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Abstract. In the context of climate change, in-season and longer-term yield predictions are needed to anticipate local and regional food 
crises and propose adaptations to farmers’ practices. Mechanistic models and machine learning are two modelling options to consider 
from this perspective. In this study, multiple regression (MR) and random forest (RF) models were calibrated for wheat yield prediction 
in Morocco, using data collected from 125 farmers’ wheat fields. Additionally, MR and RF models were calibrated both with or without 
remotely sensed leaf area index (LAI), while considering all farmers’ fields, or specifically to agroecological zoning in Morocco. The same 
farmers’ fields were simulated using a mechanistic model (APSIM-wheat). We compared the predictive performances of the empirical mod-
els and APSIM-wheat. Results showed that both MR and RF showed rather good predictive quality (normalized root mean square errors 
(NRMSEs) below 35 %), but were always outperformed by the APSIM model. Both RF and MR selected remotely sensed LAI at heading, 
climate variables (maximal temperatures at emergence and tillering), and fertilization practices (amount of nitrogen applied at heading) 
as major yield predictors. Integration of remotely sensed LAI in the calibration process reduced NRMSE by 4.5 % and 1.8 % on average for 
MR and RF models, respectively. Calibration of region-specific models did not significantly improve the predictive. These findings lead to 
the conclusion that mechanistic models are better at capturing the impacts of in-season climate variability and would be preferred to sup-
port short-term tactical adjustments to farmers’ practices, while machine learning models are easier to use in the perspective of mid-term 
regional prediction.

KEY WORDS: APSIM-wheat; empirical model; machine learning; model comparison; Morocco; yield prediction.

1.   I N T RO D U CT I O N
Ongoing climate change has reinforced the need to deliver crop 
yield predictions over short or longer time horizons (Crane-
Droesch 2018; Hasegawa et al. 2022). As extreme climatic events 
are more frequent and unpredictable (Savin et al. 2022), farmers 
need to take tactical decisions in-season to adapt their practices 
according to the expected production levels and production 
costs. Over several years, cropping practices may also require 
adaptation to cope with the local evolution of mean tempera-
tures and rainfall distribution. In the rainfed areas of Morocco, 
farmers are particularly vulnerable to climate change. Recurrent 
droughts, aggravated by limited access to fertilizer, are respon-
sible for highly variable crop yields and large yield gaps (Henao 
and Baanan 1999; Roy et al. 2003; Bregaglio et al. 2015). Rainfed 

cereal production represents 80 % of the total cereal production 
of the country (Shroyer et al. 1990), putting the food and eco-
nomic balances of the country at risk.

Model-assisted decision-making in agriculture can reduce 
farmers’ vulnerability to climatic risks and support adaptation to 
fluctuations in market inputs, the allocation of subsidies and the 
recommendation of efficient and sustainable management prac-
tices for farmers (De Wit et al. 2013; Wang et al. 2014; Kasampalis 
et al. 2018; Asseng et al. 2019). National or regional crop yield 
prediction systems have been developed to support farmers and 
other stakeholders of the food chain, using numerical models. Two 
types of modelling approaches have been reported in the literature 
on yield prediction: (i) process-based approaches (i.e. mechanistic 
models) that represent the processes involved in crop development, 
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growth, resource allocation and the interactions between these 
through equations (Graeff et al. 2012; Basso et al. 2013; Jones et 
al. 2017). For example, the Global Yield Gap Atlas maps potential 
yield for major food crops in a large number of countries across 
the world, using processed-based crop model simulations (www.
yieldgap.org). (ii) Empirical approaches that relate grain yield to 
agronomic and environmental factors (i.e. climate, soil, crop man-
agement information, etc.) including simple statistical relations 
(e.g. multiple regression (MR) analysis) (Thompson 1969; Palm 
1994) or complex statistical algorithms (e.g. machine learning 
algorithms) (Marques Ramos et al. 2020; Droutsas et al. 2022; 
Son et al. 2022). For example, in Morocco, the national prediction 
system CGMS-MAROC, coordinated by the National Institute of 
Agriculture (INRA) produces maps of expected wheat production 
across Morrocco, every year, using empirical models (http://www.
cgms-maroc.ma/). It is worthy to note that in this second category, 
the degree of empiricism varies between model-based statistical 
approach in which predictors or distributions can be set based on 
biological assumptions to purely algorithmic.

Crop simulation models are valuable tools to predict yield in 
variable soil and climatic contexts and to support the adaptation 
of cropping practices. They can provide a better understanding 
of the interactions between the major processes of the soil-plant-
climate continuum and its global functioning at a daily time step. 
However, they often require a large number of input parameters 
(Cavalaris et al. 2021), which makes their deployment at large 
geographic scales over a variety of agroecosystems costly due to 
the logistics and financial resources needed to acquire parameter 
values (Makowski et al. 2006; Varella et al. 2010).

Conversely, empirical models estimate yield at a cropping sea-
son time step and can be easily used in research studies that tar-
get broad geographic ranges. The statistical approach provides a 
simple qualitative understanding of the links between grain yield 
measurements and environmental variables through regression 
and correlation analyses (Oteng-Darko et al. 2013), mainly rep-
resented in past studies by climate variables and remotely sensed 
vegetation indices or biophysical variables (e.g. leaf area index—
LAI, normalized difference vegetation index—NDVI, etc.) 
(Andarzian et al. 2008; Bolton and Friedl 2013; Son et al. 2022).

High throughput data gathering methods employing remote 
sensing and satellite images have reshaped yield modelling over 
the past 10 years and diminished the divide between empirical 
and crop simulation models. The number of spectral indicators 
linked to crop state that may be integrated into empirical mod-
els has significantly increased as a result of recent technology 
advancements (Launay and Guerif 2005; de Wit and van Diepen 
2007; Huang et al. 2019). Likewise, the integration of remotely 
obtained vegetation indexes into crop modelling pipelines has 
made it possible to reduce the degree of uncertainty in predic-
tions of national yields (Luo et al. 2023).

Overall, empirical models are simpler to use, with a reduced 
number of parameters and possibly shorter calculation time 
requirements compared to crop models (Sultan et al. 2010). 
However, agronomic recommendations can be difficult to infer 
from these types of models that bypass the relations between 
climate, practices and soil on one hand and crop functioning on 
the other ( Jones et al. 2001; Heil et al. 2018). This difficulty is 
increased by the possibility of identifying different sets of pre-
dictors for yield with equivalent performance using machine 

learning approaches. This is particularly the case with multivar-
iate regression models, and results from the collinearity among 
variables used in the model (Lischeid et al. 2022). Additionally, 
the vast majority of simple or complex statistical models used 
worldwide for yield prediction are non-spatial (Qu et al. 2022). 
They provide unique sets of selected environmental predictors 
of yield for an entire region; whilst—from an agronomic per-
spective—climatic, paedological and management determi-
nants of yield are known to vary across these large geographic 
regions. Simple customization of empirical models could out-
perform this limitation if zoning of the region of interest into 
sub-regions with homogenous climate conditions, soil status 
or practices exists so that different sets of predictors could be 
independently selected for each sub-region. In Morocco, zon-
ing of the wheat production area was delimitated by the FAO, 
within the framework of Strategy for the Conservation and 
Restoration of Agricultural Land (ISCRAL), which divides the 
Moroccan rainfed wheat production areas into four main cli-
matic areas mainly defined by annual rainfall (i.e. favourable, 
unfavourable, intermediate and mountain rainfed areas) (Aït el 
Mekki 2006; MAPMDREF 2008; Harbouz et al. 2019).

The objective of the present study is to compare the predic-
tive capacity of empirical models (MR and random forests (RF) 
models) and a process-based model (APSIM-wheat model) for 
wheat yield across the rainfed areas of Morocco and discuss their 
suitability for different modelling objectives. The precision of the 
different prediction methods and sets of selected predictors will 
be compared, and the effect of recent advances in remote sensing 
technologies on the prediction gap between the empirical and 
process-based approaches will be assessed by integrating (i) the 
effect of incorporating a satellite-based vegetation index (LAI) 
in MR and RF models, (ii) the effect of stratifying the dataset 
into different climatic sub-regions of Morocco for calibration of 
sub-region-specific empirical models. The performances of both 
improved and original empirical models as well as the mecha-
nistic model will be discussed in the light of the time horizon 
targeted for prediction and support to farmers’ decision-making.

2.   M AT E R I A L S  A N D  M ET H O D S
2.1  Study area

  Morocco covers about 710,850 km2, and most of the country 
(93%) is characterized by an arid to semi-arid climate (Dahan 
et al. 2012). The agricultural production zones in Morocco are 
located between the mountains (Rif and Atlas), the Atlantic 
Ocean and the Mediterranean Sea. In the present study, 125 
farmers’ wheat fields were selected randomly across the main 
Moroccan rainfed areas based on the FAO’s ISCRAL zoning 
(i.e. favourable (with precipitation > 400 mm), intermediate 
(300–400 mm) and unfavourable rainfed areas (<300 mm) (Fig. 
1), and monitored during three cropping seasons (from 2018 to 
2021). The selected farmers’ fields represent a diversity of con-
ditions (i.e. soil, management practices and climatic conditions) 
(Fig. 1) under the Moroccan rainfed areas, to ensure robust cali-
bration and evaluation processes of both empirical and mech-
anistic models. The datasets were assembled from fieldwork 
conducted in the framework of the ‘SoilPhorLife’ project and ‘Al 
Moutmir’ program led by the Office Chérifien des Phosphates 
(OCP group).
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2.2  Datasets
2.2.1  Phenological stages observations and grain yield measurement

During the three growing seasons, the main wheat phenolog-
ical stages were monitored in the farmers’ wheat fields based 
on Zadoks scale (Zadoks et al. 1974). To achieve an accurate 
scoring of each field as a whole, Zadoks scale scores were 
identified at 10 locations in each field, selected along a zigzag 
pattern.

Actual grain yield (Table 1) was measured at harvest in each 
farmer’s field by harvesting five samples of 1 m² selected ran-
domly across the field based on Bell and Fisher’s methodology 
(Bell and Fischer 1994).

2.2.2  Meteorological data
Daily maximum and minimum temperatures and daily rainfall 
were extracted from three sources. Weather station-based data 
were provided by the Office Régional de Mise en Valeur Agricole 
and from a public website (www.tutiempo.net) (Tutiempo 
Network, S.L. 2021) that offers data from airport weather 

stations. Since daily solar radiation was not available at most of 
these weather stations, data were completed with daily global 
radiation extracted from the satellite-based platform of NASA’s 
Prediction of Worldwide Energy Resources (POWER) Project 
(https://power.larc.nasa.gov/data-access-viewer/) with a reso-
lution of 0.5° × 0.5° (i.e. about 50 × 50 km) (Zhang et al. 2008; 
Sparks 2018). For each field, the closest weather station was cho-
sen to represent the field’s meteorological conditions. Using 15 
different weather stations allowed to keep the distance between a 
field and the corresponding weather station below 50 km.

For each field, climatic variable variables were calculated by 
aggregating daily weather data over the main develop phase of 
wheat as recorded in the field (see Section 2.2.1): (i) emergence 
(Z0 to Z20), (ii) tillering (Z20 to Z30), (iii) elongation (Z30 
to Z50), (iv) heading and anthesis, (Z50 to Z70), and (v) grain 
filling and maturity (Z70 to Z90). Cumulative rainfall (R1 to 
R5), means of maximum daily temperatures (Tmax1 to Tmax5), 
minimum daily temperatures (Tmin1 to Tmin5) and the cumulative 
growing degree days (GDD1 to GDD5) were calculated for each 
development phase and each field (Table 2). Moreover, the total 

Figure 1. Location of the 125 monitored farmers’ fields across agroecological zones in Morocco. (A) Distribution of cumulative annual rainfall 
across Morocco (Wala et al. 2019), (B) field locations and limits of the four agroclimatic zones in northern Morocco (favourable, intermediate, 
unfavourable and mountain rainfed areas) (Gommes et al. 2009). RA, rainfed area.

Table 1. Descriptive statistics for wheat yield in Moroccan rainfed areas. Figures in brackets indicate the number of fields in each zone.

Wheat yield (Mg·ha−1)

Favourable rainfed areas (61) Intermediate rainfed areas (44) Unfavourable rainfed areas (20) Overall

Mean
Median

3.74
3.80

1.81
1.85

0.67
0.60

2.57
2.20

Maximum 7.10 3.80 1.40 7.10
Minimum 0.50 0.20 0.20 0.20
SD 1.70 1.04 0.40 1.82
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cumulative precipitation (Rtot), the means of maximum (Tmax) 
and minimum (Tmin) daily temperature and the total cumulative 
growing degree days (GDDtot) were calculated for the entire crop 
cycle (i.e. from sowing date to harvesting date) (Table 2). The 
purpose of calculating these auxiliary variables was to capture 
yield potential as determined by wheat variety and local climate 
through GDD variables, as well as the effect of the main abiotic 
stresses (water stress, heat stress and cold stress) for each devel-
opment phase estimated through Tmin1 to Tmin5, Tmax1 to Tmax5, and 
R1 to R5 variables. Cumulative incident radiation available dur-
ing each phenological stage was not considered due to the uncer-
tainty of this climatic variable (estimated from a satellite-based 
meteorological dataset) and the presence of a high collinearity 
effect between global radiation and maximum temperatures.

2.2.3  Soil data
Soil samples were collected in each field before the sowing date, 
at two depths (maximum depth depending on soil develop-
ment, and, in most cases, less than 60 cm). Variables related to 
soil chemical properties (available-P (P), exchangeable-K (K), 
organic matter (OM) and pH) were determined by standard 
procedures. Data were averaged over the two soil layers, using 
soil layer thickness as weights for each field and each variable 
(Table 2).

2.2.4  Crop management data
The main crop management input variables, used during the 
calibration of empirical models and to parameterize the APSIM-
wheat crop model, describe farmers’ fertilization practices as 
recommended by experts. Crop management variables include 
the wheat cultivar and sowing date, the amount of nitrogen-, 
phosphorus- and potassium-based deep fertilizers applied 
at the sowing date (respectively, N0, P2O5 and K2O), and the 
amount of nitrogen top-dressing fertilizer applied at tillering 
stage (N1) and at the heading stage (N2). Total applied nitro-
gen (Ntot = N0 + N1 + N2) and the total top-dressing nitrogen 
(Nd = N1 + N2) were calculated and also used to calibrate empir-
ical models.

2.2.5  Wheat growth satellite-based parameters
Sentinel-2 satellite images covering the monitored farmers’ 
wheat fields during the three crop seasons (from 2018 to 2021) 
were downloaded from the Copernicus platform (https://sci-
hub.copernicus.eu/dhus/) (European Space Agency 2021a). 
Sentinel-2 optical imagery provides a series of products with 
high temporal (5 days), spatial (10 to 60 m) and spectral (13 
bands) resolution adapted for field-scale monitoring (Mohamed 
Sallah et al. 2019; Zhao et al. 2020).

Due to the large number of monitored fields, we extracted 
satellite images for two specific dates that represent determi-
nant phenological stages, framing the period of maximum veg-
etative growth: at Z30 (end of tillering/start of elongation) and 
Z50 (end of elongation/start of heading). Only images with 
cloud cover lower or equal to 15 % were considered. Due to the 
5-day time resolution of Sentinel, the temporal uncertainties for 
variables extracted from satellite images were equal to 3 days. 
Unfavourable cloud cover (>15 %) can occasionally increase this 
uncertainty, forcing us to skip overcast images and use images 

with low cloud cast on close dates. The downloaded images were 
preprocessed using the Sentinel Application Platform (SNAP) 
software (version 8.0.0) (https://step.esa.int/main/toolboxes/
snap/) (European Space Agency 2021b), freely provided by 
Sentinel. Images underwent sequential pre-processing steps: 
resampling and creating subsets. Then, a SNAP algorithm was 
applied to compute and extract a leaf area index (LAI) raster 
map from each image. LAI was calculated based on spectral 
bands with a spatial resolution ranging between 10 and 20 m. 
Finally, field polygons were delimited, excluding borders and 
LAI was averaged over the pixel of each field polygon.

2.3  Calibration of empirical models
2.3.1  Modelling strategies for calibration of MR and RF models

Data collected in the field and derived from the soil and weather 
dataset for each field were compiled into a database (Table 1).

To test the possibility of integrating the spatial and temporal 
variation of the main determinants of wheat yield, two different 
modelling strategies were tested to split the dataset into a calibra-
tion and an evaluation subset:

•	 Extraction of one generic model covering the whole range 
of monitored farmers’ fields across the rainfed wheat- 
growing area in Morocco (S1). The generic model was 
obtained by stratifying the available field data set: crop sea-
sons (2019, 2020 and 2021) represent the strata and 70 % 
of the data from each of the three strata were used to cali-
brate models while 30 % was used to evaluate the models.

•	 Extraction of three region-specific models for each of  
the rainfed agroclimatic areas (S2) (i.e. favourable, interme-
diate and unfavourable). Region-specific (or agroclimate- 
specific) models were extracted using 70 % of the  
observations while 30 % of the dataset was used to evaluate 
those specific models.

To ensure the robustness of the comparisons between MR and 
RF models, both types of models were built on the same calibra-
tion and evaluation datasets described by the two strategies (S1 
and S2). Modelling strategy (S1) was considered as the baseline 
for empirical models, compared to (S2) and models incorporat-
ing satellite-based LAI variables (Section 2.3.4).

2.3.2  MR models
Regression models with one predicted variable and more than 
one independent predictive variable are known as multivariate 
linear regression analysis (MR). The corresponding model is for-
mulated as follows:

Y = b0+ b1 · X1 + . . .+ bi · Xi + . . .+ bn · Xn

where Y is the predicted variable, Xi represents n distinct inde-
pendent variables (predictors), and bi is the estimated regression 
coefficients.

Simple stepwise linear regression analyses were conducted 
using IBM-SPSS Statistics software (v 25.0) (SPSS Inc.) to 
examine whether independent quantitative variables (Table 1) 
were successful in predicting the dependent variable (wheat 
yield) and to assess the quality of contributions of each predictive 
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variable. Assumptions of linearity, normal distribution and mul-
ticollinearity of the predictor variables were verified. The model 
that minimized the minimum standard in the absence of multi-
collinearity was selected by the stepwise algorithm as the most 
appropriate to predict yield. The variance inflation factor ‘VIF’ 
was calculated to interpret the multicollinearity and VIF values 
under 2.5 were considered to represent an acceptable level of 
collinearity based on the literature (Fomby et al. 1984). Finally, 
relative standardized estimators (“βi) were used to evaluate the 
contributions of individual predictors to the variation of yield. 
Relative standardized estimators of effects in the MR models 
were obtained by calculating the ratio between estimators for 
each predictor and the maximum of all estimators (b̂i) in the 
selected model. Overall, the use of β values to estimate the pre-
dictors’ relative importance is conditioned by the hypothesis of 
the absence of multicollinearity (Cosnefroy and Sabatier 2011), 
which was our second rule of MR model selection during the 
calibration process.

2.3.3  RFs model
A set of RFs models was designed in R (version 4.1.2) (https://
cran.r-project.org/), using the same variables as the MR model. 
Similarly, two modelling strategies were tested (see Section 
2.3.3). The ‘caret’ package (version 6.0-90) (Kuhn 2021) was 
used throughout the procedure.

In a RFs model, a set of trees—in our case 500—is built in 
a training phase and the outcome of the model is obtained by 
averaging the output of all the trees (Breiman 2001). This opera-
tion was realized on the calibration samples described in Section 
2.3.1. The principle behind the RFs procedure is to increase the 
performance of the model by combining the outputs of a large 
number of different, average-performing models (Breiman 
1996). The variety in the models (trees) is obtained through two 
elements containing a random component. First, each tree is 
built on a randomly selected fraction (two-thirds) of the training 
dataset (calibration sample) by bootstrap aggregating (bagging) 
while the remaining part of the dataset (out-of-bag sample) is 
used to assess the prediction error of the tree (Breiman 2001). 
Metrics describing the performance of the model in the training 
phase are reported here as ‘calibration results’. A second random 
effect is introduced at each node when the best split is deter-
mined among the variables. In the case of the RFs algorithm, 
only a randomly selected sample of the independent variables is 
used at each node. In the models, the number of variables, con-
trolled by the parameter ‘mtry’, was set as equal to the square 
root of the number of independent variables (Strobl et al. 2009), 
rounded to the nearest integer, in our case 6.

RFs models feature the computation of a variable called 
permutation feature importance, a metric used to evaluate the 
impact of a variable on the model’s performance. Permutation 
importance is based on the principle that if a variable is not 
important in the model, randomly permutating its values will 
not affect the model’s performance, while it will if the variable 
is important. The metric, therefore, represents the difference in 
model accuracy before and after permutation and grows larger 
as variables are more important (Breiman 2001). In this study, 
the ‘cforest’ method, from the R package party version 1.3-9 
(Hothorn et al. 2006; Strobl et al. 2007, 2008) was used. This 

algorithm was designed to improve the estimation of impor-
tance in the presence of correlated predictors (Hothorn et al. 
2006; Strobl et al. 2007, 2008). Finally, the performance of the 
final model (i.e. the average of the 500 trees) was assessed using 
the evaluation samples described in Section 2.3.1 and by com-
puting the metrics defined in Section 2.5.

2.3.4  Integration of satellite-based wheat LAI dataset into empirical 
models

To assess the impact of integrating the satellite-based wheat LAI 
on the statistical models’ structure (choice and weight of the 
selected predictors) and performance for grain yield estimation, 
the calibration and evaluation of both MR and RF models was 
repeated including (with) or excluding (without) satellite-based 
LAI determinations at Z30 (LAI-Z30) and at Z50 (LAI-Z50) 
as input variables, in addition to variables related to climate, soil 
and fertilizing practices. The comparison of the two approaches 
allowed us to quantify the degree of improvement in the mod-
els’ potential for yield prediction through the incorporation of 
satellite-based information. Satellite-based LAI was preferred to 
NDVI or other remote sensing vegetation indices based on previ-
ous unpublished commercial exploration work conducted for an 
insurance company in Morocco. This choice was also supported 
by Abi Saab et al. (2021) who compared, under Mediterranean 
conditions, the correlation between winter wheat biomass as 
measured in the field and five remotely sensed vegetation indexes 
derived from Sentinel 2. They found that LAI was notably more 
correlated to biomass compared to NDVI.

2.4  Mechanistic model: APSIM-wheat
APSIM ‘Agricultural Production Systems Simulator’ (Keating 
et al. 2003) is a crop growth model that integrates, at a daily 
time step, the effect of soil, climate, crop cultivar and crop man-
agement on interconnected processes (development, growth, 
resource allocation and effect of abiotic stresses) involved in the 
elaboration of final yield (Keating et al. 2003; Ahmed et al. 2016). 
It has been employed to simulate a wide range of crops with a 
focus on addressing global challenges such as climate change and 
food and energy security, as it expresses the response of crops to 
meteorological, soil and biological factors (Mohanty et al. 2012; 
Zhao et al. 2014; He et al. 2017). Moreover, it has been widely 
used in ex-ante studies to explore the effect of crop management 
strategies such as fertilization, irrigation, weed management and 
control, land planning or crop rotation. The detailed develop-
ment history of APSIM was reported by Gaydon (2014).

Mamassi et al. (2022) previously conducted calibration and 
evaluation of the APISM-wheat model in the Moroccan context, 
using the same dataset as in the present study. The same param-
eterization procedure was applied in the present study: plant 
parameters and soil parameters were inferred from on-site meas-
urements for each of the 125 farmers’ fields that were simulated, 
and complemented by data from the literature, and open-access 
databases. Plant parameters were estimated separately for the five 
cultivars planted in the whole sample of farmer fields then cali-
brated according to a three-step procedure: (i) exploring influ-
ential and non-influential crop cultivars parameters to identify 
the parameters that required calibration, (ii) using an Australian 
cultivar (also cultivated in Mediterranean conditions to set 
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default values for unknown plant coefficients, (iii) using the  
trial-and-errors simplified approach to adjust the plant param-
eters values. Calibration process was done by adjusting suc-
cessively crop phenology, leaf area development and yield, as 
per Boote’s systematic approach (Boote 1999; Li et al. 2018), 
and (iv) daily climate data (temperatures and precipitations) 
originated from the closest weather station of each field with a 
maximum distance of 50 km between the field and the weather 
station. Daily global radiation was extracted from NASA’s 
Prediction Of Worldwide Energy Resources (NASA’s POWER 
project) (https://power.larc.nasa.gov/data-access-viewer/). 
The detailed procedure used for APSIM-wheat model calibra-
tion and evaluation was reported in Mamassi et al. (2022).

2.5  Evaluation metrics
Statistical metrics were computed to evaluate the uncertainty 
of both empirical (RF and MR, generic or region-specific) and 
mechanistic (APSIM-wheat) models after calibration and val-
idation phases: the root mean square error (RMSE) and the 
normalized root mean square error (NRMSE) as indicators of 
model precision, as well as the coefficient of determination (R2) 
as an indicator of accuracy as per Equations (1), (2) and (3), 
respectively.

RMSE =

Ã
1
n

n∑
i=1

[xsi − xmi ]
2

(1)

NRMSE =

»
1/n

∑n
i=1 [xsi − xmi ]

2

x̄m
× 100

(2)

R2 = 1−
∑n

i=1 [xsi−(â.xmi + b̂)]
2

∑n
i=1 [xmi−xm]

2 .
(3)

where xmi is the measured values, xsi is the simulated values, ̄xm  is 
the mean of the observed value, n is the number of observations 
(i.e. fields), and â and b̂ are the estimators of the simple linear 
regression between models simulated values and observed or 
measured values in the real field.

RMSE and NRMSE were calculated in R (R Core Team 
2020), while R² of MR models were obtained using IBM-SPSS 
Statistics software (v 25.0) (SPSS Inc.). For evaluating the bene-
fit of incorporating satellite-based data as an input in MR and RF 
models, RMSE, NRMSE and R2, were computed for each case.

3.   R E SU LTS
3.1  Comparison between empirical and mechanistic models
The indicators of predictive capacity of the calibrated and 
evaluated APSIM-wheat model for wheat yield in Moroccan 
rainfed areas are depicted in Fig. 2; further details are availa-
ble in Mamassi et al. (2022). The overall comparison between 
the empirical and mechanistic models showed that APSIM-
wheat outperformed the baseline empirical models (S1, i.e. RF 
and MR generic models that were calibrated over the whole 

rainfed wheat-growing region without LAI variables), and the 
region-specific models in favourable areas (S2-Fav). However, 
in the intermediate and unfavourable rainfed areas of Morocco, 
the best predictive performances were achieved by region- 
specific MR models when integrating the satellite-based varia-
bles (i.e. S2-with-Int/Unfav), with RMSEs equal to 0.47 and 
0.17 t·ha−1, respectively.

3.2  Structure and predictive quality of generic empirical 
models (S1) without LAI variables (baseline models)

‘Baseline models’ (S1) refers to RF and MR generic models that 
were calibrated over the whole rainfed wheat-growing region in 
Morocco, and included only variables measured on the ground 
(without LAI variables) as possible predictors (Figs. 2B and 3B). 
Quality metrics calculated on the calibration dataset showed 
good to acceptable predictive quality for both MR and RF base-
line models. The lowest NRMSE value was obtained for the MR 
model (NRMSE = 24.9%). High R2 values generally exceeding 
0.7 (Fig. 2B) were obtained for both MR and RF models, indi-
cating good model accuracy.

After the model calibration process, the validation of models 
using independent datasets aimed to verify their potential for 
predicting wheat yield in Moroccan rainfed areas (Fig. 3). RF 
and MR baseline models showed almost identical wheat yield 
estimation performances with RMSEs ranging between 0.8 and 
0.9 t·ha−1 (Fig. 3B) corresponding to NRMSE below 35 %, while 
R2 exceeded 0.8 in both cases. The values of RMSE, NRMSE and 
R2 obtained in the model evaluation step confirmed that both 
MR and RF-calibrated baseline models had rather good predic-
tive capacities for yield across the rainfed wheat production area 
in Morocco (Fig. 2B).

Analysis of the models’ structure (Fig. 4 and Supporting 
Information—Fig. S1) indicates that the RF and MR calibration 
process selected the same predictors, and the best predictor var-
iables for wheat yield, by decreasing order of importance, were: 
(i) nitrogen fertilization, represented mainly by (Ntot) and (Nd) 
and (ii) meteorological variables, mainly maximal temperature 
variables (Tmax1, Tmax2 and Tmax4) and cumulative rainfall variables 
(Rtot and R5).

Among the soil fertility and fertilization practice-related 
variables, only soil OM and soil pH (pH) were selected as pre-
dictors in models, with a secondary relative importance (Fig. 
4). Similarly, these variables were among those with the low-
est relative and absolute importance in the RF baseline model 
(Supporting Information—Table S1). Moreover, bivariate cor-
relations between yield and predictive variables confirmed the 
weak contribution of K2O and to a lesser extent of P2O5 to the 
explanation of yield variations (Supporting Information—Fig. 
S2).

3.3  Effect of calibrating separate region-specific (or 
agroclimate-specific) models

Separately calibrating region-specific models for each agro-
climatic zone (S2) did not significantly improve models’ pre-
dictive power according to R2, RMSE and NRMSE values as 
calculated after calibration (Figs. 2 and 3). Region-specific 
models, obtained with the MR algorithm with or without  
satellite-based variables, had a better predictive quality than 
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RF region-specific models, overall. Moreover, the RF algo-
rithm failed to extract a model for the unfavorable rainfed areas 
(S2-Unfav). This was due to the limited number of fields in this 
region (nine fields only), which was inferior to the minimum 
number of observations needed by the algorithm to perform a 
split (parameter ‘minsplit’ with a default value of 20). Although 
the algorithm allows setting one’s own value for the parameter 
‘minsplit’, we decided not to alter the default value as designing 
an RF model based on such a limited sample would seriously 
limit its interpretability. As a result, the best fit proposed by the 
algorithm in this case was a constant value equal to the aver-
age yield (which prevented the computation of R2 and variable 
importance).

During the evaluation phase (Fig. 2), nearly identical model 
predictive performances were obtained when applying the 
RF method for the two sampling strategies (S1 and S2), with 
NRMSE ranging between 26 % and 34 %, and R2 exceeding 0.8 
(except for the S2-Unfav model that could not be calibrated with 
the RF approach). Conversely to what was observed after cali-
bration, region-specific MR models outperformed the baseline 
models’ (S1) precision in the case of favourable and interme-
diate rainfed areas (S2-Fav/Int), with NRMSE values ranging 
between 18 % and 29 % against NRMSE above 30 % for (S1) 
models. R2 values remained above 0.7 for both MR and RF  
agroclimate-specific models (S2), except for the failure of the RF 
model in the unfavourable zone.

Figure 2. Comparison of MR, RF and APSIM-wheat models’ predictive performances calculated on the evaluation-independent dataset. 
Coefficient of determination (R2), RMSE and NRMSE is the statistical indices used to evaluate and compare models’ precision and accuracy, 
(A) with and (B) without integrating satellite-based variables. S1 refers to generic models while S2-Fav: favourable, S2-Int: Intermadiate, 
and S2-Unfav: Unfavourable rainfed areas, refer to agroclimate-specific models, respectively for favourable, intermediate and unfavourable 
agroclimatic areas.
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4.   E F F ECT  O F  I N T EG R AT I N G  S AT E L L I T E -
B A S E D  DATA  O N  M O D E L  P R E D I CT I V E 

Q UA L I T Y
Calibration of generic and region-specific models with the MR 
and RF approaches was repeated when integrating LAI-Z30 and 
LAI-Z50 among the possible predictors of yield. Using remotely 
sensed variables allowed us to minimize the NRMSE of models 
calculated on the evaluation dataset by 4.9 % on average for MR 
models and 1.8 % for RF models (Fig. 2A). LAI-Z50 was selected 

as the most influential predictor variable for yield in most RF 
and MR models (generic or region specific). On the contrary, 
LAI-Z30 parameter was not selected as a major predictor for any 
type of model (Fig. 3A and Supporting Information—Fig. S2). 
The inclusion of LAI-Z50 in yield RF models mainly resulted in 
changing the order of importance of predictors: maximum tem-
peratures, total cumulated rainfall and N fertilization remained 
the main predictors together with LAI_Z50. The inclusion of 
LAI-Z50 in MR model’s was more disruptive of their structure, 

Figure 3. Coefficient of determination (R2), RMSE and NRMSE of MR and RF models calculated on the calibration dataset. S1: generic 
model. S2: region-specific models with fav: favourable (>4000 mm per year), Int: intermediate (300–400 mm) and Unfav: unfavourable (<300 
mm) rainfed areas. (A) With and (B) without integrating satellite-based variables during the calibration process.
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especially for region-specific models: Incorporation of LAI-Z50 
in MR models was compensated by the exclusion of soil fertility 
variables (OM, pH) and the reduction of the number of varia-
bles derived from maximum temperatures while cumulated rain-
fall in different phases appeared amongst the main predictors 
(Fig. 3).

5.   D I S C U S S I O N
5.1  Main environmental determinants of wheat yield in 

rainfed areas of Morocco
The MR and RF models were fairly consistent in selecting cli-
mate, soil and practice-related predictors for yield, even when 
creating models specific to different regions or agroclimates. 
Both generic models obtained using the S1 strategy and mod-
els specific to intermediate or unfavorable areas identified met-
rics derived from local rainfall and maximum temperatures as 
the primary determinant predictors of yield. This finding aligns 
with the understanding that water is the main limiting factor for 
cereal production in rainfed agricultural areas of Mediterranean 
countries, especially in regions where cumulative annual rainfall 
peaks at 400 mm (Wani et al. 2009; Perniola et al. 2015).

The significance of maximum temperature in predicting final 
yield can be interpreted through two pathways. Firstly, high 
temperatures can indicate the occurrence and severity of heat 
stress, which decreases yield. However, maximum temperature 
(Tmax) is also correlated with mean daily temperatures (Tmean) 
and daily incoming radiation, indicating its role in determining 
the duration of the crop cycle and the amount of radiation avail-
able to the crop. Due to these contrasting relationships between 
Tmax and final yield, its role as a primary predictor in RF and MR 
models is not immediately intuitive.

The MR and RF models also identified specific periods in the 
crop cycle when rainfall and maximum daily temperatures have 
a greater impact on the final yield. Tmax2 (tillering phase) and 
Tmax4 (heading to flowering phase) were the temperature-related 
metrics most frequently selected as predictors in both types of 
models. These two metrics were consistently chosen in every RF 
model. Tmax1 (emergence to tillering) and Tmax3 (tillering to boot-
ing) were occasionally selected as secondary predictors in MR 
models. Thus, tillering and pre-flowering phases can be identi-
fied as the two phenological phases in wheat development that 
are more likely to be subject to and sensitive to heat stress. The 
observation of maximum temperature dynamics throughout the 
crop cycle in rainfed areas in Morocco further supports these 
results, showing that maximum daily temperatures exceed 26 
°C on average from the start of February, which coincides with 
the full tillering phase and the beginning of elongation in wheat 
crops. Furthermore, several studies have demonstrated that heat 
stress during the vegetative growth phase of wheat reduces pho-
tosynthesis and dry matter accumulation, affecting the first yield 
components such as tiller and spike number per plant. Heat 
stress events during the pre-anthesis stages also increase pol-
len sterility, leading to a decrease in grain number (Porter and 
Gawith 1999; Farooq et al. 2011).

In terms of rainfall, the RF model selected in-season total 
cumulative rainfall (Rtot) as an important predictor of wheat 
yield, rather than stage-specific cumulative rainfall. This could 
be due to variations in soil water storage capacity across differ-
ent fields, which can blur the relationship between the timing 
of rainfall and the effective timing of water stress, and its impact 
on yield. On the other hand, the MR models identified cumula-
tive rainfall at specific stages, particularly R5 (cumulative rain-
fall during the grain filling period), as a significant predictor 
variable for wheat yield. This discrepancy between the RF and 

Figure 4. Relative importance of the main predictors of wheat yield in MR and RF models when calibrated as S1: generic models and S2: 
region-specific models with fav: for favourable, Int: for intermediate and Unfav: for unfavourable rainfed areas. (A) With and (B) without 
integrating satellite-based variables.
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MR models suggests an artificial correlation between Rtot and 
R5, which could be responsible for the identification of R5 as a 
predictor of final yield in MR models only. Dealing with multi-
collinearity using VIF results during MR model development is 
crucial to address this issue.

Nitrogen fertilization-related variables were considered the 
most important predictors in the baseline models (S1) for both 
MR and RF methods, indicating the prevalence of insufficient N 
fertilization of wheat in Morocco overall. In MR models with-
out leaf area index (LAI) variables, total nitrogen (Ntot) even 
emerged as the primary predictor of final yield.

Soil fertility variables had limited importance as predictors of 
wheat yield in the MR and RF models. Only pH and OM were 
identified as secondary predictors in the MR models. The scar-
city of soil variables in yield prediction studies may be due to the 
difficulty of obtaining relevant soil fertility data. However, bet-
ter results have been achieved by combining crop management 
practices or soil data with meteorological and satellite-based 
crop growth data for field-scale yield estimation (Basso et al. 
2013; Hunt et al. 2019). The significance of soil-related vari-
ables depends on the specific environment, such as temperate 
or continental climates with minimal water stress or countries 
where fertilization practices mitigate nitrogen stress. For exam-
ple, in Denmark, MR and RF models have been developed using 
soil properties like soil texture and organic carbon parameters 
to extract the national winter wheat yield map (Schjønning et 
al. 2018; Roell et al. 2020). Similarly, in the USA, a regression 
model identified soil OM and wilting point as significant con-
tributors to corn yield variation (Ansarifar et al. 2021)

4.2  Impact of integrating a satellite-based dataset on yield 
prediction accuracies

When considering LAI-related variables as predictors, LAI-Z50 
consistently emerged as the primary predictor of yield in both 
RF and MR models. However, in this study, nitrogen fertiliza-
tion and climate-related predictors persisted alongside LAI-Z50 
in yield prediction models, despite addressing multicollinearity 
during calibration (Han et al. 2020; Li et al. 2022). This high-
lights the importance of integrating multiple variables as yield 
predictors in empirical models. LAI at end-tillering (LAI-Z30) 
did not emerge as a predictor, likely due to its strong correlation 
with LAI-Z50 and the variable growth dynamics compensating 
for low tillering LAI’s impact on final yield. Notably, LAI-Z50 
was not selected as a predictor only in region-specific RF mod-
els for favourable areas, potentially due to LAI-Z50 saturation 
resulting from high biomass density in late vegetative stages in 
these regions.

Although LAI-Z50 was consistently chosen as a major pre-
dictor, its integration only marginally improved the MR or RF 
models’ predictive capacity, reducing NRMSE by 1.8 % to 4.9 
%. The limited impact of integrating LAI-related variables could 
be attributed to the uncertainty surrounding these variables. The 
temporal resolution and image quality limitations of Sentinel-2 
satellite data (5-day resolution and cloud cover) create incom-
patibilities with the actual observation dates of wheat develop-
ment stages Z30 and Z50. Studies incorporating satellite-based 
variables such as NDVI, EVI and LSWI have reported significant 
improvements in model accuracy (Balaghi et al. 2008; Han et al. 

2020; Meroni et al. 2021; Li et al. 2022; Marszalek et al. 2022). 
These studies often cover large geographic regions and utilize 
low to medium-quality images acquired at higher frequencies 
during key wheat vegetative stages or from sowing to harvest-
ing. Enhancing the accuracy of RF and MR models in this study 
could be achieved by extracting satellite-based variables like 
LAI at higher frequencies, specifically during vegetative stages. 
Additionally, combining biophysical variables like LAI with 
satellite-based vegetation indices related to water and nutrient 
status, such as NDWI, EVI or LSWI, could further improve the 
models’ accuracy in predicting yield at the field scale. These indi-
ces capture leaf moisture content and indicate the occurrence 
and severity of water stresses experienced by the crop (Gao 
1996; Xiao et al. 2006; Marszalek et al. 2022).

4.3  Empirical versus crop models: different skills for 
different uses

4.3.1  Predictive capacity
Past studies have reported higher model accuracy using empir-
ical models instead of crop models to predict final yield (Estes 
et al. 2013; Prasad et al. 2022). However, in the present study, 
APSIM-wheat’s predictive capacity was found to be higher 
than the tested empirical model (regardless of the method or 
calibration) in all pedoclimatic regions. NRMSE values with 
APSIM-wheat simulation were consistently below 20 %. APSIM 
predictive quality was particularly better in unfavourable areas, 
while the RF approach struggled to fit a model and identify yield 
predictors in these regions, possibly due to a lower number of 
fields.

This underscores the need to improve the representation 
of water stress and its effects on crop processes, particularly in 
drought-prone areas. Future improvements in empirical mod-
els, including using high-frequency time series of satellite-based 
variables, higher-quality images, better representations of plant 
water stress and region-specific calibrations could significantly 
increase their predictive performances. In particular, integrating 
high-resolution time series of state-related variables representing 
plant water status or topsoil water content may enhance RF, MR 
or other machine learning models in such contexts (Proctor et 
al. 2022). The RF algorithm would be able to deal appropriately 
with this additional information as they can handle large datasets 
with numerous predictors. Besides, using a conditional approach 
(e.g. ‘cforest’ function of the ‘party’ package (Strobl et al. 2008)) 
ensures that variable importance is not biased toward correlated 
predictors. For MR models, increasing the number of predictors 
requires careful variable selection and handling of multicollin-
earity. Other machine learning methods like Gaussian process 
regression have shown higher performance in predicting yield 
(Bian et al. 2022), but it is uncertain if they can match the accu-
racy of a crop model like APSIM-wheat for Morocco’s context.

4.3.2  Capacity to support tactical adaptation of cropping practices 
in-season

MR or RF models use integrated variables that describe the 
entire crop cycle or specific moments within it. This property 
enables in-season yield prediction as soon as major predictors 
are obtained for the ongoing cycle. The effectiveness of these 
models applicability in-season depends on the choice of best 
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predictors. In this study, the baseline MR and RF models, which 
incorporate satellite-based variables, identified LAI-Z50 as the 
primary yield predictor, followed by Tmax2 and Ntot. These pre-
dictor values could be acquired in time to predict wheat yield a 
few days after the Z50 stage, occurring approximately 2 months 
before harvest in Morocco. RF agroclimate-specific models also 
allowed reasonably accurate yield prediction one to 2 months 
before harvest. However, the selection of Rtot and R5 as yield 
predictors in other models hindered their use for yield predic-
tion before the grain-filling stage. Overall, empirical models can 
appear more manageable for advising and supporting farmers 
compared to crop models. As a result, empirical models have 
been integrated into various tools and national operational sys-
tems for yield prediction in various countries (Fritz et al. 2019).

However, the machine learning approach cannot be consid-
ered a complete surrogate for a decision support tool as they 
struggle to determine the effects of practice changes. For exam-
ple, beyond fertilization amounts, which are important predic-
tors in RF and MR models in this study, farmers may modify the 
type of applied N-fertilizers or add other minerals to the crop. 
The RF and MR models cannot anticipate the effects of such 
decisions, requiring a recalibration of the models to understand 
the impact of tactical adaptations on yield. In contrast, crop 
models like APSIM-wheat are designed to represent the key pro-
cesses that determine crop production, considering interactions 
with soil, climate and farming practices (Asseng et al. 2013) that 
confers more robustness to models and the capacity to simulate 
a larger range of cropping practices. The primary challenge pre-
venting crop models from being widely used as decision support 
tools lies in the extensive data requirements for field-specific 
parameterization, including access to local daily weather data 
from sowing to harvest that hinders the possibility of running 
the model during the cropping season. To address this chal-
lenge, an ensemble of possible (generated or historic) climatic 
series can be utilized to complete the climate file in season. This 
approach has been employed in the development of commer-
cial decision support tools like the Yield Prophet (Hunt et al. 
2006) (https://www.yieldprophet.com.au/yp/Home.aspx), 
which advises farmers in-season based on APSIM-wheat simu-
lations. Another potential strategy involves integrating remote 
sensing data, such as satellite images, into crop modelling tools 
to improve model calibration and correct dynamical model out-
puts in season (Huang et al. 2019).

4.3.3  Conservation of predictive capacity in the long term
In the long-term perspective, mechanistic crop models such as 
APSIM may be more efficient in predicting yield despite the 
introduction of improved cultivars in cropping systems. Crop 
model algorithms maybe refined as new processes are integrated 
or revised into additional or improved modules but the core 
structure and principles of the model are not meant to be ques-
tioned by changes in the cropping environment or practices. 
Conversely, empirical models may require re-calibration and 
new predictors may be selected under changing environmental 
conditions, especially climate change, since climatic variables are 
major predictors for these models. Similarly, changes in fertiliza-
tion practices, influenced by factors such as fertilizer and crop 
market prices or public policies, can impact the utility of some 

predictors, such as N2 or Ntot in the models assessed in this study. 
This, in turn, may increase model uncertainty if recalibration is 
not performed.

An open question arises regarding whether advancements 
in remote sensing technologies, automated data analysis pipe-
lines and computational capabilities will alleviate the need for 
frequent recalibration of empirical models. Such recalibration 
would otherwise be necessary every few years or across different 
regions, in order to accommodate contextual changes.

Several recent studies in the literature have suggested that 
hybridization of process-based models together with empirical 
models would result in improved predictive capacity both in the 
long and short term (Shahhosseini et al. 2021; Maestrini et al. 
2022; Zhang et al. 2023). While empirical models could support 
parameter estimation for crop models, crop output variables 
from crop models such as APSIM may be adequate predictors to 
statistical models and improve their predictive capacity.

6.   CO N CLU S I O N
While this work has not demonstrated a clear superiority of 
empirical models over a mechanistic model to predict crop yield 
in the case of wheat produced in the rainfed areas of Morocco, 
it evidenced the capacity of machine learning approaches to 
consistently identify the major yield determinants among a set 
of possible predictors, including when considering various algo-
rithms. All the empirical models tested selected nitrogen ferti-
lization and climatic variables as major yield predictors, before 
soil and crop management-related variables: in Morocco, rainfall 
and high temperatures are definitely the main determinants of 
yield, while soil and plant mineral status only explain marginal 
variation. Integrating recent advances in remote sensing, allow-
ing the use of satellite-based vegetation indices such as LAI, into 
these models resulted in the incorporation of such variables as 
major predictors, before climatic predictors—but only slightly 
increased the models’ predictive capacity. The attempt to make 
empirical models more site-specific to capture variation of yield 
determinants from one region to another was not conclusive. 
It is difficult to conclude if this is due to climatic determinants 
being actually the same all over the production area or due to a 
lack of sensitivity of empirical algorithms. However, this attempt 
revealed that resource-limited situations were equally difficult to 
model and predict for empirical and mechanistic models. Rather 
than clearly supporting the superiority of one type of model over 
another (empirical vs. mechanistic), the result of this work advo-
cated a complementary use of one or another approach depend-
ing on data availability but also on the targeted time horizon 
for yield simulations (one-year vs. decades) and the modelling 
objectives (in-season guidance for tactical adaptation of crop 
management vs. ex-ante or ex-post assessment of practices).

SU P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online 
version of this article –

Table S1. Relative importance of predictors in RF models.
Figure S1. Frequency of appearance of wheat yield predictors 

in the MR and RF models’ structure; (A) with and (B) without 
integrating the satellite-based variables. For each type of model, 
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the frequency can vary from 0 to 4, as one generic and three 
region-specific models have been calibrated in each case.

Figure S2. Pearson correlation coefficients among wheat 
yield, meteorological variables, satellite-based biophysical vari-
ables, soil variables and fertilization variables.

https://github.com/Achraf-UM6P/Scripts-and-fields-
dataset-M L -and-A PSI M- for-y ie ld-pred ict ion/blob/ 
fd67ef5444157a2a1abea699215bb6041778313c/Script%20
and%20dataset.rar
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