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 14 

Abstract 15 

This meta-analysis shed light on the quantitative adaptive responses of feeding 16 

behaviour of Cattle (C) and Small Ruminants (SR), facing variations of sward 17 

characteristics, notably of sward height (SH, 18. 7  13.9 cm) and herbage bulk density 18 

(HBD, 1.73  1.30 kg DM / m3). All responses expressed a plateau stressing an 19 

adaptive limit with extreme values of SH and HBD. The minimum plateau of BR (46.9 20 

 14.6 min-1) is around 40 min-1, while IR values (different for C and SR , respectively 21 

69.1  38.1 vs. 99.9  45.7 g/min/kg BW) ranged between a minimum and maximum 22 

plateau around 50 and 100 g/min/kg BW. Two other pasture management factors affect 23 

IR, namely forage allowance (10.16  6.0, DM % BW) and daily proportion of time 24 

spent grazing (0.30  0.08). The results obtained confirm the specifically key role of 25 
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BM (1.80  127 mg DM/kg BW) on IR. The regressions are IR=145 (1-exp (-b BM), b 26 

being equal respectively for C and SR and C to 0.44 vs. 0.54. This literature review 27 

has also revealed fundamental differences in behaviour between C and SR although 28 

no study to date has attempted to compare them simultaneously. SR have to chew 29 

more (2.7  1.2 vs. 1.6  0.5 JM/bite) to ingest the same amount of DM per bite than 30 

C, expressed in relation to BW, which allow them to ingest slightly quickly. 31 

 32 

Keywords (5): Intake rate, Bite Rate, Sward height, Herbage bulk density 33 

 34 

Implications 35 

This article, following the previous one of Boval and Sauvant (2019), proposes a 36 

quantitative appraisal of the ingestive behaviour of grazing ruminants, based on 37 

studies published over 40 years, as well as well robust average values and 38 

relationships, considering inter- and intra-study effects and animal species 39 

specificities. This knowledge should contribute to a better overall understanding of the 40 

behavioural adaptation of ruminants at pasture, to the identification of key threshold 41 

values and appropriate parameters of interest to be considered, and to improve the 42 

efficiency and sensitivity of automatic devices, which are booming in the context of 43 

precision livestock farming at pasture. 44 

 45 

Introduction 46 

Knowledge of ingestive behaviour (IB) is determinant to better understand the 47 

strategies of animals for feeding in order to improve their management, whatever the 48 

feeding context. Ingestive behaviour determines the nutrient supply to ruminants and 49 

thus has a significant impact on performance and feed efficiency, which are essential 50 
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for increasing the profitability of livestock (Llonch et al., 2018; Shalloo et al., 2018). 51 

Moreover, a ruminant’s robustness partly comes from its ability to adapt IB to the 52 

diversity of resources to be grazed. In addition, chewing behaviour provides 53 

information about digestive comfort and indicators of appetite, gut health and welfare. 54 

Numerous studies have focused on the IB of grazing ruminants. However, beyond the 55 

problems linked with the diversity of the methodologies applied, the items measured 56 

are very heterogeneous across publications. Likely for this reason, no synthetic 57 

statistical interpretation of published IB data for ruminant grazing has been carried out 58 

and published so far. However, there is a need to better understand the various 59 

aspects of animal IB, as it is now becoming possible to measure some of them in field 60 

conditions thanks to advances in electronic/computer technologies (Anderson et al., 61 

2014; Fogarty et al., 2018). Indeed, animal behaviour documented by tools employed 62 

in precision livestock farming, such as sensors, video cameras, accelerometers or 63 

pedometers, should greatly help in designing efficient management strategies for 64 

livestock production systems (di Virgilio et al., 2018). A recent meta-analysis focused 65 

on bite mass (BM) and its main determining factors linked to major animal and sward 66 

characteristics (Boval and Sauvant, 2019). In this current paper, we will analyse the 67 

components affecting BM which are determining for intake rate and daily dry matter 68 

intake. Some studies differentiate between jaw movements due to harvesting forage 69 

and those processing the forage before swallowing. We have therefore attempted to 70 

better understand the function of these different types of jaw movements. 71 

 72 
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Material and methods 73 

Literature review and dataset construction 74 

This meta-analysis was carried out by considering published studies measuring 75 

components of the feeding behaviour of ruminants (cattle, sheep or goats) at pasture 76 

in various production systems (milk or meat) and various climatic contexts. The search 77 

for the literature was carried out using Web of Science, Science Direct, EDP Sciences 78 

and Cambridge Journals and using the reference lists cited by some reviews on the 79 

subject. 80 

For each publication, we have integrated experiments and treatments for which there 81 

were documented values of at least one of the following criteria: BM, biting rate (BR), 82 

intake rate (IR), grazing and ruminating times (GT and RT, respectively, min/day) and 83 

data related to dry matter intake (DMI) and BW gain. In some publications, total jaw 84 

movements and chews were also measured, and therefore were included. 85 

 86 

Intermediary calculations 87 

For all the characteristics, we have harmonized the units within the whole dataset. 88 

Afterwards some components were also expressed per kg of BW, such as IR, in order 89 

to analyse the whole dataset including the maximum degrees of freedom (with data 90 

coming from different species and types of domestic ruminants). Considering the BM 91 

calculation, Boval and Sauvant (2019) have shown that BM can be divided by the BW1. 92 

When it was possible, the number of chews was calculated, considering that jaw 93 

movements (JM) = chews + bites (Galli et al., 2017; Mulvenna et al., 2018). When JM 94 

are expressed per bite, the number of JM/bite cannot be lower than 1 (i.e. one bite). 95 

For each publication retained in the database, the following information was recorded: 96 

the animal characteristics (breed, sex, age) as well as the forage characteristics 97 
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(species, herbage mass, surface sward height and herbage bulk density, 98 

morphological and chemical composition, etc.). Information related to the experimental 99 

conditions (at pasture or in other environments) and to the methods used to measure 100 

feeding behaviour and forage characteristics was also recorded. The season (dry or 101 

rainy), latitude and longitude have been précised as well for each experiment intra-102 

publication, by using Köppen–Geiger classification (Peel et al., 2007). 103 

 104 

Treatment encoding 105 

Beyond specific codes assigned to each publication and to each experiment, additional 106 

codes were applied to identify specifically the factors of variation tested in the papers: 107 

the forage species, sward height, herbage bulk density or herbage allowance and the 108 

animal species. All of these codes were specific to the factors of variation studied in 109 

the publication; therefore, not all rows have values in the corresponding columns. For 110 

some experiments, in addition to the intra-experimental factors, some key criteria 111 

varied significantly, although they were not the factors tested intra-experiment. In this 112 

case, another code was added to specify these criteria, as a secondary factor of 113 

variation. For example, we identified experiments for which the intra-experiment sward 114 

height varied largely despite not being announced as a factor in the publications, but 115 

which can then be considered as a factor of variation for 62% of papers instead of the 116 

32% we had identified at first approach. 117 

The final database included 98 publications (npub), 269 experiments (nexp) and 905 118 

treatments (n). The list of the references used to build the database is presented in the 119 

Annex. 120 

 121 
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Statistical analysis 122 

Statistical analysis of the data was performed by meta-analysis according to the 123 

recommendations of Sauvant et al. (2008). In particular, inter- and intra-experiment 124 

variations were split to study in the intra-experiment relationships between variables 125 

considered two by two, and successively through the various factors of variations. The 126 

numbers of data different from one variable to another explain why the interpretation 127 

must be achieved considering the variables 2 by 2. 128 

 129 

Results 130 

Statistical parameters of the ingestive behaviour components 131 

The statistics of the components of feeding behaviour were calculated for cattle and 132 

small ruminants (Table 1) and according to BW when it allowed pooling of data for both 133 

species. Among the data collected in the papers analysed, BR was one of the most 134 

documented components, as well as its reverse, namely the time spent per bite. These 135 

two components have a log-normal distribution and do not differ significantly between 136 

species. 137 

Jaw movements associated with bites were registered in only about 20% of cases, but 138 

with sufficient data for each species. 139 

Intake rate was less much documented in the papers than BR, and distribution of the 140 

data is quite close to a Gaussian law. Otherwise, IR is largely different between cattle 141 

and small ruminants, contrary to BR (Table 1). Even when IR was expressed per kg of 142 

BW, the difference between species remained but the value in this case was a little 143 

higher for small ruminants (Table 1). 144 

 145 
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Modelling factors of variation of the ingestive behaviour components 146 

Bite rate 147 

The influence of sward height (SH) on BR was evaluated from experiments that studied 148 

SH impacts. There is a negative curvilinear relation (Figure 1a) between BR (bites/min) 149 

and SH (18.7  13.9 cm)). Under a threshold of SH of 15–20 cm, there appears to be 150 

an acceleration of BR. The intra-experimental regression is: 151 

 152 

BR = 41.4 + 29.9 exp (−0.100 × SH) (n = 189; nexp = 63; RMSE = 5.8) [1] 153 

 154 

(a) 

 
 

(b)

 
 

Figure 1 Intra-experiment relationships between bite rate and sward height (a) or 155 

herbage bulk density (b). 156 

 157 

The impact of apparent forage density (HBD, 1.73  1.30 kg DM/m3,) on BR was 158 

assessed from experiments that tested the impacts of HBD variations. There is a 159 

negative exponential intra-experiment relationship between BR (bites/min) and HBD 160 

(Figure 1b); the regression is: 161 

 162 

BR = 36.84 + 32.55 exp(−0.692 HBD) (n = 72; nexp = 25; RMSE = 3.9) [2] 163 

 164 
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An acceleration of BR occurs when the HBD decreases below a threshold between 165 

2 and 3 kg DM/m3. The regression in Equation 2 is a little more accurate than Equation 166 

1 (RMSE = 3.9 vs 5.8). 167 

 168 

Intake rate 169 

Impact of SH. When considering the experiments dealing with SH variations, there is 170 

a positive curvilinear intra-experiment effect of SH on IR (mg DM/kg BW/min), with an 171 

asymptotic value around 100 mg DMI/min/kg BW and a rapid decline in IR under a 172 

threshold SH of about 15–20 cm (Figure 2a). The intra-experiment relationship 173 

between both variables is: 174 

 175 

IR = 100.1 (1 − exp(−0.093 SH)) (n = 195; nexp = 62; RMSE = 16.7) [3] 176 

 177 

a

 
 

b 

 

Figure 2 Impacts of sward height (cm) (a) and herbage bulk density on intake rate (mg 178 

DM/kg BW/min) (b). 179 

 180 

It appears that for three publications (Black and Kenney, 1984; Mezzalira et al., 2014 181 

and 2017) and nine experiments, the response of IR to SH is clearly curvilinear, 182 

exhibiting a maximum value of IR followed by a decreasing IR with increasing SH 183 
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(Figure S1). In these papers, the maximum values of IR ranged between about 115 and 184 

160 mg DM/kg BW while the corresponding values of SH ranged between about 10 185 

and 30 cm. 186 

 187 

Impact of HBD. As seen for BR (Figure 2b), there is an increase of IR when HBD is 188 

lower than a threshold of 2–3 kg DM/m3. The intra-experiment regression is: 189 

 190 

IR = 59.08 + 94.66 exp(−1.08 HBD) (n = 37; nexp = 12; RMSE = 10) [4] 191 

 192 

Interaction between SH and HBD. As mentioned, Equations 3 and 4 were calculated 193 

on datasets issued from experiments that considered variations in SH and HBD, 194 

respectively, as experimental factors. As the number of data with SH and HBD is fairly 195 

high, another approach was performed to study, within publications, the effect of 196 

interactions between SH and HBD on IR (mg DM/kg BW/min). An intra-publication 197 

significant quadratic regression was calculated: 198 

 199 

IR = (3.74) + 3.336 × SH − 0.01279 × SH² + 25.4 × HBD − 1.816 × HBD² − 0.842 × 200 

SH × HBD 201 

 (n = 227; npub = 30; RMSE = 21.1) [5] 202 

 203 

The three quadratic terms of this regression are highly significant, stressing the 204 

interaction between SH and HBD. Figure 3 shows the trace of this regression and 205 

illustrates the interaction with SH on the X-axis and HBD corresponding to the 206 

successive lines of iso-HBD. The thickness of the lines is proportional to the frequency 207 

of the observed situations. The interaction appears concretely in Figure 3: when SH < 208 
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about 20 cm, its negative influence on IR is compensated by an increase of HBD. 209 

Beyond the threshold value of HBD around 2–3 kg DM/m3, the influence of SH almost 210 

disappears. Otherwise in Figure 3, it can be seen that HBD has no effect on IR when 211 

SH is around 1–20 cm. Over this threshold of SH around 15–20 cm, the influence of 212 

HBD tends to be negative on IR which is then impacted mainly by the variations of SH. 213 

 214 

Figure 3 Interactions between sward height (cm) and herbage bulk density (kg DM/m3) 215 

on intake rate (mg DM/kg BW/min). 216 

 217 

Influence of stem and leaf mass.  218 

The stem mass (SM = 1.41 ± 0.80), when leaves are available, determines IR (Figure 219 

S2) according the following intra-experiment regression: 220 

 221 

IR = 2.92 + 73.60 (1 − exp(−2.44 SM) (n = 56; nexp = 17; RMSE = 19.1) [6] 222 

 223 

The leaf mass (LM; 1.17 ± 0.74 t DM/ha) also affects IR according to the following 224 

equation: 225 
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 226 

IR = 111.46 (1 – exp (−1.64 LM) (n = 73; nexp = 19; RMS = 14.3) [7] 227 

 228 

Figure S2 presents the two regressions and illustrates the fact that LM explains a large 229 

range of IR, from 0 to 111 mg DM/kg BW/min, while for SM, the equivalent range is 230 

only 48 mg DM/kg BW/min. For the lower values of SM, there is a great variability of 231 

IR, which is only due to the impact of leaf growth. Thus, it was decided to remove these 232 

low values of SM. Figure S2 shows also that the plateau is achieved for SM beyond 233 

the threshold of about 1 t DM/ha, illustrating that the continued growth of stems does 234 

not affect IR. In contrast, leaf growth goes on impacting IR, without any precise 235 

threshold of LM/ha. 236 

 237 

Impacts of grazing management factors.  238 

The effect of herbage allowance (HA) on IR was analysed for experiments excluding 239 

continuous grazing. It appears that IR decreased when HA increased, until a minimum 240 

plateau close to 40 mg/kg BW/min (Figure 4a). When HA decreased under a value of 241 

around 10% BW, IR increased rapidly until values close to 100 g/kg BW/min. The 242 

values under 10% of BW come partly from experiments where the access time was 243 

only 1 h or even less (Figure 4a). This response of IR is mainly due to the increase of 244 

BM. 245 

 246 

IR = 41.55 + 153.8 exp (−0.317 HA) (n = 73; nexp = 25; RMSE = 7.1 [8] 247 

 248 
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Another major factor of grazing management is the access time. In the database, only 249 

10 experiments were focused on this aspect. The response of IR is negatively related 250 

to the daily proportion of time spend grazing (pGT, 0.30  0.08, Figure 4b): 251 

 252 

IR = 35.83 + 107.28 exp(−4.56 pGT) (n = 28; nexp = 10; RMSE = 6.1) [9] 253 

 254 

For the same dataset, there was a trend of reducing the level of DMI/BW when pGT 255 

decreased: −1.36 ± 0.81 g DMI/kg BW (P = 0.11) per 0.1 decrease of pGT. For a part 256 

of this dataset (three experiments and nine treatments), the BM was measured and it 257 

increased significantly when pGT decreased (−7.1 ± 1.3 g DM/kg BW per unit of pGT). 258 

In contrast, BR was not influenced by pGT in this dataset. 259 

a 

 

b 

 

Figure 4 Effect of forage allowance (a) and proportion of time spent grazing (b) on 260 

intake rate (mg DM/kg BW/min). 261 

 262 

Grazing time 263 

When GT is not limited, there is a negative relationship between SH and GT (Figure 264 

S3), and the intra-experiment regression between the two parameters is: 265 

 266 

GT = 431.5 + 301 exp(−0.083 SH) (n = 86; nexp = 26; RMSE = 46) [10] 267 

 268 
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The number of data is not sufficient to study the influence of HBD on GT, or on 269 

rumination and idling times. 270 

 271 

Interrelations across components 272 

Global correlations 273 

Considering inter-experiment relationships (Table 2), the most inter-related 274 

components are on one hand between BM and IR and the number of chews/bite 275 

(r = 0.75) and on the other hand, to a lesser extent, between GT and DMI (r = 0.328). 276 

Considering the intra-relationships (Table 2), there are two pairs of variables correlated 277 

with each other, independently of BM, on the one hand inter and intra negative relations 278 

between BR and chews/bite and on the other hand positive inter and intra relationships 279 

between IR and DMI. 280 

 281 

Influence of animal species on the relationships 282 

Whatever the type of experience, there is a negative relationship between BR and BM 283 

(Figure 5). For cattle, the intra-experiment regression is: 284 

 285 

BR = 12.0 + 46.2 exp(−0.198 BM) (n = 342; nexp = 109; RMSE = 4.6) [11a] 286 

 287 

For small ruminants, it is: 288 

 289 

BR = 12.0 + 54.0 exp (−0.172 BM) (n = 73; nexp = 22; RMSE = 4.2) [11b] 290 

 291 
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It appears that the asymptote of 12.0 that is never achieved is not different between 292 

the two species, while the intercept is significantly higher for small ruminants compared 293 

to cattle (66.0 vs 58.2 bites/min). 294 

 295 

Figure 5 Intra-experiment relationship between bite rate (bites/min) and bite mass 296 

(mg/kg BW) for cattle (closed circles) and small ruminants (open circles). 297 

 298 

The JM and chewing associated with the bites are both positively related to BM (Table 299 

2). The relationship between JM/bite and BM is significantly different for small 300 

ruminants and cattle (Figure 6a). The intra-species and intra-experiment regression 301 

equation for cattle is: 302 

 303 

JM/bite = 1.29 + 0.121 BM (n = 79; nexp = 24; RMSE = 0.16) [12a] 304 

 305 

For sheep and goats, the corresponding regression is less accurate, and the data 306 

number is lower: 307 

 308 

JM/bite = 1.16 + 0.72 BM (n = 42; nexp = 11; RMSE = 0.44) [12b] 309 

 310 
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For these two equations, the intercept is not different to 1, illustrating that the number 311 

of chews is negligible for very small bites, and in this extreme situation JM are only 312 

bites. The data available on jaw and chewing movements also revealed different 313 

slopes of the BR-dependent decrease, for cattle and small ruminants, respectively 314 

(Figure 6b). For cattle, the intra-experiment regression is: 315 

 316 

JM/bite = 1 + 1.94 exp(−0.0283 BR) (n = 85; nexp = 28; RMSE = 0.17) [13a] 317 

 318 

For sheep and goats, the corresponding regression is less accurate, and the data 319 

number is lower: 320 

 321 

J/bite = 1 + 12.38 exp(−0.0428 BR) (n = 25; nexp = 6; RMSE = 0.41) [13b] 322 

 323 

In Figure 6b, the number of JM/bite is the sum of bite + chews per bite. For instance, 324 

for a BR of 40/min, the number of JM is about 1.5 JM/bite for cattle, meaning that an 325 

animal makes a mean of half a chew/bite. In contrast, for sheep and goats, there are 326 

about 2 chews/bite when BR = 40. 327 

a 

 

b 

 
Figure 6 Influences on jaw movements/bite of bite mass (a) and bite rate (b). 328 

 329 
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It appears clearly that for the same BM, the number of JM is much higher for small 330 

ruminants, with an order of magnitude of about 10 (3.1 ± 28.5 vs. 3.3 ± 3.6). 331 

The link between JM, expressed per gram of DMI, and BM was also analysed. For both 332 

species, the relationship is hyperbolic (Figure 7); the intra-experiment equation for 333 

cattle is: 334 

 335 

JM/g DMI = 258/(1 + 555.4 BM)) (n = 79; nexp = 23; RMSE = 1.7) [14a] 336 

 337 

For small ruminants, the regression is less accurate: 338 

 339 

JM/g DMI = 45.8/(1 + 0.41 BM)) (n = 42; nexp = 11; RMSE = 14.6) [14b] 340 

 341 

Figure 7 shows these two regressions; it appears clearly that for the same BM, the 342 

number of JM is much higher for sheep, with an order of magnitude of about 10 (31.1 ± 343 

28.5 vs 3.3 ± 3.6 JM/g DMI). It must be stressed that for sheep, three high outlier values 344 

of 94 to 165 JM/g DMI for a very low BM (BM < 0.4 mg/kg BW) from the same paper 345 

(Black and Kenney, 1984) have been removed. Moreover, we were also able to verify 346 

the decrease in JM with IR and significant differences that remain between small 347 

ruminants and cattle. 348 
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 349 

Figure 7 Influence of bite mass (BM, mg DM/kg BW) and of species on the number of 350 

jaw movements per gram of DM. 351 

 352 

As the JM/g DMI are linked to the process of particle comminution, the link between 353 

BM and rumination time was investigated from a limited set of data for cattle with 0.5 < 354 

BM < 2.5 mg DM/kg BW. It appears that the two components are positively related, 355 

according to the following intra-experiment regression: 356 

 357 

RT (min/day) = 366 (1 − exp(−2.92 BM − 0.22)) 358 

 (n = 49; nexp = 19; RMSE = 26.1) [15] 359 

 360 

This equation shows an asymptotic value of RT of 366 min/day, and RT drops markedly 361 

when BM decreases below a threshold of 1–1.5 mg DM/kg BW. It appears thus that 362 

there is a substitution in the comminution activities between intake and rumination. 363 

When the fill effect of forage in the mouth increases, the ruminant is less efficient in 364 

reducing the particle size so it must ruminate more to compensate. 365 
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The relationship between IR (mg DM/min/kg BW) and BM (mg DM/kg BW) is positive 366 

and curvilinear and, as BR was different between the two species (Figure 7), two 367 

separate fittings were performed. For cattle, the intra-experiment regression is: 368 

 369 

IR = 145.0 (1 − exp(−0.440 BM) (n = 331; nexp = 103; RMSE = 9.7) [16a] 370 

 371 

For small ruminants, it is: 372 

 373 

IR = 145.0 (1 − exp(−0.543 BM) (n = 72; nexp = 22; RMSE = 10.8) [16b] 374 

 375 

Figure 8 shows the two regressions; it appears that the differences are globally small 376 

and are at the advantage of small ruminants for lighter bites, consistent with what was 377 

observed for BR (Equations 11a and 11b and Figure 5). The asymptotic value of 145 378 

g DM/kg BW/min is the same between both species. The maximum difference between 379 

IR for the two species is observed for BM ~ 2.5 g/kg BW. It must be noted that in order 380 

to have a common regression, considering all the data, the power of BW must be 0.85. 381 

The curvilinearity of this relationship illustrates that BR, which is the ratio of IR to BM 382 

in Figure 5, decreases with the rise of BM as already remarked. Thus, BR is 383 

54 bites/min when BM is close to 0, to approximately 22–23 bites/min when BM is 384 

equal to 6 mg/kg BW. This relationship is mainly the outcome of influences of both SH 385 

and HBD on BM (Boval and Sauvant, 2019), and IR (Figure 2a and 2b). 386 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2019. ; https://doi.org/10.1101/705665doi: bioRxiv preprint 

https://doi.org/10.1101/705665
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
19 

 

 387 

Figure 8 Relationship between intake rate (mg/kg BW/min) and bite mass (mg/kg BW) 388 

for cattle (closed circles) and small ruminants (open circles). 389 

 390 

DMI (%BW) = 1.36 + 0.026 IR (n = 139; nexp = 52; RMSE = 0.30) [17] 391 

 392 

The relationship is still significant when only the 40 experiments focused on the impact 393 

of SH are considered. But, in this case the slope is higher i.e. 0.037 (n = 37; nexp = 394 

14; RMSE = 0.13). 395 

a 

 

b

 
 

Figure 9 Relationships between daily DM intake (%BW) and intake rate (a) and 396 

between bite mass and dry matter intake (b). 397 

 398 
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There is a positive and curvilinear relationship between BM and daily DMI when 399 

treatments with an observation time longer than 1 h are pooled. 400 

 401 

DMI (%BW) = 5.318 − 3.786 exp(−0.375 BM) 402 

 (n = 164; nexp = 62; RMSE = 0.27) [18] 403 

 404 

Clearly, a high BM induces a saturated response of both IR (Figure 8) and daily DMI 405 

(Figure 9b) in grazing ruminants However, the number of data determining the 406 

asymptote is low. 407 

 408 

Discussion 409 

Features of the database 410 

The database made up of 98 publications shows how studies implying cattle 411 

predominate, while lines of the database related to small ruminants represent only 1/5 412 

of the total. The publications referenced in this database are spread over the last 40 413 

years, since 1978, with nearly 85% of publications over the last 20 years. The most 414 

studied factors of variation in the publications were SH (61 % of the treatments), then 415 

bulk density to a much lesser extent (14 % of the treatments). The other factors studied 416 

represent less treatments, and the corresponding IB components available were too 417 

scattered to allow a valuable interpretation. 418 

Owing to the available data, this meta-analysis presents several limits such as the lack 419 

of specific consideration of the impact of some sward characteristics such as the ratio 420 

of leaves/stem and their tensile strength or the chemical composition of the sward on 421 

the behaviour components. Moreover, we did not consider the spatio-temporal 422 

behaviour characteristics of grazing ruminants (feeding stations, patches), nor the 423 
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kinetics of grazing behaviour during the nycthemeron. Therefore, the considerations 424 

done on the time budget are static. 425 

 426 

Impacts of canopy characteristics and of some management strategies 427 

Among the most conventional sward characteristics considered in the literature, SH 428 

and HBD mainly have been considered for their impact on BR, IR, GT and DMI. For 429 

the other sward characteristics, the IB components available were too scattered to 430 

allow a valuable interpretation. Despite the limited data available for other sward 431 

characteristics, the effects of herbage mass, LM and SM could have been studied, but 432 

only for IR. Moreover, some data were sufficient to be considered under the angle of 433 

management strategies, such as HA and access time. 434 

Hence, by increasing SH, BR decreases to a minimum plateau value of about 40 435 

bites/min as soon as the height reaches 20–30 cm (Figure 1a). On the contrary, IR 436 

increased with SH, as was previously reported for BM (Boval and Sauvant, 2019), and 437 

reached very rapidly a maximum plateau of about 100 mg DM/kg BW/min beyond a 438 

height of 20–30 cm (Figure 2a). This maximum plateau results from the combination 439 

of the minimum value of BR with the maximum value of BM as proposed by Boval and 440 

Sauvant (2019). These trends of response of IR to SH have already been described in 441 

the specific contexts of several experiments (Penning, 1986; Ginane and Petit, 2005; 442 

Hirata et al., 2010). Notably, Delagarde et al. (2011) presented a synthetic response 443 

of IR with a plateau value close to that of Figure 2a; however, the response was fitted 444 

by two linear segments, and presents an elbow that we did not observe at similar 445 

values of SH of 22–23 cm. Moreover, for very low values of SH, the decrease of IR 446 

was not sufficient compared to their observed data reported in the publication 447 

(Delagarde et al., 2011), nor to our model. Otherwise, the average plateau calculated 448 
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in this meta-analysis (Figure 2a) did not include data of three publications (Black and 449 

Kenney, 1984; Mezzalira et al., 2014 and 2017), where a decrease of IR was observed 450 

beyond SH values ranging from 10 to 30 cm (Figure S1). For these same studies, a 451 

similar tendency has already been observed for BM (Boval and Sauvant, 2019), 452 

suggesting that in certain situations of high SH, it would become more and more 453 

difficult to assemble forage into a bite. This consistent decline in IR and BM is thought 454 

to be due to the change in the structure of tall species described by some authors 455 

(Spallinger and Hobbs, 1992; Mezzalira et al., 2014 and 2017). 456 

Regarding the influence of HS on GT, it decreased to a minimum plateau value of 457 

about 450 min when SH values exceeded 20–30 cm; while for lower HS values, GT 458 

becomes higher and can exceed 650 min/day (Figure S3). This trend is consistent with 459 

previous reports by Alvarez et al. (2007) and Perez-Prieto et al. (2011). 460 

By increasing the HBD, BR decreased until a plateau of around 40 bites/min beyond 461 

2–3 kg DM/m3 (Figure 1b), similar to the minimum plateau observed with high SH 462 

(Figure 1a) in another set of experiments. We noted a similar trend with IR, which also 463 

decreased globally with HBD (Figure 2b) and plateaued at about 60 mg DM/kg 464 

BW/min, at the same HBD threshold of 2–3 kg DM/m3. These trends are globally 465 

opposite to what were previously observed for BM, which increases with both SH and 466 

HBD (Boval and Sauvant, 2019). Unfortunately, concerning GT, the effect of HBD 467 

could not be analysed as for SH, as most of the experiments that tested HBD variations 468 

were carried out with micro-swards, for which the duration of grazing could not be 469 

measured. 470 

In fact, the effects of SH and HBD cannot be disconnected from one another in natural 471 

grazing conditions, and we were opportunely able to study in our database the 472 

interaction between these two major factors, on IR (Figure 3). Globally the effect of SH 473 
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is more marked than that of HBD. At low SH, HBD positively influences IR while for 474 

high SH, HBD presents a limited negative influence on IR (Figure 3). Only a few 475 

individual studies have measured this interaction between SH and HBD consistently to 476 

our results. It has been studied actually only for short grasses and with micro-swards, 477 

as by Laca et al. (1992) and Benvenutti et al. (2006). 478 

Aside from SH and bulk density, other characteristics are also likely to influence IR, 479 

such as LM and SM. They both have a positive effect on IR; in particular, LM explains 480 

a larger range of IR, surely linked with leaf growth, without any threshold being 481 

observed. In contrast, when the SM increases beyond 1 t of DM/ha, the IR reaches a 482 

plateau of 100 mg MS/kg BW/min. 483 

While our database was not mainly focused on the influence of management strategies 484 

on global responses such as DMI, some publications allowed highlighting of some IB 485 

responses. Thus, ruminants are able to increase their IR until values near to 100 mg 486 

DMI/kg BW/min when facing an important decrease of forage allowance (Figure 4a) or 487 

of grazing access time (Figure 4b). This adaptive behaviour mainly results from 488 

differences in BM (Boval and Sauvant, 2019) which appears as a key factor of animal 489 

robustness as it allows ruminants to maintain, or only slightly decrease, their level of 490 

DMI despite a decrease of available resource and access time. As BM is at least partly 491 

explained by individual factors (Sollenberger and Vanzant, 2011; Boval and Sauvant, 492 

2019), it appears useful to investigate further animals’ ability to adapt to restricted 493 

resources and GT. 494 

 495 

From BM to intake rate and daily intake 496 

Analysis of the impact of canopy characteristics on the various IB components 497 

highlights the behavioural adaptation by ruminants to achieve satisfying BM and IR. 498 
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That appears for the low values of SH (< 20–30 cm) and of HBD (< 2–3 kg DM/m3), 499 

resulting in an acceleration of BR (Figure 1a and 1b) to compensate for the smaller 500 

bites. Consequently, the resulting IR is actually increased at low HBD (Figure 2b), while 501 

that is not the case at low SH (Figure 2a) due to the first limiting effect of SH on BM 502 

(Boval and Sauvant, 2019). In addition, for low SH, the GT is longer (Figure S3), as 503 

another way to compensate for low values of BM and IR. However, we did not have 504 

enough data to show this lengthening of GT also with low values of HBD. 505 

Beyond analysis of the effect of sward characteristics on IB components, the major 506 

relationships between these components provided further understanding. Thus, there 507 

is a strong negative correlation between BM and BR (Table 2); correlations between 508 

BM and chews/bite are also positive, while based on much less data (Table 2), and the 509 

correlation between BM and DMI is less marked, especially inter-experiment 510 

correlation. And most structuring regressions concern the link between BM and BR 511 

and the influence of BM on IR (Figure 8) which are useful for modelling purposes. All 512 

these correlations are consistent with previous reports (Poppi, 2011; Chilibroste et al., 513 

2007 and 2015) and this meta-analysis, resulting from numerous data, provides robust 514 

average values of the main correlations. 515 

The close negative relationship between BM and BR may be better understood by 516 

analysing JM/bite (Figure 6a) and how they increase with BM. Grazing animals perform 517 

JM, which contribute both to assembling the forage before harvesting and to chewing 518 

it in the mouth, before swallowing. Hence, larger bites require logically more processing 519 

before the next bite can be taken (Mulvenna et al., 2018). Therefore, the time needed 520 

between two bites increases, representing the sum of the time devoted in the JM to 521 

biting and chewing. These additional activities mechanically slow down the frequency 522 

of bites (Figure 6b). According to Spallinger and Hobbs (1992), BR is indeed the 523 
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inverse of handling time (i.e. the time invested to bite and chew) and this occurs mainly 524 

in pastures, where potential bites are concentrated, corresponding mostly to a 525 

functional response of type 3, according to Mezzalira et al. (2017). 526 

The analysis of JM expressed per gram of DM consumed (Figure 7) shows that the 527 

number of JM decreases when the bites become larger. This suggests that with larger 528 

bites of more than 1 mg/kg BW, particle fragmentation efficiency decreases (Sauvant 529 

et al., 1996; Baumont et al, 2000). This is consistent with our results showing how 530 

larger bites are positively correlated with longer rumination times (Figure S4, Equation 531 

15). With larger bites, the fill effect of the forage in the mouth increases and the grazer 532 

would be less efficient in reducing the particle size and so it must ruminate more to 533 

compensate. It appears then as a substitution in the comminution activities between 534 

intake and rumination. This could be due also partly to the fact that small BM is more 535 

often composed of more fibrous removed parts. Indeed, larger bites are more often 536 

associated with the presence of leaves in the sward canopy (Drescher et al., 2006; 537 

Geremia et al., 2018), whereas the more fibrous stems represent a physical resistance 538 

inducing a limit to biting. Geremia et al. (2018) reported how BM is small at the end of 539 

the grazing period, as animals are forced to harvest grass with a higher percentage of 540 

stems and dead material. 541 

Clearly, BM is the major determinant of IR and contributes consequently to differences 542 

of DMI. Our dataset contains some large BM, more than 4 mg/kg BW, which allows 543 

very high values of IR to be achieved, up to 140 mg/kg BW (Figure 8), while the mean 544 

asymptotic values observed for factors were around 100 mg/kg BW (Figures 2–4). 545 

Several authors had already reported these positive relationships (ref), and our results 546 

provide few data for extreme situations (low SH and HBD), as 140 mg appears as a 547 

maximum rate achievable whatever the animal species. For these few high BM and IR 548 
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values, the corresponding DM intake may exceed 5% of BW, being also influenced by 549 

the total daily duration of grazing. However, contrary to the curvilinear relationship 550 

between BM and DMI (Figure 9b), the relationship between IR and DMI (Figure 9a) 551 

appears linear, and we could not highlight any threshold of DMI. These results could 552 

be due to the low number of DMI values corresponding to high values of IR that we 553 

collected. 554 

 555 

Animal species specificity 556 

From our database, we were able to calculate some specific relationships for cattle or 557 

small ruminants, being unable to distinguish between sheep and goats. However, 558 

according to Mulvena et al. (2018) and Laca (2010), there is no marked difference 559 

between these two species of small ruminants. 560 

It appears that for the same level of BM, small ruminants graze with a faster BR 561 

compared to cattle, by about 10 bites/min (Figure 5). Besides that, small ruminants 562 

make more JM accompanying each bite compared to cattle (Figure 6b), and the 563 

difference increases clearly when BR decreases. For very small bites less than 1 mg/kg 564 

BW, there are almost no JM/bite (Figure 6a). For small ruminants, the number of chews 565 

increases very quickly, with BM of 5 mg/kg BW, requiring about 5 JM/bite (Figure 6a). 566 

Thus when JM are expressed per gram of DMI, the number of JM is approximately 10 567 

times higher for small ruminants compared with cattle (Figure 7). It is approximately 568 

the same scaling value when both species are compared in terms of DMI. In any case, 569 

small ruminants make many more JM to crop 1 g of DMI, likely investing more energy 570 

per gram of DMI than cattle, as already reported (Galli et al., 2018). Aside from chews, 571 

another type of JM may explain the difference between species, i.e. the chew-bite that 572 

can be measured with some acoustic monitoring methods (Galli et al., 2018). Indeed, 573 
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cattle (Ungar et al., 2006) and sheep (Galli et al., 2011) may use discrete JM to chew 574 

and bite, but also simultaneously chew and bite on the same jaw opening-closing cycle. 575 

However, in our database, we had no such values of chew-bites. 576 

Consequently, all of these differences imply that small ruminants have a faster IR, with 577 

a maximum equal to 1.2 times higher IR expressed per kg of BW, compared to cattle 578 

(Figure 8). Otherwise, Boval and Sauvant (2019) have also pointed out that, for the 579 

same SH, the bite depth/kg BW is higher for small ruminants, so it was necessary to 580 

use BW at power 0.20 to match the data of BD for both species. The difference of bite 581 

depth between the two species is extremely low compared to their respective BW, 582 

revealing that sheep chewing and biting modalities would be more effective for going 583 

deeper into the sward compared to cattle, as already suggested (Gordon et al., 1996; 584 

Woodward, 1998; Baumont et al., 2006). Indeed, it may be observed how sheep 585 

perform successive chews to go deeper into the canopy sward, by mobilizing their lips 586 

in quick movements. 587 

All these results are well consistent with the idea that bite and chew rates decrease 588 

commonly with ruminant species having greater BW and BM (Wilson and Kerley, 2003; 589 

Mulvenna et al., 2018). Moreover, these results emphasize the different mechanisms 590 

implemented by small ruminants or cattle to adapt to the characteristics of the 591 

resource, with their anatomical specificities (Baumont et al., 2006; Meier et al., 2016). 592 

In the case of small ruminants, the most mobile lips participate in forage prehension 593 

and therefore consumption, with associated movements of the jaw that can be 594 

recorded. Cattle have a particularly long freely mobile tip (Meier et al., 2016) that they 595 

use to greatly increase the diameter and surface of each bite to compensate for limited 596 

resources as with short SH (Boval and Sauvant, 2019). Although the relationships 597 

between the different behavioural variables are different for these two species, the fact 598 
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remains that the make-up of the bite for both species determines the rate of intake with 599 

very similar trends (Figure 9) and with a comparable maximum threshold around 140 600 

mg/kg BW). 601 

 602 

Conclusions 603 

This meta-analysis provided a set of empirical models that can serve (i) as benchmarks 604 

for future studies and models of ruminant feeding behavior and well-being (ii) to identify 605 

parameters of interest for animal management at pasture (iii) to reference values for 606 

automatic measurement devices. 607 

Approximately 20 quantitative relationships were established within this meta-analysis, 608 

confirming that bite size is a pivotal part of the ingestive behavior of ruminants in 609 

pasture, as it is both sensitive to major sward characteristics and determining for intake 610 

rate, and daily intake. 611 

The main response laws highlighted are valid for different domestic ruminants when 612 

expressed in relation to body weight. Nevertheless, important differences appeared 613 

between cattle and small ruminants, the latter having to chew more for the same bite 614 

mass. The literature review emphasizes the great variability of methods carried out to 615 

measure ingestive behavior components. Our database should be supplemented by 616 

data collected with animals in stalls to assess the generic relationships applying 617 

whatever the feeding context. 618 

619 
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Table 1 Number and mean values, standard deviation, minimums and maximums of 620 

the feeding behaviour components collected in the publications 621 

 Mean ± SD Min–max n Normality1 

BM 
(mg DM/BW) 

1.80 ± 1.27 0.107–7.41 581 N(L) 

Small ruminants 
(g DM/B) 

0.11 ± 0.09 0.09–0.63 117 N(L) 

Cattle (g DM/B) 0.77 ± 0.65 0.05–4.00 458 N(L) 
     
BR (bites/min) 46.9 ± 14.6 11.2–106.7 560 N 
JM/bite     
Small ruminants 2.73 ± 1.22 1.0–6.5 45 N 
Cattle 1.60 ± 0.54 1.13–5.04 97 N 
     
Chews/bite     
Small ruminants 1.79 ± 1.44 0.20–6.20 35 N 
Cattle 0.59 ± 0.52 0.12–3,36 92 N 
     
IR (g DM/min)     
Small ruminants 4.34 ± 2.0 0.5–11.3 91  
Cattle 27.6 ± 18.9 1.3–146.3 339  
     
IR 
(mg/min/kg BW) 

 2.70–274.1 415 N(L) 

Small ruminants 99.94 ± 45.7 12.0–274.1 64  
Cattle 69.1 ± 38.1 2.70–248.8 349  
Bite/g DMI     
Small ruminants 15.8 ± 17.7 1.6–105.0 85 N(L) 
Cattle 2.5 ± 2.1 0.3–21.0 316 N(L) 
GT (min) 519 ± 146 138–1080 293  
RT (min) 366 ± 129 31–574 140  
IT (min) 459 ± 190 86–955 149  
DMI (%BW) 2.96 ± 1.10 0.45–8.0 248  

BM = bite mass; B = bite; BR = bite rate; JM = jaw movements; IR = intake rate; GT = grazing time; RT 622 

= ruminating time; IT = idling time; DMI = dry matter intake. 623 

1 Normality of the distributions: N = non-normal; L suggests a log-normal asymmetric distribution. 624 

  625 
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Table 2 Correlations between ingestive behaviour components implied in the DMI, 626 

calculated inter- and intra-experiment (respectively the first and second value per 627 

component) 628 

 BM BR Chews/bite IR GT 

BR 

−0.503*** 
N = 170 
−0.576*** 
N = 386 

 

  

 

Chews/bite 

0.707*** 
N = 43 
0.760*** 
N = 100 

−0.597*** 
N = 43 
−0.701*** 
N = 100 

  

 

IR 
(mg/min/kg BW) 

0.703*** 
N = 134 
0.778*** 
N = 313 

0.165** 
N = 134 
−0.244*** 
N = 313 

0.100ns 
N = 43 
0.497*** 
N = 100 

 

 

GT (min/day) 

−0.283** 
N = 94 
−0.117ns 
N = 180 

−0.039ns 
N = 94 
−0.045ns 
N = 180 

−0.463* 
N = 43 
0.160ns 
N = 100 

−0.188* 
N = 94 
−0.239** 
N = 180  

DMI %BW 

0.243*** 
N = 86 
0.648*** 
N = 153 

−0.040ns 
N = 86 
−0.254*** 
N = 153 

0.645*** 
N = 43 
−0.378ns 
N = 100 

0.360*** 
N = 86 
0.793*** 
N = 153 

0.408*** 
N = 86 
0.177* 
N = 153 

N = number of data; BM = bite mass; BR = bite rate; IR = intake rate; GT = grazing time. 629 

 630 

 631 

  632 
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Supplementary material 633 

634 

Figure S1: Impact of sward height on Intake rate for some studies  635 

 636 

 637 

Figure S2: Respective influences of DM of leaf and stem, on intake rate. 638 

 639 
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 641 

Figure S3: Effect of sward height (cm) on grazing time (min/day). 642 

 643 

644 

Figure S4: Relationship between rumination time (min/day) and Bite mass (mg/kg BW) 645 
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