOTE: transformations only used for exploratory data analysis!
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Exploratory analyses

A note on principal components analysis for RNA-seq data

Many exploratory analyses work best for (approximately)
homoskedastic data (= variance does not depend on the mean)

Check whether this appears to be the case for the chicken data

PCA directly on read counts will typically depend only on the few
most strongly expressed genes

⇒ typically transform (log, regularized log from DESeq2) normalized
count values before performing PCA
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Differential analysis Normalization

Outline

1 Introduction

2 Exploratory analyses

3 Differential analysis
Normalization
DESeq2: negative binomial model
HTSFilter: filtering weakly expressed genes
Correction for multiple testing
limma-voom: transformation + weighted linear model

4 Going beyond differential analysis...
DiffVar: differential variability analysis
coseq: co-expression analysis
goseq: functional enrichment analysis

andrea.rau@inrae.fr 17 / 97



Differential analysis Normalization

Differential gene expression

What is differential gene expression?

A gene is declared differentially expressed (DE) if an observed difference
or change in expression between two experimental conditions is statistically
significant, i.e., greater than expected just due to natural random variation.

⇒ Statistical tools are required to make such a decision

Often used to compare transcript levels in different types of cells:

Tissue: liver vs. brain

Treatment: drugs A, B, and C

State: tumor vs. nontumor

Across time
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Differential analysis Normalization

Differential gene expression

Differential expression gene-by-gene

For each gene i , is there a significant difference in expression between
groups A and B?

Normalization for differences in library size

Statistical model (definition and parameter estimation)

Per-gene testing for differential expression:

H0i : µi ,A = µi ,B
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Differential analysis Normalization

Differences in library size

Recall: Gene counts depend on total number of sequences (= “library
size”)

Gene 1 Gene 2

Gene 1 Gene 2

Sample 1

Sample 2

Comparison of a fixed gene between two samples must account for
differences in library size

Note: estimated normalization factors will be included directly within the
model (more on this later)...
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Differential analysis Normalization

Some initial optimism for RNA-seq normalization...

”One particularly powerful advantage of RNA-seq is that it can capture
transcriptome dynamics across different tissues or conditions without
sophisticated normalization of data sets.”
– Wang et al. (2009)
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Differential analysis Normalization

... but many technical biases inherent to RNA-seq data!

Technical variability within and between samples:

Total number of mapped reads per sample (”library size” or
sequencing depth)

RNA composition bias

GC-content

Gene length

...

Normalization

Process to identify and correct systematic technical biases removing the
least possible biological signal

Normalization is needed and has a large impact on the results of a DE
analysis (Bullard et al. 2010)

Technology and platform-dependant
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Differential analysis Normalization

Global normalization methods

Divide counts by a scaling factor for each sample

Adjustment of count distributions

Total number of reads (Marioni et al. 2008)

Upper Quartile (Bullard et al. 2010)

Median Med

Quantile (as with microarray data)
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Differential analysis Normalization

Global normalization methods (continued)

Adjustment for library size and length

Assumption: read counts are proportional to expression level, sequencing
depth, and gene length

Reads Per Kilobase Per Million mapped reads (Mortazavi et al. 2008):

RPKM =
number of mapped reads in the region

total reads
1×106 × region length

1000

Originally introduced for comparisons between genes within a sample
(correct bias due to gene length)

Note: Oshlack and Wakefield (2009) showed that correcting for gene
length in a differential analysis introduces a bias in per-gene variances
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Differential analysis Normalization

Effective library size normalization methods

Motivation

Different biological conditions express different RNA repertoires, leading to
different total amounts of RNA
⇒ Strongly DE genes may distort ratio of total reads!

Assumption

Most genes are not differentially expressed

Aim

Minimize the effect of (very) high-count genes
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Differential analysis Normalization

Effective library size normalization methods

Trimmed Mean of M-values (TMM): Robinson and Oshlack (2010)

Idea: Estimate global expression change between two conditions from
non-extreme genes

Filter genes with null counts, genes with very large expression (most
extreme 5%), and genes with large log ratios between conditions
(most extreme 30%)

For each sample, among remaining genes the TMM is the weighted
mean of log ratios between sample and a reference sample ⇒ Under
hypothesis of little DE, TMM should be close to 1

TMM correction applied to library sizes and NOT directly to counts
in the model
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Differential analysis Normalization

Effective library size normalization methods (continued)

DESeq: Anders and Huber (2010)

Idea: Non-DE genes should have similar read counts across samples

For each gene, the median of the ratio of its read counts to a
pseudo-reference sample (its geometric mean across all samples) ⇒
Under hypothesis of little DE, DESeq scaling factors should be close
to 1

DESeq correction applied directly to counts in the model
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Differential analysis Normalization

Conclusions of Statomique evaluation (Dillies et al. 2013)

Normalization for RNA-seq data is necessary and not trivial to account for
systematic variation between samples and differences in library composition

Hypothesis : the majority of genes is invariant between two samples

TMM and DESeq are most robust and lead to best performance in
per-gene DE analyses ⇒ these are scaling factors that are inserted
directly into the model
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Differential analysis DESeq2: negative binomial model

Outline
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Differential analysis DESeq2: negative binomial model

Some notation

Notation

Let Yij be the count (expression measure) for gene i in sample j , with
corresponding observed value yij .

i = 1, . . . , n genes

C(j) corresponds to the experimental condition of sample j

Typically, C(j) ∈ {1, 2} (two group comparison) but here we have
C(j) ∈ {GB,GH,MB,MH}
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Differential analysis DESeq2: negative binomial model

Poisson model in RNA-seq data

Is the Poisson model really appropriate for RNA-seq counts?

Nagalakshmi et al. (2008) and Marioni et al. (2008) found that genes
from different technical replicates have a variance equal to the mean
(= Poisson)

Generally, technical replicates are summed (as the sum of two Poisson
random variables is also Poisson)

Marioni et al. (2008), Fig 1 (hypergeometric test statistic to compare tech reps)

andrea.rau@inrae.fr 31 / 97



Differential analysis DESeq2: negative binomial model

Overdispersion in RNA-seq data

Counts from biological replicates tend to have variance exceeding the
mean (= overdispersion)...

What causes this overdispersion?

Shot noise: unavoidable noise inherent in counting process
(dominant for weakly expressed genes)

+

Technical noise: from sample preparation and sequencing, hopefully
negligable

+

Biological noise: unaccounted for differences between samples
(dominant for strongly expressed genes)
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Differential analysis DESeq2: negative binomial model

Overdispersion in RNA-seq data

Check for the presence of overdispersion in the data. Would a Poisson
model be appropriate?
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Hint: use the smoothScatter function, and plot on the log-scale
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Differential analysis DESeq2: negative binomial model

Negative binomial models

Negative binomial model

Pr(Yij = yij) = Negative binomial(µij , φi )

E(Yij) = µij

Var(Yij) = µij + φiµ
2
ij

We could consider φ (common dispersion parameter: easier to estimate
but unrealistic) or φi (per-gene dispersion parameter)...
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Differential analysis DESeq2: negative binomial model

Negative binomial models

Many genes, relatively few biological samples – so difficult to estimate
φi on a gene-by-gene basis

How to obtain estimates of overdispersion parameter for each gene?

Several proposed solutions

edgeR: borrow information across genes for stable estimates of φi

DESeq2: estimate the mean / variance relationship using parametric
regression
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Differential analysis DESeq2: negative binomial model

DESeq2 Bioconductor package: Love et al. (2014)

DESeq2 basics:

Most recent version of the original DESeq package

Negative binomial error model

Data-driven relationships of variance and mean estimated using
parametric regression for robust and moderated fit across genes
⇒ genes with similar expression strength have similar dispersion

Wald’s test (or likelihood ratio test) for null hypothesis
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Differential analysis DESeq2: negative binomial model

DESeq2 Bioconductor package: Love et al. (2014)

Assumptions:
1 Yij ∼ NB(µij , σ

2
ij), where µij is the mean, and σ2

ij is the variance, and

σ2
ij = µij + φiµ

2
ij

with dispersion φi

2 The mean µij is the product of a condition-dependent per-gene value
qij and a size factor (library size) mj :

µij = qijmj

log qij = Xjαi =
∑
r

xjrαir

where Xj is the design matrix and αi the vector of coefficients
3 Per-gene variance is a smooth function of the mean:

σij = f (qij)

andrea.rau@inrae.fr 37 / 97



Differential analysis DESeq2: negative binomial model

DESeq2 Bioconductor package: Love et al. (2014)

Assumptions:
1 Yij ∼ NB(µij , σ

2
ij), where µij is the mean, and σ2

ij is the variance, and

σ2
ij = µij + φiµ

2
ij

with dispersion φi
2 The mean µij is the product of a condition-dependent per-gene value

qij and a size factor (library size) mj :

µij = qijmj

log qij = Xjαi =
∑
r

xjrαir

where Xj is the design matrix and αi the vector of coefficients

3 Per-gene variance is a smooth function of the mean:

σij = f (qij)

andrea.rau@inrae.fr 37 / 97
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Differential analysis DESeq2: negative binomial model

DESeq2 Bioconductor package: Love et al. (2014)

Three sets of parameters need to be estimated:

1 Size factors mjk (normalization factors, cf earlier slides)

2 The smooth function f : R+ → R+ to model dependence of σij on
the expected mean qij

3 For each sample, n expression strength parameters qij
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Differential analysis DESeq2: negative binomial model

DESeq2 dispersion parameter estimation

Empirical Bayes estimation of gene-wise dispersions:
1 Estimate gene-wise dispersions using MLE: φ̂MLE

i
2 Fit a Gamma GLM to per-gene means and dispersions:

φ̂i = α0 + α1/qij

and obtain fitted dispersion estimates: φ̂i
3 Shrink gene-wise dispersion estimates towards estimates φ̃i

Fig. 1 from Love et al. (2014)

andrea.rau@inrae.fr 39 / 97



Differential analysis DESeq2: negative binomial model

DESeq2 parameter estimation (continued)

For each sample j , n expression strength parameters qij :

Average of counts from the replicates for each condition, transformed
to the normalized scale: q̂ij

Fit negative binomial GLM:

log q̂ij ∼ NB

(∑
r

xjrαir , φ̃i

)

Test the null hypothesis H0ir : αir = 0 with Wald’s test:

Waldir = α̂ir/SE(α̂ir ) ∼ N (0, 1)
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Differential analysis DESeq2: negative binomial model

DESeq2: Some practical considerations

Various default calculations not described here:

Shrinkage of log-fold changes for low-count genes
Automatic filtering of weakly expressed genes
Outlier detection via Cook’s distance

Data must be input as raw counts; normalization offsets are directly
included in the model

Each column should be an independent biological replicate

Check out the DESeq2 Users’ Guide for examples

Latest version: DESeq2 version 1.26.0 (Bioconductor 3.10)
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Differential analysis DESeq2: negative binomial model

Analyzing a 2×2 factorial experiment with DESeq2

Recall: we have 2 factors (genotype, diet) that each have 2 levels, and all
4 combinations are observed = factorial design

What are the comparisons of interest?
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Differential analysis DESeq2: negative binomial model

Analyzing a 2×2 factorial experiment as a single factor

Easiest way to set up analysis is to analyze the data as a single factor with
4 levels { GH, GB, MH, MB }:

designTP$group <- factor(paste0(designTP$genotype,

designTP$regime))

dds <- DESeqDataSetFromMatrix(countData = dataTP,

colData = designTP,

design = ~0 + group)

The model thus has four coefficients:

1. GB

2. GH

3. MB

4. MH
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Differential analysis DESeq2: negative binomial model

Analyzing a 2×2 factorial experiment as a single factor

Now we can extract the comparisons of interest by testing contrasts
H0 : C′α = 0.

Average diet effect:

(
1 1 −1 −1

)
GH
MH
GB
MB

 =

(GH + MH) − (GB + MB) = 0

Average genotype effect:

(
1 −1 1 −1

)
GH
MH
GB
MB

 =

(GH + GB) − (MH + MB) = 0
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Differential analysis DESeq2: negative binomial model

Analyzing a 2×2 factorial experiment as a single factor

Diet effect in each genotype:

GH − GB = 0

MH −MB = 0

Genotype effect in each diet:

GH −MH = 0

GB −MB = 0
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Differential analysis DESeq2: negative binomial model

Analyzing a 2×2 factorial experiment as a single factor

Genotype × diet interaction effect:

Is the effect of genotype different for each diet? Is the effect of diet
different for each genotype?

(GH − GB) − (MH −MB) =

(GH −MH) − (GB −MB) =

(GH + MB) − (GB + MH) = 0

andrea.rau@inrae.fr 46 / 97



Differential analysis DESeq2: negative binomial model

2×2 factorial experiment as classic interaction model

Also possible to analyze data as a classic model with two fixed effects and
an interaction effect:

dds2 <- DESeqDataSetFromMatrix(countData = dataTP,

colData = designTP,

design = ~ genotype + regime + genotype:regime)

The model thus has four coefficients that are NOT INTERPRETED AS
BEFORE:

1. Intercept

2. genotype M vs G

3. regime H vs B

4. genotypeM.regimeH
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Differential analysis DESeq2: negative binomial model

2×2 factorial experiment as classic interaction model1

Important to check the reference level of each factor (by default, first in
alphabetical order):

levels(designTP$genotype)

levels(designTP$regime)

Coefficient Interpretation

Intercept Baseline level of ref genotype (G) for ref diet (B)
genotype M vs G Difference between M and G for ref diet (B)
regime H vs B Difference between B and H for ref genotype (G)
genotypeM.regimeH Interaction between genotype and diet

1NOTE: depending on the version of DESeq2, the results for the single factor vs.
classic interaction model may not be exactly the same for the main effects due to slight
differences in shrinkage procedures
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Differential analysis DESeq2: negative binomial model

2×2 factorial experiment as classic interaction model

Diet effect in each genotype:

Reference level (G):

regime H vs B = 0

Non-reference level (M):

regime H vs B + genotypeM.regimeH = 0

Genotype effect in each diet:

Reference level (B):

genotype M vs G = 0

Non-reference level (H):

genotype M vs G+genotypeM.regimeH = 0
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Differential analysis DESeq2: negative binomial model

2×2 factorial experiment as classic interaction model

Genotype × diet interaction effect:

Is the effect of genotype different for each diet? Is the effect of diet
different for each genotype?

genotypeM.regimeH = 0
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Differential analysis HTSFilter: filtering weakly expressed genes

Outline

1 Introduction

2 Exploratory analyses

3 Differential analysis
Normalization
DESeq2: negative binomial model
HTSFilter: filtering weakly expressed genes
Correction for multiple testing
limma-voom: transformation + weighted linear model

4 Going beyond differential analysis...
DiffVar: differential variability analysis
coseq: co-expression analysis
goseq: functional enrichment analysis
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Differential analysis HTSFilter: filtering weakly expressed genes

Filtering in differential expression analysis

Differential analyses performed gene-by-gene, requiring a correction for
multiple testing (e.g., FDR control):

Stringent correction due to large number
of hypothesis tests

Usually assume p-values are uniformly
distributed under H0

p−values
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Filtering for RNA-seq data

Identify and remove genes that generate an uninformative signal

Only test hypotheses for genes passing filter ⇒ tempered correction
for multiple testing

Usually little discussion about appropriate filter & threshold
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Differential analysis HTSFilter: filtering weakly expressed genes

Defining a data-based filter for HTS data2

Let yj be the full vector of normalized read counts (e.g. after scaling raw
counts by effective library size) in a given sample j .

Idea:

Find the threshold s that maximizes the filtering similarity among
replicates in the same condition (C(j) = C(j ′)) using the Jaccard index:

Js(yj , yj ′) =
a

a + b + c

Sample j
Normalized
counts > s

Normalized
counts ≤ s

Sample j ′

Normalized
counts > s

a b

Normalized
counts ≤ s

c d

2Rau et al. (2013)
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Differential analysis HTSFilter: filtering weakly expressed genes

HTSFilter: Data-driven filtering threshold for HTS data

Multiple replicates/conditions typically
available ⇒ define a global filtering
similarity by averaging the pairwise
Jaccard indices within each condition:

J?s (y) = mean{Js(yj , yj′) : j < j ′ and C(j) = C(j ′)}

Data-based filter threshold s? = arg maxs J
?
s (y)

Proposed data-based Jaccard filter

Filter genes with normalized read counts ≤ s? in all samples
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Differential analysis HTSFilter: filtering weakly expressed genes

A word on data-driven threshold values...

Filtering threshold is specific to each dataset (tissue, organism, sequencing
depth, intra-condition variability ...)
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Differential analysis HTSFilter: filtering weakly expressed genes

Implementation of HTSFilter in the DESeq2 pipeline

> library(DESeq2)

> library(HTSFilter2)

...

> ## DESeq commands

> dds <- DESeqDataSetFromMatrix(...)

> dds <- DESeq(dds)

> ## HTSFilter

> ddsFilter <- HTSFilter(dds)$filteredData

...

... and if using HTSFilter, remember to use
independentFiltering=FALSE in the DESeq2 results function! (TRUE
by default)
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Differential analysis Correction for multiple testing

Outline

1 Introduction

2 Exploratory analyses

3 Differential analysis
Normalization
DESeq2: negative binomial model
HTSFilter: filtering weakly expressed genes
Correction for multiple testing
limma-voom: transformation + weighted linear model

4 Going beyond differential analysis...
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goseq: functional enrichment analysis
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Differential analysis Correction for multiple testing

DESeq2: Testing and distribution of raw p-values

Under H0, p-values are uniformly distributed...

Raw p−values
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Differential analysis Correction for multiple testing

Correction for multiple testing

Reminder: Thousands of genes are analyzed simultaneously!

Decision
Declared DE Declared NDE

Truth
m1 DE TP FN
m0 NDE FP TN

m

DE & NDE: differentially and non-differentially expressed
TP: true positives
FP: false positives
TN: true negatives
FN: false negatives
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Differential analysis Correction for multiple testing

Correction for multiple testing: An example

Suppose the following:

NO genes are differentially expressed (m = m0)

Each individual test is performed with significance level α

If m = 10, 000 and α = 0.05, 500 genes will be declared DE although
they are NDE

Correction for multiple testing

Control the global risk of having a false positive
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Differential analysis Correction for multiple testing

Definition of global risk

Family-wise Error Rate (FWER)

Probability of having at least one false positive

Bonferroni procedure: each test performed with significance level
α/m to control FWER at level α

VERY conservative, lacks power for large m
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Differential analysis Correction for multiple testing

Definition of global risk

False discovery rate (FDR)

Proportion of false discoveries (FP) expected among all discoveries (TP +
FP):

FDR = E

(
FP

TP + FP

)
if TP + FP > 0

= 0 otherwise

⇒ We are willing to accept a few Type I errors (FP) if their # remains
sufficiently small compared to total # of rejected hypotheses

Increases detection power compared to Bonferroni

Most commonly used approach: Benjamini and Hochberg (1995) via
p.adjust() function
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Differential analysis limma-voom: transformation + weighted linear model

Outline

1 Introduction

2 Exploratory analyses

3 Differential analysis
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Correction for multiple testing
limma-voom: transformation + weighted linear model

4 Going beyond differential analysis...
DiffVar: differential variability analysis
coseq: co-expression analysis
goseq: functional enrichment analysis
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Differential analysis limma-voom: transformation + weighted linear model

limma Bioconductor package: Smyth (2004)

A brief introduction (or reminder):

E(Yij) = Xjαi , where Xj is the design matrix and αi the vector of
coefficients (no assumption of normality)

Var(Yij) = wiσ
2
i with sample value s2

i , degrees of freedom fi , and
(known) weights wi

Contrasts of interest are βi = C′αi where C is the contrasts matrix

Ordinary test-statistic for rth contrast for gene i is

tir =
β̂ik
uir si

where uir is the unscaled standard deviation of contrast r
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Differential analysis limma-voom: transformation + weighted linear model

limma Bioconductor package: Smyth (2004)

Empirical Bayes shrinkage estimator:

Borrow information across all genes for more stable per-gene variance
estimates

Assume an inverse χ2 prior for σ2
i with mean s0 and f0 df

The posterior mean for the residual variance is

s̃2
i =

f0s
2
0 + fi s

2
i

f0 + fi

Then use the moderated test-statisic for rth contrast for gene i :

tir =
β̂ik
uir s̃i

where uir is the unscaled standard deviation of contrast r
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Differential analysis limma-voom: transformation + weighted linear model

limma-voom approach: Law et al. (2014)

To use the limma pipeline with RNA-seq, two steps are needed:

1 Transform data to log-cpm values:

log-cpm = log2

(
yij + 0.5

yj · + 1
× 106

)

2 Voom variance modeling for precision weights:
Plot log-mean counts versus

√
si , and fit a loess curve to

Precision weights wi = loess(log-mean counts)−4 used in standard
limma pipeline
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Differential analysis limma-voom: transformation + weighted linear model

limma-voom approach: Law et al. (2014)

Similarities with DESeq2 approach:

Correction for multiple testing needed

2 × factorial experiment may be analysed as a single factor or two
factors

Definition of contrasts as before

Data filtering for weakly expressed genes

In general, limma-voom performs very well when a large number of
replicates are available...
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Going beyond differential analysis...

Next steps

What happens after a differential analysis?

Further analysis

Differential variability analysis using DiffVar

Gene co-expression analysis using coseq

Test for enriched functional categories using goseq (i.e., do
differentially expressed genes tend to share the same function?)
Inference of gene networks
Integration with other data (epigenomic, metabolomic, proteomic, ...)

Biological validation

Gene knock-down experiments
qPCR validation
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Going beyond differential analysis... DiffVar: differential variability analysis

Outline

1 Introduction

2 Exploratory analyses

3 Differential analysis
Normalization
DESeq2: negative binomial model
HTSFilter: filtering weakly expressed genes
Correction for multiple testing
limma-voom: transformation + weighted linear model

4 Going beyond differential analysis...
DiffVar: differential variability analysis
coseq: co-expression analysis
goseq: functional enrichment analysis
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Going beyond differential analysis... DiffVar: differential variability analysis

Differential variability

Although focus is typically on differential mean expression among
groups, it may be of interest to identify genes with differing variability
between groups

Originally proposed for DNA methylation data (DiffVar function in
the missMethyl package)
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Going beyond differential analysis... DiffVar: differential variability analysis

DiffVar approach3

Intuitively, variability may be thought of as a distance from each
point in a group to the group mean dij = yij − ȳi ,C(j)

Highly variable groups = consistently large deviations from mean
Low variability groups = consistently small deviations from mean

Perform moderated t-test using limma pipeline on |dij | or d2
ij values to

test null hypothesis of equal variance between groups

Multiple testing correction as before

3Phipson and Oshlack (2014)
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Going beyond differential analysis... coseq: co-expression analysis

Outline

1 Introduction
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Going beyond differential analysis... coseq: co-expression analysis

From gene co-expression to gene function prediction

Co-expression (clustering) analysis

Study patterns of relative gene expression (profiles) across several
conditions

⇒ Co-expression is a tool to study genes without known or predicted
function (orphan genes)

Exploratory tool to identify expression trends from the data
( 6= sample classification, identification of differential expression)

In practice, prior to co-expression analysis:

Perform differential analysis and filter out genes that are declared
non-differentially expressed

Filter out weakly expressed genes
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Going beyond differential analysis... coseq: co-expression analysis

RNA-seq profiles for co-expression

Let yij be the raw count for gene i in sample j , with library size sj
Profile for gene i : pij =

yij∑
` yi`

Normalized profile for gene i : pij =
yij/sj∑
` yi`/sj
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Going beyond differential analysis... coseq: co-expression analysis

Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?

Two broad classes of methods typically used:

1 Centroid-based clustering (K-means and hierarchical clustering)

2 Model-based clustering (mixture models)
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Going beyond differential analysis... coseq: co-expression analysis

Model-based clustering

Probabilistic clustering models : data are assumed to come from
distinct subpopulations, each modeled separately

Rigourous framework for parameter estimation and model selection

Output: each gene assigned a probability of cluster membership
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Going beyond differential analysis... coseq: co-expression analysis

Key ingredients of a mixture model

Let y = (y1, . . . , yn) denote the observations with yi ∈ Rp

We introduce a latent variable to indicate the group from which each
observation arises:

Zi ∼M(n;π1, . . . , πK ),

P(Zi = k) = πk

Assume that yi are conditionally independent given Zi

Model the distribution of yi |Zi using a parametric distribution:

(yi |Zi = k) ∼ f (·; θk)
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Going beyond differential analysis... coseq: co-expression analysis

Questions around the mixtures

Model: what distribution to use for each component ?
 depends on the observed data.

Inference: how to estimate the parameters ?
 usually done with an EM-like algorithm (Dempster et al., 1977)

Model selection: how to choose the number of components ?

A collection of mixtures with a varying number of components is
usually considered
A penalized criterion (e.g., BIC, ICL) is used to select the best model
from the collection
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Going beyond differential analysis... coseq: co-expression analysis

Clustering data into components

Maximum a posteriori (MAP) rule: Assign genes to the component with
highest conditional probability τik :

τik (%) k = 1 k = 2 k = 3

i = 1 65.8 34.2 0.0
i = 2 0.7 47.8 51.5
i = 3 0.0 0.0 100
... ... ... ...
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Going beyond differential analysis... coseq: co-expression analysis

Finite mixture models for RNA-seq

Assume data y come from K distinct subpopulations, each modeled
separately:

f (y|K ,ΨK ) =
n∏

i=1

K∑
k=1

πk fk(yi ;θk)

π = (π1, . . . , πK )′ are the mixing proportions, where
∑K

k=1 πk = 1

fk are the densities of each of the components

For microarray data, we often assume yi |k ∼ MVN(µk ,Σk)

What about RNA-seq data?
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Going beyond differential analysis... coseq: co-expression analysis

Finite mixture models for RNA-seq data

f (y|K ,ΨK ) =
n∏

i=1

K∑
k=1

πk fk(yi |θk)

For RNA-seq data, we must choose the family & parameterization of fk(·):

1 Directly model read counts (HTSCluster): Rau et al. (2015)

yi |Zi = k ∼
J∏

j=1

Poisson(yij |µijk)

2 Apply appropriately chosen data transformation (coseq): Rau and
Maugis-Rabusseau (2017)

g(yi )|Zi = k ∼ MVN(µk ,Σk)
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Going beyond differential analysis... coseq: co-expression analysis

Correlation structures in RNA-seq data

Example: data from Mach et al. (2014) on site-specific gene expression along the gastrointestinal tract of 4 healthy piglets
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Going beyond differential analysis... coseq: co-expression analysis

Gaussian mixture models for RNA-seq

Idea: Transform RNA-seq data, then apply Gaussian mixture models

Several data transformations have been proposed for RNA-seq to render
the data approximately homoskedastic:

log2(yij + c)

Variance stabilizing transformation (DESeq)

Moderated log counts per million (edgeR)

Regularized log-transformation (DESeq2)

... but recall that we wish to cluster the normalized profiles pij =
yij/sj∑
` yi`/sj
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Going beyond differential analysis... coseq: co-expression analysis

Remark: transformation needed for normalized profiles

Note that the normalized profiles are compositional data, i.e. the sum
for each gene pi · = 1

This implies that the vector pi is linearly dependent ⇒ imposes
constraints on the covariance matrices Σk that are problematic for
the general GMM

As such, we consider a transformation on the normalized profiles to
break the sum constraint:

p̃ij = g(pij) = arcsin
(√

pij
)

And fit a GMM to the transformed normalized profiles:

f (p̃|K ,ΨK ) =
n∏

i=1

K∑
k=1

πkφ(p̃i |θk ,Σk)
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Going beyond differential analysis... coseq: co-expression analysis

Fitting a GMM for RNA-seq data with coseq

> library(coseq)

>

> GMM <- coseq(counts, K=2:10, model="Normal",

> transformation="arcsin")

> summary(GMM)

> plot(GMM)
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Going beyond differential analysis... coseq: co-expression analysis

Examining GMM results
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Going beyond differential analysis... coseq: co-expression analysis
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Going beyond differential analysis... coseq: co-expression analysis

Evaluation of clustering quality
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Going beyond differential analysis... coseq: co-expression analysis

A note about evaluating clustering approaches4

Clustering results can be evaluated based on internal criteria (e.g.,
statistical properties of clusters) or external criteria (e.g., functional
enrichment of GO terms)

Preprocessing details (normalization, filtering, dealing with missing
values) can affect clustering outcome

Methods that give different results depending on the initialization
should be rerun multiple times to check for stability

Most clustering methods will find clusters even when no actual
structure is present ⇒ good idea to compare to results with
randomized data!

4D’haeseller, 2005
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Going beyond differential analysis... goseq: functional enrichment analysis

Outline
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Going beyond differential analysis... goseq: functional enrichment analysis

Enriched functional categories

What biological processes are over-represented among the genes identified
to be differentially expressed?

Systems biology technique known as gene category enrichment
analysis

⇒ Genes are grouped into categories by a common biological property
and tested to find categories over-represented among DE genes

Commonly Gene Ontology (GO) categories are used for such an
analysis
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Going beyond differential analysis... goseq: functional enrichment analysis

GO enrichment analysis

Assumptions: genes are independent and equally likely to be selected
as DE, under the null hypothesis

If assumptions met, we can test for over-representation using a
hypergeometric distribution (Fisher’s test):

Red Blue Total

Chosen 2 4 6
Remaining 4 8 12

Total 6 12 18
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Going beyond differential analysis... goseq: functional enrichment analysis

GO enrichment analysis: Bias due to length

We have greater statistical power to detect differential expression
from longer genes, so under H0 long and short genes do not have the
same probability of being detected as DE

Without correcting for this bias, categories with many long genes are
more likely to show up as over-represented than categories with genes
of average length ⇒ A biased urn!
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goseq package for GO enrichment of RNA-seq data5

Once differential analysis (and correction for multiple testing) has been
performed (Young et al. (2010)):

Step 1 Calculate the likelihood of DE as a function of transcript
length by fitting a monotonic function to DE vs. transcript
length

5Young et al. (2010)
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goseq package for GO enrichment of RNA-seq data

Step 2 Incorporate the DE vs. length function into the statistical
test of each category’s significance using as an approximation
the Wallenius non-central hypergeometric distribution

Extension of classic hypergeometric distribution where
probabilities of success and failure differ
Uses the mean of probability weightings for genes
within/outside a given category as the common
probability of choosing a gene from within/outside that
categroy

Step 3 Correction of p-values for multiple testing!
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