

### **Genomic prediction**

Andrea Rau

### **To cite this version:**

Andrea Rau. Genomic prediction. Master. Analyse statistique de données -omiques (AMI2B), Saclay, France. 2023. hal-04482770

### **HAL Id: hal-04482770 <https://hal.inrae.fr/hal-04482770v1>**

Submitted on 28 Feb 2024

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

### **INRAZ**

# **Genomic prediction**

Andrea Rau

Universite Paris Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France ´

November 30, 2023



## **Outline**



Introduction to genomic prediction

omic prediction<br>to phenotype<br>a<br>n models<br>bet<br>con-November 30, 2023 From genotype to phenotype Genotyping data

### Genomic prediction models

Linear model

Penalization

Bayesian alphabet

Evaluating genomic prediction models

Conclusion / discussion



Draft install.packages(c("glmnet", "BGLR", "tidyverse"))

library(glmnet) library(BGLR) library(tidyverse)





- What is genomic prediction, and how is it used in agriculture and human health?
- $\blacktriangleright$ What are some of the statistical challenges related to genomic prediction models?
- **Case Separation**<br>
Dragated in agriculture and<br>
the statistical challenges related to genomic pr<br>
been proposed to address these challenge<br>
ons?<br>
Dragated?<br>
Herefore and a statistic models evaluated?<br>
Herefore a statistic  $\blacktriangleright$ What models have been proposed to address these challenges, and what are their advantages/limitations?
- How are genomic prediction models evaluated?  $\blacktriangleright$

## **Outline**



# omic prediction<br>
to phenotype<br>
a<br>
n models<br>
bet<br>
c prediction models<br>
ssion<br>
whera 30, 2023 Introduction to genomic prediction From genotype to phenotype

Genotyping data

### Genomic prediction models

Linear model

Penalization

Bayesian alphabet

Evaluating genomic prediction models

Conclusion / discussion

### **Genomic information**





- Mutation  $<$  1%  $<$  Single nucleotide polymorphism (SNP)  $\blacktriangleright$
- Construct genetic relationships, parentage determination, identification of quantiative  $\blacktriangleright$ trait loci (QTL), ...

# **Prediction of phenotypes from genotypes**



Goal: given a training set of data  $(Y_i,X_i,Z_i)$  for  $i=1,\ldots,n$  individuals

- $\blacktriangleright$   $Y_i$  = phenotype
- $\sum X_i$  = vector of (usually genome-wide) genotypes
- $\sum Z_i$  = vector of covariates (age, location, sex, ...)
- **property and Solution Section Section**<br>
Ing set of data  $(Y_i, X_i, Z_i)$  for  $i = 1, ...,$ <br>
Illy genome-wide) genotypes<br>
iates (age, location, sex, ...)<br>
served phenotype  $Y_x$  of a future individend  $Z_x$ <br>
Ition November 30, 2023 ... predict the unobserved phenotype  $Y_{\star}$  of a future individual with corresponding  $X_{\star}$  and  $Z_{\star}$

# **Prediction of phenotypes from genotypes**



Goal: given a training set of data  $(Y_i,X_i,Z_i)$  for  $i=1,\ldots,n$  individuals

- $\blacktriangleright$   $Y_i$  = phenotype
- $\sum X_i$  = vector of (usually genome-wide) genotypes
- $\sum Z_i$  = vector of covariates (age, location, sex, ...)
- **polymonary Solution School Sydney School School School Space (36 data**  $(Y_i, X_i, Z_i)$  for  $i = 1, ...,$ <br>
served phenotypes<br>
iates (age, location, sex, ...)<br>
served phenotype  $Y_x$  of a future individuals to<br>
and  $Z_x$ <br>
in plant/an ... predict the unobserved phenotype  $Y_{\star}$  of a future individual with corresponding  $X_{\star}$  and  $Z_{\star}$

### **Why?**

- **Genomic selection** in plant/animal breeding: select individuals to mate or carry forward  $\blacktriangleright$ in breeding programs
- **Health care**: identify high-risk individuals for interventions/treatments/preventative care

# **Variable selection to prediction in genetics**



**tion to prediction in genetion**<br>ants/animals, shift in genetics studies<br>g associated genetic variants) to pred<br>ns and improving selection)<br>**n:**<br>vissen *et al.* (2001), successfully implemented<br>ted to production, health, c For humans and plants/animals, shift in genetics studies from model selection (identifying associated genetic variants) to prediction (choosing optimal interventions and improving selection)

### **Genomic selection**:

- Introduced by Meuwissen *et al.* (2001), successfully implemented in many plant/animal  $\blacktriangleright$ breeds for traits related to production, health, climate adaptation, ...
- Modest gains in predictions can have large economic impacts (reduced generation interval, reduced cost and labor for phenotyping)

### **Human health**:

Less successful (need very high predictive accuracy to inform clinical decisions) but holds some promise for calculating risk scores

# **Variable selection versus prediction**



### Variable selection:

Stringent multiple-testing corrections for genome-wide significance in GWAS  $\blacktriangleright$ 



# **Variable selection versus prediction**



### Variable selection:

Stringent multiple-testing corrections for genome-wide significance in GWAS



### Prediction:

- Complex traits controlled by many genes with small effects + influenced by environments
- Little negative impact including (some...) uninformative variables
- Inference of average effects of allele substitution + variance components

# **Outline**



### Introduction to genomic prediction

omic prediction<br>to phenotype<br>a<br>prodels<br>bet<br>content products<br>ssion<br>tion - November 30, 2023 From genotype to phenotype Genotyping data

### Genomic prediction models

Linear model

Penalization

Bayesian alphabet

Evaluating genomic prediction models

Conclusion / discussion



- $\blacktriangleright$ Most abundant polymorphisms at DNA level are Single Nucleotide Polymorphisms (SNP)
	- $\triangleright$  About ∼ 3 billion nucleotides in the cattle genome, with over 30 million SNPs (introns, exons, promoters, enhancers, intergeneic regions, ...)
	- $\blacktriangleright$  High-throughpout genotyping becoming cheaper (thousands of SNPS  $\rightarrow$  10k 100k SNPs  $\rightarrow$  whole genome sequencing
- **and Algebra Star Single Mucleotide**<br>
Star Single Nucleotide<br>
Star Single Nucleotide<br>
Star Single Mucleotide<br>
Star Single Star Single Mucleotide<br>
Star Single Star Single Star Star Single Star Single Star Single Star Singl Now possible to massively  $+$  accurately  $+$  economically read the same set of (biallelic) SNPs across several individuals  $\rightarrow$  genotyping via SNP chips or whole genome sequencing
	- ▶ Possible alleles for SNP loci are all pairwise combinations among (A,C,G,T): A/C, A/G, A/T, C/G, C/T, G/T

### **Genotyping data**





Image courtesy of Goto Morota (http://morotalab.org/guestlectures/2020/FREC5164-2020/FREC5164-2020.html)

# **Raw SNP genotyping file**

Draft [Header] GSGT Version 1.9.4 Processing Date 3/16/2012 9:11 AM Content OvineSNP50\_B.bpm Num SNPs 54241 Total SNPs 54241 Num Samples 36 Total Samples 36 [Data] Sample ID Sample Name SNP Name Allele1 - Top Allele2 - Top GC Score ES140000270478 PLACA\_CIC\_12\_96 250506CS3900065000002\_1238.1 G G 0.8932 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900140500001\_312.1 A G 0.7341 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900176800001\_906.1 A G 0.7532 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900211600001\_1041.1 A A 0.9674 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900218700001\_1294.1 G G 0.8178 ES140000270478 PLACA CIC 12 96 250506CS3900283200001 442.1 C C 0.6684 ES140000270478 PLACA CIC 12 96 250506CS3900371000001 1255.1 G G 0.4565 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900386000001\_696.1 A A 0.4258 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900414400001\_1178.1 G G 0.8690 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900435700001\_1658.1 A A 0.5153 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900464100001\_519.1 A G 0.8116 ES140000270478 PLACA CIC 12 96 250506CS3900487100001 1521.1 A G 0.7448 ES140000270478 PLACA\_CIC\_12\_96 250506CS3900539000001\_471.1 G G 0.5248



# **all markers and position (chromosome, bp)**<br>all markers and position (chromosome, bp)<br>CRA A C CA A<br>C CA A **SNP genotyping in condensed format**



### map file: names of all markers and position (chromosome, bp)

- 1 F0100190 0 135098 2 1 1 TPM87 0 264710 2 1 1 TPM951 0 264740 1 2 1 F0100220 0 267940 1 2 1 RGX1000 0 349826 2 1
- 
- 1 RGX2000 0 351236 2 1

### **genotype file:**

ES1400NAB40571 G G G G A A A C . . A G ES1400NAB40573 G G G G G G A C G G A G ES1400NAB40574 A G G G A G A C G G A A ES1400NAB40159 G G G G A G A C G G A A ES1400NAB40528 A G A G A G C C A G A A ES1500VI492705 G G A G G G A C G G A G ES1500SSA40533 A G G G A G C C G G A A

### $\rightarrow$  PLINK (https://www.cog-genomics.org/plink): .bed, .bim, .fam files

# **Considerations for genotyping data**



- Typically recoded as number of copies of the minor allele (0, 1, or 2)
- Minor allele frequency (MAF) = frequency of the reference allele
- $\triangleright$  Call rate = number of observed genotypes (per individual, per marker)
- Linkage disequilibrium (LD): non-random association between alleles at different loci

**ins for genotyping data**\nlas number of copies of the minor allele (0, 1, or 2)

\nlency (MAF) = frequency of the reference allele

\nFor of observed genotypes (per individual, per marker)

\norium (LD): non-random association between alleles

\n
$$
LD_{k\ell} = \frac{Cov(\mathbf{x}_k, \mathbf{x}_\ell)^2}{Var(Cov(\mathbf{x}_k)Var(\mathbf{x}_\ell)} = \frac{(p_{ij} - p_i p_j)^2}{p_i(1 - p_i)p_j(1 - p_j)}
$$
\nenergy of haplotype *ij*, *p\_i* the frequency of allele *i* at lc

\nor *i* at locus  $\ell$ 

\nUsing genotypes (marginal allele distribution, full-sib fa

\napplied on MAF, missing values, LD, ...

\nfunction - November 30, 2023

with  $p_{ij}$  the frequency of haplotype  $ij$ ,  $p_i$  the frequency of allele  $i$  at locus  $k$ , and  $p_j$  the frequency of allele  $i$  at locus  $\ell$ 

- Imputation of missing genoypes (marginal allele distribution, full-sib family information)
- $\rightarrow$  Typically filters applied on MAF, missing values, LD, ...

# **Illustration of LD**





Image: https://www.bioinformatics.com.cn/plot\_basic\_LDheatmap\_plot\_094\_en

# **CIMMYT Global Wheat Program**



**all Wheat Program**<br>
and Wheat Improvement Center<br>
rt.org): international organization for no<br>
199 historical wheat lines from the CIMMYT C<br>
matic regions<br>
47 Diversity Array Technology (DArT, https://www.diversit<br>
markers International Maize and Wheat Improvement Center (https://www.cimmyt.org): international organization for non-profit ag research + training



- Collection of  $n = 599$  historical wheat lines from the CIMMYT Global Wheat Program  $\blacktriangleright$ from 4 main agroclimatic regions
	- Genotyping using 1447 Diversity Array Technology (DArT, https://www.diversityarrays.com)
	- Inbred lines  $\Rightarrow$  DArT markers only take two values (presence/absence)
	- **Pre-processing: filter MAF**  $<$  0.05, imputed missing genotypes
	- Phenotype of interest  $=$  average grain yield

# **Outline**



omic prediction<br>to phenotype<br>a<br>**nomodels**<br>bet<br>construction models<br>ssion<br>**tion - November 30, 2023** Introduction to genomic prediction

From genotype to phenotype Genotyping data

### Genomic prediction models

Linear model

Penalization Bayesian alphabet

Evaluating genomic prediction models

Conclusion / discussion

# **The linear model of genomic prediction**



**del of genomic prediction**<br>
genomic prediction is the multiple linea<br>  $Y = \mathbf{Z}\theta + \mathbf{X}\beta + \varepsilon$ <br>
motypes<br>
covariates<br>
ariate effect parameters<br>
(suitably coded) genotypes<br>
stic effect parameters<br>
s representing noise, ass The workhorse of genomic prediction is the multiple linear regression model:

$$
Y = \mathbf{Z}\theta + \mathbf{X}\beta + \varepsilon
$$

- $\blacktriangleright$   $Y = n$ -vector of phenotypes
- $\sum Z = n \times m$  matrix of covariates
- $\rightarrow \theta = m$ -vector of covariate effect parameters
- $\sum X = n \times p$  matrix of (suitably coded) genotypes
- $\triangleright$   $\beta = p$ -vector of genetic effect parameters
- $\epsilon = n$ -vector of errors representing noise, assumed iid and (usually) normally distributed



- Most often only model additive and linear genetic effects and ignore dominance and epistasis
- Independence of  $\varepsilon$  assumes that kinship effects are accounted for through genetic markers

**Imptions**<br>del additive and linear genetic effects and ignosumes that kinship effects are accounted for<br>n very important in prediction, but from<br>s on prediction from genomic data alo Covariates are often very important in prediction, but from now on we will ignore them to focus on prediction from genomic data alone...



Many more variants  $p \ (\sim 10k-1M)$  than individuals  $n \ (\sim 1k) \rightarrow p \gg n!$ 

- **y of predictors**<br>
s  $p \ (\sim 10 \text{k-1 M})$  than individuals  $n \ (\sim 1)$ <br>
icant GWAS hits usually leads to poor predictions<br>
inservative testing thresholds, ...<br>
many predictors in a model risks over-fitting an<br>
ary least squares Including only significant GWAS hits usually leads to poor prediction: polygenic nature  $\blacktriangleright$ of complex traits, conservative testing thresholds, ...
- ... but including too many predictors in a model risks over-fitting and poor generalizability + non-existant ordinary least squares solution



Genomic best linear unbiased prediction (GBLUP):

$$
Y={\bf g}+\varepsilon,\quad\text{ where}\quad {\bf g}\sim N(0,{\bf G}\sigma_g^2)
$$

approximated by  $Y = \mathbf{X}\beta + \varepsilon$ 

Variance-covariance matrix of Y is  ${\bf V}_y={\bf V}_g+{\bf V}_\varepsilon={\bf XX}'\sigma^2_a+{\bf I}\sigma^2_\varepsilon$ 

- $\beta \sim N(0, \mathbf{I} \sigma_a^2), \varepsilon \sim N(0, \mathbf{I} \sigma_\varepsilon^2)$
- **mensionality of predicto**<br>
ir unbiased prediction (GBLUP):<br>  $Y = \mathbf{g} + \varepsilon$ , where  $\mathbf{g} \sim N(0, \mathbf{G}\sigma_g^2)$ <br>
approximated by  $Y = \mathbf{X}\beta + \varepsilon$ <br>
e matrix of Y is  $\mathbf{V}_y = \mathbf{V}_g + \mathbf{V}_\varepsilon = \mathbf{X}\mathbf{X}'$ <br>  $N(0, \mathbf{I}\sigma_\varepsilon^$ Conditional mean of g given the data is extremely computationally efficient: BLUP( $\hat{\beta}$ ) =  $\Big(\mathbf{I}+(\mathbf{XX}')^{-1}\frac{\sigma_{\varepsilon}^2}{\sigma_a^2}$  $\Big)^{-1}Y$

# **Outline**



Introduction to genomic prediction

omic prediction<br>to phenotype<br>a<br>**nomodels**<br>bet<br>construction models<br>ssion<br>**tion - November 30, 2023** From genotype to phenotype Genotyping data

### Genomic prediction models

Linear model

### Penalization

Bayesian alphabet

Evaluating genomic prediction models

Conclusion / discussion



**Draft Curse of dimensionalit**<br>
s  $p$  ( $\sim$  10k-1M) than individuals  $n$  ( $\sim$  1<br>
is to use a penalized regression<br>
ual sum of squarers or log-likelihood "shrinks"<br>
cition can be evaluated in terms of performar<br>
dictive c Many more variants  $p \ (\sim 10k-1M)$  than individuals  $n \ (\sim 1k) \rightarrow p \gg n!$  $\Rightarrow$  Another solution is to use a penalized regression

- Penalty in the residual sum of squarers or log-likelihood "shrinks" parameter estimates towards 0
- **Form of penalty function can be evaluated in terms of performance on test data (e.g.,** cross-validation predictive correlation or predictive log-likelihood)
- Bayesian framework for penalty to reflect known information about the distribution of variant effect sizes (prior distribution)



- 1. Ridge regression
- 2. Lasso regression
- 3. Elastic net regression
- 4. Partial least squares (PLS) regression
- 5. Bayesian methods



Maximum penalized likelihood approach with an independent mean-0 Gaussian prior on  $\blacktriangleright$ each genetic effect:

$$
\hat{\beta}_{\text{ridge}} = \arg \min \beta \left\{ \sum_{i=1}^{n} \varepsilon_i^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\} \quad \varepsilon_i = Y_i - \sum_{j=1}^{p} X_{ij} \beta_j
$$

**ion (RR)**<br>
I likelihood approach with an independent mear<br>  $= \arg \min \beta \Big\{ \sum_{i=1}^n \varepsilon_i^2 + \lambda \sum_{j=1}^p \beta_j^2 \Big\} \quad \varepsilon_i = Y_i - \sum_{j=1}^p \varepsilon_j^2$ <br>
ast linear unbiased predictor (BLUP) in a mix<br>
computed from marker genotypes  $\rightarrow$ Equivalent to a best linear unbiased predictor (BLUP) in a mixed model with alleliccorrelation kinships computed from marker genotypes  $\rightarrow$  in BLUP,  $\lambda$  is estimated from the data while in RR  $\lambda$  often treated as a tuning parameter

**Lasso regression**



- Due to sharp peak of Laplace distribution at 0, many genetic effects will be estimated at  $\blacktriangleright$  $0 \Rightarrow$  model selection + prediction
- Note: number of non-zero effects constrained to be  $\leq n...$
- In regions of high LD, typically only 1 SNP has a nonzero  $\hat{\beta}_j$
- Many extensions: Bayesian lasso, HyperLasso, ...





Combines RR and Lasso by weighting their penalities:  $\blacktriangleright$ 

gression

\nd Lasso by weighting their penalities:

\n
$$
\hat{\beta}_{\text{enet}} = \arg \min \beta \Big\{ \sum_{i=1}^{n} \varepsilon_i^2 + \lambda \sum_{j=1}^{p} \alpha \beta_j^2 + (1 - \alpha) |\beta_j| \Big\}
$$
\nlike Lasso + shrinks together coefficients of correla

\nbe time consuming when performed on a grid

\ndiction - November 30, 2023

- Selects variables like Lasso + shrinks together coefficients of correlated predictors like RR
- Tuning  $(\alpha, \lambda)$  can be time consuming when performed on a grid  $\blacktriangleright$



PLS identifies orthogonal linear combinations of genotypes  $w_1, \ldots, w_k$  that maximize correlation with phenotype (rather than variance as in PCA) that are used as predictors:

Draft bˆ pls = arg min b nX<sup>n</sup> i=1 Y<sup>i</sup> <sup>−</sup> <sup>µ</sup> <sup>−</sup> X k j=1 wij b<sup>j</sup> 2 o

- Dimension reduction while including all indvidual SNPs as predictors (no need for a ⋗ penalty, single parameter  $k$  to tune)
- $\triangleright$  ... but no estimates of individual genetic effects  $\beta$

# **Outline**



omic prediction<br>to phenotype<br>a<br>**Draft School School**<br>Draft School<br>School School<br>Nion - November 30, 2023 Introduction to genomic prediction From genotype to phenotype

Genotyping data

### Genomic prediction models

Linear model

Penalization

### Bayesian alphabet

Evaluating genomic prediction models

Conclusion / discussion



## **Bayesian methods**

Bayesian models often have the form:

11 models often have the form:

\n
$$
\prod_{i=1}^{n} N\left(Y_i \mid \left(\mu + \sum_{j=1}^{p} X_{ij} \beta_j\right), \sigma^2\right) \times p(\sigma^2) \prod_{j=1}^{p} p(\beta_j | \Psi)
$$
\nlikelihood

\n125

\n135

\n14

\n15

\n16

\n17

\n18

\n18

\n19

\n19

\n10

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

- $\blacktriangleright \Psi$  = vector of hyperparameters to specify the prior  $\rightarrow$  can be fixed, integrated out with respect to a prior (fully Bayesian), or estimated from the data (empirical Bayes)
- $\sigma^2$  often assigned a  $\chi^{-2}(\nu,S)$  prior distribution
- Gaussian prior for  $\beta \Rightarrow$  posterior means are GBLUP estimates, Laplace prior for  $\beta \Rightarrow$ Bayesian lasso

### **Prior distributions for Bayesian methods**







# $\frac{1}{2}$ <br>Draft Context Context<br>Draft Context **Which prior to use?**





Image courtesy of Fanny Mollandin

# $\frac{1}{\beta}$   $\frac{1}{\beta}$   $\frac{1}{\beta}$   $\frac{1}{\beta}$   $\frac{1}{\beta}$ <br> $\frac{1}{\beta}$ <br> $\frac{1}{\beta}$   $\frac{1}{\beta}$  **Which prior to use?**





Image courtesy of Fanny Mollandin

GBLUP:  $\beta_i \sim N(0,\sigma_{\beta}^2)$   $\forall i$ 





Image courtesy of Fanny Mollandin

- GBLUP:  $\beta_i \sim N(0,\sigma_{\beta}^2)$   $\forall i$
- $\begin{array}{l} \left(\text{Use ?}\right)\ \left(\text{Note: } \mathcal{C}\right) \ \left(\text{Note: } \mathcal{C}\right)$ BayesA:  $\beta_i \sim N(0,\sigma_{\beta_i}^2), \sigma_{\beta_i}^2 \sim$  Inv  $\chi^2(\nu,S^2)$   $\forall i$





Image courtesy of Fanny Mollandin

- GBLUP:  $\beta_i \sim N(0,\sigma_{\beta}^2)$   $\forall i$
- BayesA:  $\beta_i \sim N(0,\sigma_{\beta_i}^2), \sigma_{\beta_i}^2 \sim$  Inv  $\chi^2(\nu,S^2)$   $\forall i$
- $\begin{array}{l} \left(\sum\limits_{\beta_i} \mathbf{C}^2\right) \mathbf{V}^i \ \mathbf{C}^2_{\beta_i}, \sigma^2_{\beta_i} \sim \mathsf{Inv}\ \chi^2(\nu,S^2) \ \forall i \ \mathbf{C}^2_{\beta_i}, \sigma^2_{\beta_i} \sim \pi\delta(0) + (1-\pi)\mathsf{Inv}\ \chi^2(\nu,S^2) \ \forall i,\, \pi \ \mathsf{R}^2 \end{array}$ BayesB:  $\beta_i \sim N(0,\sigma_{\beta_i}^2), \sigma_{\beta_i}^2 \sim \pi \delta(0) + (1-\pi)$ Inv  $\chi^2(\nu,S^2)$   $\forall i, \pi$  known





Image courtesy of Fanny Mollandin

GBLUP:  $\beta_i \sim N(0,\sigma_{\beta}^2)$   $\forall i$ 

**BayesA**: 
$$
\beta_i \sim N(0, \sigma_{\beta_i}^2), \sigma_{\beta_i}^2 \sim \text{Inv } \chi^2(\nu, S^2) \ \forall i
$$

- $\begin{array}{l} \left(\begin{array}{l} \mathbf{U}\mathbf{S}\mathbf{e}^{\mathbf{O}}\end{array}\right)\forall i\ \mathbf{z}^2_{\beta_i}, \sigma^2_{\beta_i}\sim \mathsf{Inv}\ \chi^2(\nu,S^2)\ \forall i\ \mathbf{z}^2_{\beta_i}, \sigma^2_{\beta_i}\sim \pi\delta(0)+(1-\pi)\mathsf{Inv}\ \chi^2(\nu,S^2)\ \forall i,\pi\ \mathsf{k}+(1-\pi)N(0,\sigma^2_{\beta}), \sigma^2_{\beta}\sim \mathsf{Inv}\ \chi^2(\nu,S^2)\ \forall i,\pi\ \mathsf{kin}\ \mathsf{N} \end{array}$ BayesB:  $\beta_i \sim N(0,\sigma_{\beta_i}^2), \sigma_{\beta_i}^2 \sim \pi \delta(0) + (1-\pi)$ Inv  $\chi^2(\nu,S^2)$   $\forall i, \pi$  known
- BayesC:  $\beta_i \sim \pi \delta(0) + (1-\pi) N(0,\sigma_\beta^2), \sigma_\beta^2 \sim$  Inv  $\chi^2(\nu,S^2)$   $\forall i, \pi$  known





Image courtesy of Fanny Mollandin

- GBLUP:  $\beta_i \sim N(0,\sigma_{\beta}^2)$   $\forall i$
- BayesA:  $\beta_i \sim N(0,\sigma_{\beta_i}^2), \sigma_{\beta_i}^2 \sim$  Inv  $\chi^2(\nu,S^2)$   $\forall i$
- $\begin{split} \mathbf{C}^{2} & \mathbf{D}^{2}_{\beta} \rangle \, \forall i \ \mathbf{C}^{2}_{\beta_{i}}, \sigma^{2}_{\beta_{i}} & \sim \mathsf{Inv} \; \chi^{2}(\nu,S^{2}) \; \forall i \ \mathbf{C}^{2}_{\beta_{i}}, \sigma^{2}_{\beta_{i}} & \sim \pi \delta(0) + (1-\pi) \mathsf{Inv} \; \chi^{2}(\nu,S^{2}) \; \forall i, \, \pi \; \mathsf{k} \ \mathsf{k} + (1-\pi) N(0,\sigma^{2}_{\beta}), \sigma^{2}_{\beta} & \sim \mathsf{Inv} \; \chi^{2}(\nu,S^{2}) \; \forall$ BayesB:  $\beta_i \sim N(0,\sigma_{\beta_i}^2), \sigma_{\beta_i}^2 \sim \pi \delta(0) + (1-\pi)$ Inv  $\chi^2(\nu,S^2)$   $\forall i, \pi$  known
- BayesC:  $\beta_i \sim \pi \delta(0) + (1-\pi) N(0,\sigma_\beta^2), \sigma_\beta^2 \sim$  Inv  $\chi^2(\nu,S^2)$   $\forall i, \pi$  known
- BayesC $\pi$ : BayesC with  $\pi \sim$  Unif $(0, 1)$ ⋗

# **Many other genomic prediction approaches...**

- Random forest
- Neural networks
- Reproducing kernel Hilbert spaces
- Adaptive MultiBLUP (flexible shrinkage for promising genomic regions)
- **Information of Prediction approor**<br>
Hilbert spaces<br>
(flexible shrinkage for promising genomic reg<br>
averaging (minimize prediction errors made<br>
ds of genetic effects, ...)<br>
Hilps November 30, 2023 Rank-based model averaging (minimize prediction errors made by a specific method, capture different kinds of genetic effects, ...)

# **Many other genomic prediction approaches...**

- Random forest
- Neural networks
- Reproducing kernel Hilbert spaces
- Adaptive MultiBLUP (flexible shrinkage for promising genomic regions)
- **Information of Prediction approprior**<br>
Hilbert spaces<br>
Prediction errors made<br>
ds of genetic effects, ...)<br>
Don accuracy depends on many factors<br>
ple *n*<br>
ting the trait<br>
shotween training and test samples<br>
Lion Novembe Rank-based model averaging (minimize prediction errors made by a specific method, capture different kinds of genetic effects, ...)

In general, prediction accuracy depends on many factors:

- Size of training sample  $n$
- Trait heritability
- > Number of loci affecting the trait
- Genetic relatedness between training and test samples



After fitting a prediction model on training data, we can measure success on independent test data with available phenotypes:

- Independent test dataset
- **IFE SUCCESS?**<br>
Stion model on training data, we can m<br>
t data with available phenotypes:<br>
taset<br>
fraction of samples (say 10%) from training da<br>
ining individuals<br>
withhold multiple resampled fractions of samp<br>
train on y Withhold a random fraction of samples (say 10%) from training data  $\rightarrow$  but test individu- $\blacktriangleright$ als are similar to training individuals, which may lead to inflated predictive accuracy with respect to future individuals
- ▶ Cross-validation to withhold multiple resampled fractions of samples
- Forward validation (train on year 1 data, test on year 2 data)



**uracy for continuous tra**<br>ample of size  $k$ , we have predictions i<br>,...,  $Y_k$ .<br>to  $Y_i$ , the better!<br>enomic selection is to select reproduci<br>etter values of the trait of interest. Suppose in a test sample of size  $k$ , we have predictions  $\hat{Y}_1,\ldots,\hat{Y}_k$  with observed values  $Y_1, \ldots, Y_k$ .

**Goal**: the closer  $\hat{Y}_i$  to  $Y_i$ , the better!

The main goal of genomic selection is to select reproducing animals or new plant variets with better values of the trait of interest.



**Lample of size k, we have predictions 1**<br>
stample of size k, we have predictions 1<br>
....,  $Y_k$ .<br>
to  $Y_i$ , the better!<br>
enomic selection is to select reproduci<br>
etter values of the trait of interest.<br>  $cor(\hat{Y}, Y)$ , or squar Suppose in a test sample of size  $k$ , we have predictions  $\hat{Y}_1,\ldots,\hat{Y}_k$  with observed values  $Y_1, \ldots, Y_k$ .

**Goal**: the closer  $\hat{Y}_i$  to  $Y_i$ , the better!

The main goal of genomic selection is to select reproducing animals or new plant variets with better values of the trait of interest.

- **Pearson correlation**  $cor(\hat{Y}, Y)$ , or squared correlation, or Spearman correlation
- Mean absolute error or the (root) mean square error:  $\frac{1}{k}\sum_{i=1}^k |\hat{Y}_i-Y_i|$  or  $-\frac{1}{k}\sum_{i=1}^k (\hat{Y}_i Y_i)^2$

For binary traits: sensitivity, specificity, AUROC, positive predictive value, ...

# **Summary: Genomic prediction**





Image courtesy of Valentin Wimmer (Analysis pipeline for genomic prediction data using R and synbreed package)



- s have opened the door to different ways to contract the door to different ways to contract different models proposed in the literature (with and the structure or genome-wide distribution of effect size of the structure or Genome-wide SNPs have opened the door to different ways to consider heritability and  $\blacktriangleright$ prediction
- Many genomic prediction models proposed in the literature (with different strengths + ⋗ weakenesses)  $\rightarrow$  different modesl may suit different trait architectures
	- Maximize over or integrate out genetic effets?
	- > Prior/penalty for effect sizes?
	- Polygenic term (correlation structure or genome-wide distribution of effect sizes)





















## **Acknowledgements & References**





### Thanks to **Fanny Mollandin** (INRAE) and **Pascal Croiseau** (INRAE) ⋗

- Balding, *Introduction to Genomic Prediction* (Armidale Genetics Summer Course, 2016)
- Wray *et al.* (2013) Pitfalls of predicting complex traits from SNPs, *Nat Rev Genet* 14:507-515.
- Pérez and de los Campos (2013) Genome-wide regression and prediction with the BGLR statistical package, *Genetics* 198(2):483-495.
- **Ments & References**<br>
<br>
<br> **Example 2014 Constant Conserts American**<br>
<br>
<br> **Example:** Conserved Conserting Complex traits from SNPs, *Nat Rev Genet*<br>
set (2013) Genome-wide regression and prediction with the<br>
s.<br>
<br>
Secountin Mollandin *et al.* (2022) Accounting for overlapping annotations in genomic prediction models of complex traits, *BMC Bioinformatics*, 23:65.