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Lay Summary: Improving the response of animals to environmental disturbances in terms of 

robustness is a key element to face the new breeding constraints related to climate change and the 

agroecological transition. Characterizing the disturbances that an animal experiences is a necessary 

first step to correctly evaluate its robustness. We propose a new method to do so based on the analysis 

of high-throughput phenotyping data. Using simulated data, we demonstrate that this method is 

effective for detecting and characterizing unknown disturbances and is thus helpful to correctly 

evaluate an animal‟s robustness. Applied to real growing pig data, it allowed us to obtain new 

measurements of robustness and to estimate their heritability in order to consider including these new 

traits for selection.  

 

Teaser Text: The UpDown method is an efficient new tool to detect and characterize unknown 

disturbances using high-throughput phenotyping data. It also makes it possible to obtain new 

measurements of animal robustness. 
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Abstract 

Improving the robustness of animals has become a priority in breeding due to climate change, new 

societal demands and the agroecological transition. Components of animal robustness can be extracted 

from the analysis of the adaptive response of an animal to disturbance using longitudinal data. 

Nonetheless, this response is a function of animal robustness as well as of disturbance characteristics 

(intensity and duration). To correctly assess an animal's robustness potential, it is therefore useful to 

know the characteristics of the disturbances it faces. The UpDown method, which detects and 

characterizes unknown disturbances at different levels of organization of the population (e.g., 

individual, pen, batch disturbances), has been proposed for this purpose. Furthermore, using the 

outputs of the method, it is possible to extract proxies of the robustness of animals. In this context, the 

objective of the study was to evaluate the performances of the UpDown method to detect and 

characterize disturbances and to quantify the robustness of animals in a genetic framework using 

different sets of simulation, and to apply this method to real pig longitudinal data recorded during the 

fattening period (body weight, cumulative feed intake and feeding rate). Based on the simulations, the 

specificity of the UpDown method was high (> 0.95). Its sensitivity increased with the level of 

organization exposed (from 0.23 to 0.32 for individual disturbances, from 0.45 to 0.59 for pen 

disturbances, and from 0.77 to 0.88 for batch disturbances). The UpDown method also showed a good 

ability to characterize detected disturbances. The average time interval between the estimated and true 

start date or duration of the disturbance was lower than three days. The correlation between the true 

and estimated intensity of the disturbance increased with the hierarchical level of organization (on 

average, 0.41, 0.78 and 0.83 for individual, pen and batch disturbance, respectively). The accuracy of 

the estimated breeding values of the proxies for robustness extracted from the analysis of individual 

trajectories over time were moderate (lower than 0.33). Applied to real data, the UpDown method 

detected different disturbances depending on the phenotype analyzed. The heritability of the proxies 

of robustness were low to moderate (ranging from 0.11 to 0.20). 

 

Keywords 

Disturbances detection, Longitudinal phenotype, Pig, Robustness 
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List of Abbreviations: 

ABT: area between trajectories 

ACF: automatic concentrate feeder 

ADFI: average daily feed intake 

ADG: average daily gain 

AFR: average feed rate 

BW: body weight 

CFI: cumulative feed intake 

FR: feed rate 

LW: large white 

Smin: slope minimum 

Sresil: slope for resilience 

th: theoretical disturbed elements 

THI: temperature humidity index 
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Introduction 

 Due to climate change that will inevitably lead to more extreme events (Pasqui and Di 

Giuseppe, 2019), new societal demands that imply changes in breeding systems (Alonso et al., 2020), 

and the agroecological transition associated with greater feed variability (Phocas et al., 2014), 

livestock will undergo more and more disturbances of various origins. In this context, improving the 

robustness of animals, defined as “the ability to combine a high production potential with resilience to 

stressors, allowing for unproblematic expression of a high production potential in a wide variety of 

environmental conditions” (Knap, 2005), has become a priority in breeding. Two options for breeding 

for animal robustness are considered in the literature (Rauw and Gomez-Raya, 2015). The first one 

consists in directly including measurable robustness traits in the breeding objective. However, 

robustness is a complex trait that is difficult to phenotype (Friggens et al., 2017). Today, traits 

included in breeding goals that may be associated with robustness are mainly related to the health 

status of animals during a specific period or to the longevity of reproductive animals (Knap, 2005; 

Berghof et al., 2019; Knap and Doeschl-Wilson, 2020; Lenoir et al., 2022). The second option 

consists in estimating the environmental sensitivity of animals by modeling and integrating the 

corresponding genetic value into the selection objective. The most commonly used model for this is 

the reaction norm model, which necessitates the environment to be described in the form of a gradient 

(Falconer, 1990; Kolmodin et al., 2002; Calus et al., 2004). More sophisticated models have recently 

been proposed, using high-throughput phenotyping data to study the dynamic nature of animals' 

adaptive responses to disturbance (Codrea et al., 2011; Sadoul et al., 2015; Revilla et al., 2019; 

Nguyen-Ba et al., 2020; Poppe et al., 2020). Some of these methods require the disturbance to be 

identified (e.g., weaning stress), while others do not but assume that animals reared together undergo 

the same disturbance, which makes their response to the disturbance comparable. However, 

disturbance can occur at different levels of a farm's organization and does not necessarily affect all 

contemporary animals. For example, based on the structure of a pig farm where animals are raised in 

small intra-pen groups and intra-batch groups of pens, an environmental disturbance such as a heat 

wave will affect all the animals in the batch, whereas a problem with the electronic feeder will only 

affect the individuals in the pen concerned, and a metabolic disease, for example, will only affect the 

animal concerned. To our knowledge, very few studies have simultaneously used information from a 

group of contemporary animals to detect and characterize unknown disturbances, which should 

nevertheless enable us to gain in detection power. Garcia-Baccino et al. (2021) proposed to detect 

disturbances by analyzing the daily phenotypic variance of a group of animals. Its distribution is 

considered as a mixture of two normal distributions (disturbed/non-disturbed days). The authors 

proposed using the probability of belonging to the disturbed distribution for each day as a measure of 

the environmental challenge that is then included as a covariate in a reaction norm animal model to 

estimate its environmental sensitivity. Another method to detect disturbances based on the analysis of 

longitudinal data at the group level was recently proposed, applicable using the “UpDown” package 

(David et al., 2023) in R software (R Core Team, 2021). The method analyzes the dynamics of 

longitudinal phenotypes at different group levels, once again using a mixture of two normal 

distributions to classify elements at each level of organization as disturbed or not and to characterize 

the detected disturbances. The aim of our study was to evaluate the performance of the UpDown 

method in depth via simulation in order to detect and characterize disturbances in a population 

structured into different group levels, and to quantify the robustness of animals in a genetic 

framework. This method was applied to real body weight, cumulative feed intake and the feeding rate 

longitudinal records of 5,872 pigs in order to perform a genetic analysis of their robustness. 
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Materials and Methods 

Data were collected in accordance with the applicable national regulations on livestock welfare in 

France. 

The UpDown method 

Let us consider a population organized into different grouping levels of contemporary animals. For 

example, in the pig farming system, the population is organized into three group levels: individual, 

pen and batch. Each batch is made up of a group of several pens and each pen is made up of a group 

of several animals. In other words, the individuals are included in pens that are included in batches. 

The UpDown method (David et al., 2023) involves studying longitudinal observations at different 

group scales to facilitate the detection and characterization of disturbances on the basis of changes in 

the dynamics of observations over time. Indeed, Sauvant and Martin (2010) consider that the response 

of animals facing a disturbance can be broken down into two parts: change in state when exposed to 

the disturbance (part 1), and once the disturbance is over, the animal‟s return to its initial state (if it is 

elastic, part 2). A schema describing changes in state for an elastic system is provided in Figure 1. 

This dynamic response of an animal to a disturbance can be described in terms of resistance and 

resilience, which are defined as the capacity of an animal to minimize impacts of perturbing factors 

and to quickly return to the pre-perturbed condition (Sadoul et al., 2015; Nguyen-Ba et al., 2020). 

When the disturbance appears, the importance of change in state will depend on the intensity of the 

disturbance, the resistance of the animal, as well as on its resilience as soon as the animal has quit its 

initial state to limit the effect of the perturbing factor. When the disturbance is over, only the 

resilience capacity is involved until the initial state is restored. The UpDown method consists of two 

steps: (i) the Up-step identifies the elements facing disturbance at each group level, starting at the 

individual level and ending at the highest organizational level (i.e., the batch in the pig system); and 

(ii) the Down-step validates elements detected in the Up-step, from the highest to the individual level 

of organization, and characterizes the detected disturbances (i.e., start date, end date and intensity). 

Individual phenotypes are first corrected for fixed effects and for the general trend of the population 

over time (i.e., the age for growth phenotypes, the number of days in lactation for milk yield, etc.) and 

smoothed using a Nadaraya-Watson‟s kernel regression (Nadaraya, 1964; Watson, 1964). Then, 

considering that animals have an elastic or plastic response (Sauvant and Martin, 2010) to disturbance 

that always goes in the same direction (slowing down or accelerating evolutionary dynamics over 

time), the Up-step identifies elements subject to at least one disturbance at the different scales by 

fitting, using an EM algorithm, i.e., a mixture of two Gaussian distributions to the minimum slopes of 

the smoothed trajectories. For levels higher than the individual level, the trajectory was obtained by 

taking the median value of the sub-level organization at each time point of observation (e.g., the 

trajectory for a given pen is obtained by taking the median of the observations of the animals in the 

pen at each different time). The Down-step is carried out in two stages. Firstly, it identifies all the 

disturbances for each element identified as having undergone at least one disturbance in the Up-step. 

All dates for which the local minimums of the slope are below the threshold value of the mixture 

model used in the Up-step are considered as disturbance start dates. The hierarchical level at which 

the disturbance occurs is validated if a high proportion of the sub-elements making up this 

hierarchical level have a close disturbance start date (obtained by clustering). The default value of this 

proportion is 50% in the UpDown R package. Once the hierarchical level of each disturbance has 

been validated, the program completes the characterization of each disturbance by identifying its end 

date (date of the first local minimum of the phenotype after the start of the disturbance) and its 

intensity (slope of the phenotype between the start and end of the disturbance). The outputs of the 
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UpDown package are thus a list of disturbances with their characteristics: hierarchical level affected, 

disturbance start and end dates, and intensity.  

In addition, using the results of the UpDown package, it is possible to evaluate the individual response 

of each animal to the various disturbances it has undergone at the group level. We propose three 

statistics for this, derived from the study of the evolutionary dynamics of the smoothed corrected 

individual phenotype: (i) Smin, the minimum of its first derivative during disturbance exposure (i.e., 

between the start and the end of the disturbance or end of the observation period if the end of the 

disturbance is later). The latter should correspond to the primo-response of the animal exposed to a 

disturbance and, thus, its resistance. The greater Smin is, the greater the resistance will be; (ii) Sresil, 

the slope between the end of the disturbance and the end of the animal's reaction (date of a local 

maximum of the slope of the smoothing curve after the end of the disturbance). It should correspond 

to the ability of the animal to recover after an exposure to a disturbance (e.g., its resilience; the greater 

Sresil is, the greater the resilience will be); (iii) ABT, the area between the smoothed and theoretical 

(non-disturbed) trajectories (obtained by linear regression) between the start and the end of the 

reaction dates that should measure the global reaction of the animal, thus, its robustness. The greater 

ABT is, the lower the robustness will be. If the end of the reaction is not identified for an animal, 

neither ABT nor Sresil are computed. It should be noted that for disturbances identified at the 

individual level, the individual dynamic is used to characterize the disturbance, but this dynamic is 

also a function of the resistance and resilience of the animal. Thus, the measure of intensity is not 

valid for this level. 

 

Materials 

Simulated data 

Longitudinal phenotypes of 6,000 individuals were simulated, as described in Le et al. (2022). 

Following are the main features of these simulations, described in detail in the above-mentioned 

article. The simulation consists in generating (i) a simplified population of five non-overlapping 

generations reared in different pens and batches; (ii) disturbances of different duration, intensity and 

starting date that occur at the individual, pen or batch level; (iii) the resistance and resilience 

(unobserved traits) of each individual; and (iv) the observed longitudinal trait     for each individual   

at time   over a 100-day observation period. For the population simulation, the generation of non-

phenotyped founders comprised 12 sires and 150 dams that were randomly mated to give birth to 

1,200 offspring (eight offspring per dam, sex ratio = 1/2). Among the progeny, 12 males and 150 

females were randomly sampled to be the parents of the next generation. The same process was 

repeated for each generation. The final population comprised 6,162 individuals. To mimic a 

production system whereby animals are raised in small groups, animals of G1 to G5 were randomly 

distributed within each generation across batches and across pens within a batch. Three different types 

of disturbances were simulated: batch disturbances (all animals in the same batch are subjected to the 

same disturbance); pen (all animals in the same pen are subjected to the same disturbance); and 

individual (the disturbance acts on a single animal). The batches, pens and animals affected by these 

disturbances were randomly sampled, as was the intensity, starting point and duration of a given 

disturbance. The robustness of each animal was modelled using two characteristics: its resistance and 

its resilience. The resistance on a [0,1] scale, corresponds to the ability of an animal to minimize the 

direct impact of the disturbance on its performance. A resistance value of 1 indicates an animal 

insensible to disturbance while a resistance value of 0 corresponds to an absence of resistance, the 
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direct impact of the disturbance will be maximal. Resilience, on a [0,1] scale as well, corresponds to 

the ability to quickly return to the state before the disturbance. A resilience value of 0 indicates 

absence of resilience, i.e., the animal will remain in the state it was in at the end of the disturbance. 

On the other hand, a resilience value of 1 indicates string resilience, the animal will quickly return to 

its initial state. Resistance and resilience were considered constant over time for each animal and 

simulated using a logit genetic model considering a heritability of 0.5 on the underlying scale for both 

traits. The phenotype's trajectory over a 100-day period of observation for each individual was 

simulated using a degree-2 random regression model modified to simulate an elastic response of the 

animal when exposed to a disturbance. The deviation in trajectory from that which would have been 

observed in the absence of disturbance is a function of the intensity of the disturbance and the 

animal's resistance and resilience. A detailed description of the model is provided in Additional File 1. 

Phenotype trajectories simulated in this way increase over time, with the slope decreasing in the 

presence of a disturbance, as shown in Figure 2.  

Simulations were carried out according to the four parameter sets described in Table 1. These differed 

in the percentage of disturbed elements and/or the distribution of the population in batches and pens, 

and thus aimed at evaluating the impact of the following on the performances of the UpDown method: 

(i) the percentage of disturbed elements (comparison set 1 vs. 2); (ii) disturbance at a lower level or 

not (set 1 vs. 3), and (iii) number of elements in a group level (set 1 vs. 4).  

Using the output of the UpDown method, a genetic analysis of the robustness statistics (Smin, Sresil, 

ABT) obtained for animals identified as facing a disturbance occurring at the group level (batch or 

pen) was performed using animal models by restricted maximum likelihood method using the 

Average Information algorithm (AI-REML) from the ASReml software (Gilmour et al., 2015). After 

selection, the fixed effects included in the models were the estimated intensity for all traits and the 

estimated age when the disturbance started, and the estimated duration of the disturbance for Sresil 

and ABT. The correlation between the EBV of the different traits and the true BV for resistance and 

resilience were then calculated. The number of replicates used for the simulation were 1,000 for set 1 

and 250 for sets 2 to 4. 

Real data 

 Data from 5,872 pigs (3,146 Large White (LW), 1,460 Landrace and 1,266 Pietrain) of the 

INRAE-France Génétique Porc (UEPR, INRAE, Rennes pig experimental unit, France, 2018) in Le 

Rheu, France, from the year 2017 to 2019, were used in this study. Pigs were raised during the 

fattening period of around 100 days (from ~63d. to ~162d. of age) in pens equipped with an automatic 

concentrate feeder (ACF) associated with an animal weighing scale. For each visit to the ACF, 

individual feed intake, time spent in the ACF and BW were recorded. The animals were distributed 

into 52 batches and 440 different pens, with no mixing of breeds per pen; there was a median of nine 

pens per batch (range [6-9]) and 14 individuals per pen (range [9-15]). During this period, health data 

were also available. These data provided information about the treatments received by the studied pigs 

(animal ID, treatment date, animal main symptom, type of treatment (antibiotic, vaccine, etc.)). In 

total, 4,919 different pigs received at least one treatment. Based on the type of treatment (curative or 

preventive) and the proportion of animals in a pen or in a batch receiving the same treatment at the 

same time, the health data made it possible to identify disturbances occurring at the batch, pen or 

individual levels. In addition, the maximal daily outdoor temperature (T° in °C) and humidity (H in 

%) data of the facility location were collected from the „Météo-France‟ website. The temperature and 

humidity index (THI) was calculated for each day using the following formula (Wegner et al., 2014): 

    (        )  
   

     
 (        ). Days with a THI greater than or equal to 75 were 
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considered as disturbed days that impacted all batches of animals in the phenotyping station on these 

days. A total of 30 potential disturbances (25 different batches) at the batch scale (14 due to health 

problems and 16 associated with high THI), ten potential disturbances at the pen scale (nine pens) and 

1,094 potential individual disturbances (812 animals) were identified.  

Detection and characterization of disturbances using the UpDown package and evaluation of Smin, 

Sresil and ABT for animals exposed to a detected disturbance were carried out from this database 

using three different daily phenotypes: cumulative feed intake (CFI), body weight (BW) and feed rate 

(FR). The phenotypes were corrected beforehand by the median trajectory over age (over day for CFI) 

per breed for each phenotype and divided by their daily standard deviation in order to put phenotypes 

on the same scale. Heritability of each of the new traits describing the robustness of the animal (Smin, 

Sresil and ABT) were then estimated for LW pigs in a multitrait animal model using ASReml 

(Gilmour et al., 2015). For this analysis, we considered that regardless of the original phenotype used 

to obtain the robustness criteria (i.e., CFI, BW or FR), they correspond to the same traits. Only the 

robustness traits of animals considered to be undergoing a disturbance at group level (and not an 

individual disturbance) were taken into account for this analysis. Fixed effects included in the models 

were the batch, the estimated intensity of the disturbance, its estimated duration, and the age of the 

animal when the disturbance started. The random permanent environmental effect was not included in 

the models due to its low variance that was not significantly different from 0. In addition, we 

estimated the genetic relationship between each of the robustness criteria and the phenotypes from 

which they are derived to evaluate the link between robustness and production. To do so, production 

phenotypes must reflect the genetic potential for production only and not a combination of production 

and robustness (Le et al., 2022). Therefore, for animals identified as experiencing disturbances, only 

phenotypic records registered 4 days before the estimated starting date of the earliest disturbance were 

used for the analysis. For animals identified as not experiencing any disturbance, phenotypic records 

registered before the average estimated starting date of the detected disturbances were used for the 

analysis to limit the difference in the period studied for the two groups of animals. The repeated BW, 

FI and FR conserved phenotypes were then summarized per animal in average daily gain (ADG), 

average daily feed intake (ADFI) and average feed rate (AFR). The genetic correlations between 

robustness traits and the genetic potential for production, considering that summarized production 

phenotypes may correspond to different traits depending on whether the animal experienced a 

disturbance or not, were then estimated using a series of 3-trait multitrait animal models (one 

robustness trait, one summarized production trait for disturbed and non-disturbed animals). In 

addition to the additive genetic effects, effects included in the models for the summarized production 

phenotypes were the age of the animal at the date used to censor the data, and the batch. 

 

Results 

Simulated data 

The sensitivity (the ability to correctly identify disturbed elements) and the specificity (the ability to 

correctly identify non-disturbed elements) of the UpDown method for each group level and set of 

simulations are provided in Table 2. The sensitivity of disturbance detection at the individual level 

was low, ranging from 0.23 to 0.32 depending on the set of parameters. It increased for higher levels, 

varying between 0.45 and 0.59 for pen disturbances, and between 0.77 and 0.88 for batch 

disturbances, the latter being associated with the largest standard errors. We did not observe any 

statistically significant differences in sensitivity depending on the set of parameters. However, it can 
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be noted that it tended to be lower for all hierarchical levels as the prevalence of disturbance increases 

(set 1 vs. 2). The specificity of the UpDown method was high regardless of the level of disturbance or 

the set of parameters ranging from 0.95 to 0.99. We evaluated the impact of the type of disturbance on 

the sensitivity of detection using a logistic regression model for each level of disturbance separately. 

Fixed effects included in the models were, in addition to the set of parameters, the intensity, the 

duration and the period of occurrence of the disturbance considered as cross-classified factors in three 

classes each: intensity - low (    ), moderate ([       [) and strong (    ); duration - short ( 

    ), medium ([          [) and long (      ); and period - early (before day 33), medium 

(between days 33 and 66)  and late (after day 66). Odds ratio estimates of the models are provided in 

Figure 3. Results were similar regardless of the level at which the disturbance occurred. The main 

factor affecting the sensitivity of detection was the intensity of the disturbance: the stronger the 

intensity is, the higher the probability of detection will be. We observed a decrease in probability of 

detection when the disturbance is of short duration. Finally, disturbances occurring at the beginning of 

the control period had a slightly higher probability of detection, whereas it was lower for the batch 

scale when the disturbance occurred at the end of the control period. The quality of the 

characterization of the detected disturbances depending on the level and the set of parameters is 

provided in Table 3. The statistics were in the same range for the different sets of parameters. The 

estimated start date of the disturbance tended to be posterior to the true start date. The average lags 

between the estimated and true start date were  2.6 and  2.8 days for disturbances occurring at the 

batch and pen level, respectively, while it was equal to  1.9 days for individual disturbances but 

associated with a large standard error (   ). The duration of the perturbation tended to be 

underestimated for the different levels of disturbance in a similar manner (by  1.6 days). The 

correlation between the true and estimated intensity of the disturbance increased with the hierarchical 

level of organization (on average,  0.41,0.78 and 0.83 for individual, pen and batch disturbances, 

respectively). The impact of intensity, duration and period of occurrence of the disturbance on the 

different statistics was evaluated using linear models. The effect of the intensity and duration of the 

disturbance on the lag between the estimated and true start date is provided in Figure 4. The longer the 

disturbance is, the greater the time interval between the estimated and true start dates will be. We also 

observed a slight increase in this lag when the disturbance is of low intensity. The lag between the 

estimated and true duration depending on the intensity and period of occurrence of the disturbance is 

provided in Figure 5. The underestimation of the disturbance duration was greater for disturbances of 

low intensity. The later the disturbance occurred, the lower the underestimation of its duration was. 

The impact of the period and the duration of the perturbation on the correlation between true and 

estimated intensity is represented in Figure 6 for the batch and pen levels. We observed a strong 

decrease in the correlation when the disturbance was of short duration and a slight decrease when the 

disturbance occurred later in the control period.  

Only the robustness criteria of animals having being identified as facing a disturbance occurring at the 

group level (batch or pen) were used for the genetic analysis. Therefore, only a small part of the 

animals in the population had phenotypes for these criteria. The proportion of animals with at least 

one robustness phenotype was on average 39, 68, 47 and 22% for sets 1 to 4, respectively. The results 

of the genetic analysis of Smin, Sresil and ABT are provided in Table 4. Heritability of the three traits 

ranged from low to moderate, depending on the set of parameters: from 0.12 to 0.17 for Smin; from 

0.18 to 0.23 for Sresil; and from 0.13 to 0.16 for ABT. The correlation between the EBV of Sresil and 

the BV for resistance was low regardless of the set of parameters, ranging from -0.11 to -0.14. They 

were higher for the other two robustness traits, with values ranging from 0.29 to 0.33 for Smin and 

from 0.16 to 0.21 (in absolute value) for ABT. The correlations between EBV and BV for resilience 

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/advance-article/doi/10.1093/jas/skae059/7619452 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 06 M

arch 2024



Acc
ep

ted
 M

an
us

cri
pt

were low for all traits: lower than 0.05 (in absolute value) for Smin and ABT and varying between 

0.09 and 0.11 for Sresil. 

Real data 

Applied to real data, the UpDown method identified different elements perturbed depending on the 

phenotype used. The corresponding venndiagram is provided in Figure 7. A total of 15 batches were 

considered as facing a disturbance (five detected by CFI analysis, four by BW and 11 by FR). Only 

four batches were detected by multiple phenotype analysis (one in common for the three phenotypes, 

one in common for FR and CFI and two in common between BW and FR). In addition, nine of the 15 

batches detected using the UpDown package were also considered to be disturbed on the basis of 

meteorological and health data. A total of 54 pens were detected as facing a disturbance (27 CFI, 28 

BW and 6 FR), four in common between CFI and BW and three in common between CFI and FR. 

Two of the detected pens also faced identified health events. Finally, a total of 1,767 individuals were 

considered as experiencing an individual disturbance, 52 of them were detected by the three 

phenotype analyses, 96 by CFI and BW, 114 by CFI and FR and 33 by FR and BW, resulting in 83% 

of the individual disturbances detected by one phenotype analysis only. A total of 21% of the detected 

individuals were also considered as experiencing a sanitary issue based on the treatment data. 

Robustness criteria of LW pigs detected as experiencing a group disturbance (batch or pen) were used 

for genetic analysis. Consequently, only 34% (1,171 animals) of the LW pigs have at least one 

measure of robustness. The heritability, phenotypic and genetic correlation of Smin, Sresil, ABT and 

summarized production traits are provided in Table 5. Heritability of the robustness traits were 

moderate: 0.20±0.04, 0.16±0.04 and 0.11±0.04 for Smin, Sresil and ABT, respectively. Sresil was 

phenotypically and genetically independent from the two other criteria, while Smin and ABT were 

favorably correlated (-0.76±0.14 for the genetic correlation). The heritability estimates for the 

summarized production phenotypes were large, varying between 0.37 and 0.55 depending on the 

phenotype. The phenotypic correlation between summarized production phenotypes and robustness 

criteria was low (< 0.18). The genetic correlation between the summarized phenotype recorded on all 

animals was high for ADG (0.86±0.18) and ADFI (0.91±0.10) but moderate for AFR (0.60±0.14). All 

the genetic correlation estimates between Sresil and the summarized phenotypes were low (all ≤ 0.14 

in absolute value). The genetic correlation estimates between Smin and ADFI and AFR from non-

disturbed animals were low (≤ 0.08) and slightly positive with ADG (0.25), but associated with a 

large standard error (0.22). When summarized production phenotypes were derived from the 

trajectory of animals experiencing a disturbance, the genetic correlations between Smin and 

production tended to be negative and significantly different from 0 for ADFI and AFR. It should be 

noted that genetic correlation estimates were generally associated with large standard errors. The ABT 

criterion was genetically independent of ADFI and AFR recorded on disturbed animals, whereas it 

was negatively correlated with ADF and positively with AFR recorded on animals not experiencing a 

disturbance. Finally, we observed a trend of favorable genetic correlation between ABT and ADG (-

0.47 and -0.39 for phenotypes of non-disturbed and disturbed animals, respectively), but standard 

errors of the correlation estimates were large (> 0.20).  

Discussion 

An extensive literature on the quantification of animal robustness by modeling its environmental 

sensitivity has emerged in recent years, thanks, in particular, to the development of high-throughput 

phenotyping tools that offer the possibility to characterize the dynamics of phenotype change in the 

face of variations in the environment. Under the assumption that animals are permanently subject to 

micro-variations in their environment, the fluctuation pattern of the phenotype is expected to be 

informative about robustness (Scheffer et al., 2018; Berghof et al., 2019). These fluctuations are 
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usually summarized into three different statistics derived from the difference between the observed 

phenotype and its modeling (i.e., residuals): the variance, autocorrelation and skewness of the 

residuals (Poppe et al., 2020; Homma et al., 2021; Bedere et al., 2022; Wang et al., 2022). The main 

difficulty in applying this method is the modeling of the theoretical trajectory of the phenotype, which 

must not be affected by the disturbances. This poses no problem in the case of micro-variations in the 

environment but is less obvious in the presence of long-term disturbances (Codrea et al., 2011; Poppe 

et al., 2020). This is why some authors have sought to identify and characterize disturbances before 

assessing the animal‟s response to these environmental changes. In the context of precision livestock 

farming, different methods have been used in livestock to identify animals whose longitudinal 

phenotype deviates from their expectation (Cornou et al., 2008; Maselyne et al., 2018). However, as 

the evolution of an individual trajectory depends on the disturbance and the robustness of the animal, 

such animal-by-animal approaches do not allow us to identify the disturbances suffered by the most 

robust animals, which will not react to the disturbances. Working at the scale of a group of animals 

avoids this problem, provided that the distribution of animals within a group is independent of their 

robustness. The UpDown method used in this study was developed around the idea (working at the 

group scale to detect macro variations), and although individual disturbances are identified and 

characterized by the method, they are not used to measure animal robustness for the reason mentioned 

above. It is very important to bear in mind that the UpDown method is designed to identify and 

measure deviations in trajectories corresponding to a response to a disturbance over the relatively long 

term (macro variation) and does not pretend to capture micro variation, which is correctly assessed by 

the residual analyses. The idea being that these long-term deviations are generally erased by the 

modeling of the animal's individual curve (in random regression model for instance) and therefore do 

not impact the residuals. The criterion currently used in the method to distinguish disturbed from non-

disturbed elements is the minimum slope of the trajectory. The underlying hypothesis behind this 

choice is that disturbance always goes in the same direction (slowing down or accelerating 

evolutionary dynamics over time). Other criteria were also tested during the development of the 

UpDown method, derived from the analysis of the residuals (variance, skewness, autocorrelation) or 

from the study of the group variance over time (Garcia-Baccino et al., 2021), but resulted in poorer 

performance in terms of the sensitivity and specificity of disturbance detection (Le, 2022). The 

increase in sensitivity of the UpDown method to detect disturbances from the individual to the batch 

scale confirms that summarizing trajectories at the group scale level helps to detect disturbances by 

removing micro-variations (whether noise or not) in the studied trajectories which constitute the 

group. We can assume that sensitivity would have been further increased at a level above that of the 

batch, e.g., the breeding region. However, it must be borne in mind that the number of elements at 

each level must be sufficiently large to allow the mixture model to converge. The characterization of 

group disturbances enabled by the method can also be used as an a posteriori evaluation tool on the 

farm, helping to identify stress factors and levers for improvement. 

Even if not statistically significant, we observed that the sensitivity of detection of the UpDown 

method tended to decrease with the prevalence of the disturbances (comparison set 1 vs. 2). This 

surprising result, given that no effect of the prevalence had been anticipated, is probably the 

consequence of the precorrection of the data for the general trend of the population over age. The 

precorrection aims at removing any natural trajectory pattern over time. In this study, this involved 

subtracting the median value of the phenotype for the corresponding age in the population from the 

observed phenotype. In set 2, several by-age median values may be affected by the disturbances since 

a proportion of animals exceeding 50% may be exposed to a disturbance at the same age. This leads to 

a higher variance of the distribution of the minimal slopes of disturbed elements in the mixture model 

and, thus, a greater difficulty to separate the disturbed from the non-disturbed elements. However, a 
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situation where 40% of the batches, the pens and the individuals are exposed to a disturbance of non-

negligible intensity is an extreme case that may not often be observed in practice, especially in 

breeding farms. The lack of difference in sensitivity and specificity of the UpDown method for 

detecting pen perturbations between sets 1 and 3 (sub-elements disturbed or not) shows the 

effectiveness of the method in eliminating perturbations of underlying scale elements by using the 

median phenotype value for a given scale and by validating the detected element in the Down-step of 

the method. It is important to note, however, that this would not have been the case if, by misfortune, 

more than 50% of the underlying elements were exposed to different perturbations, but at the same 

time (however, this “for validation proportion” can be modified in the UpDown package parameters). 

We did not highlight a significant difference in pen disturbance detection depending on the number of 

individuals in a pen (15 or 30 individuals, set 1 vs. 4), probably because the number of individuals 

remains sufficiently large in the two situations to avoid confusion between individual and pen 

disturbances. The extreme case of only two individuals in a pen would not have made it possible to 

separate the two types of disturbances (pen and individual). This is why, when we applied the 

UpDown method to the real pig data, we kept animals of three breeds to detect disturbances in order 

to avoid batches with a very small number of pens with records. As expected, the main characteristic 

of the disturbance influencing the sensitivity of detection was its intensity, where a disturbance of low 

intensity induced changes in the phenotype that were too small to be detected. A disturbance of short 

duration will also be less likely to be detected since the UpDown method smooths the data, 

eliminating deviations of excessively short duration. It should be noted that, if necessary, the 

smoothing parameter can be modified in the package to adapt the method to the nature of the data 

being analyzed. We observed that a late disturbance is less likely to be detected, especially at the 

batch scale. The reason is probably due to the fact that not all animals have phenotype records at the 

end of the test period because recording stops at 100 days of control (to mimic departure to the 

slaughterhouse). Consequently, for the last days of observation, the number of animals with records 

per pen and thus per batch were too small to permit disturbance detection by the UpDown method.  

Once a disturbance is detected, the UpDown method extracts its characteristics: end and start dates, 

and intensity. The estimated disturbance start date is almost always slightly later than the actual date 

(for more than 94% of the cases for pen and batch disturbances and more than 83% of the cases for 

individual disturbances). The lag between the true and estimated start date was generally lower at the 

individual scale. This result does not mean that the start date of individual disturbances is better 

estimated than the start date of group level disturbances. This reduction in average lag between true 

and estimated start date is the consequence of trajectories identified as modified over a given period, 

which, in fact, do not correspond to the periods when the disturbances actually occurred, leading to a 

large gap between the true and estimated start dates. Indeed, for around 10% of the disturbances 

occurring at the individual level, the difference between the estimated and true start date (absolute 

value) was greater than 10 days, while this percentage was less than 1% for the disturbances occurring 

at the pen or batch scale. This is also reflected in the large standard deviation associated with the 

average gap between the start and end of the disturbance identified at the individual scale, while the 

median value of this gap was similar for all disturbance scales. The tendency to underestimate the 

duration of the disturbance is directly linked to different estimation biases for disturbance start and 

end dates. Both are too late estimated but the end date of the disturbance is generally more accurately 

estimated than the start date (< 1 day/true end date). The later estimate of the disturbance start date 

(and thus underestimation of the duration) was probably the consequence of trajectory smoothing (the 

minimal value of its first derivative being used to localize the start of the disturbance), which is all the 

more important the longer the disturbance duration and the lower the disturbance intensity are. When 

the disturbance occurs late, the duration of the disturbance is less underestimated since these 
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disturbances are generally shorter (9.9 d.) than those occurring earlier (12.7 d.) since the data is 

censored at 100 days (duration of the test period). The main factor affecting the estimation of the 

intensity of the disturbance is its duration. We noted that in the case of short duration, the intensity of 

disturbances of high true intensity tended to be underestimated. Because the smoothed trajectory 

cannot fall abruptly and rise rapidly over a short period, the smoothed trajectory will have a smoother 

evolution than the underlying noiseless trajectory in the event of a short disturbance and, therefore, a 

lower downward slope. To sum up, the main performance shortcomings of perturbation 

characterization using the UpDown method are linked to data smoothing. The default value of the 

bandwidth for the Nadaraya-Watson‟s smoothing used in the UpDown package, tuned to maximize 

sensitivity and specificity of the method based on our simulated data, is      where   is the number of 

time points. This value can be modified by the user (the R shiny App „UpDownApp‟ provided in the 

package UpDown can help in the choice of the best smoothing parameter). However, a bandwidth 

value that is too small will lead to high oscillations of the smoothing curve and, thus, false detection 

of disturbed elements (i.e., a reduction in the method's specificity), whereas, on the other hand, a 

value that is too high will lead to an over-smoothing and the algorithm might not detect the 

disturbances (i.e., reduction of the sensitivity).  

The three criteria: Smin, Sresil and ABT, extracted from the analysis of the trajectories of animals 

undergoing a detected disturbance, should reflect the resistance, resilience and a combination of both 

(the robustness). Their estimated heritability were low to moderate, far from the 0.50 values used to 

simulate the underlying resistance and resilience potentials because these heritabilities are not 

comparable. Indeed, resistance and resilience are concepts that are not directly measurable. They are 

only expressed when the animal is exposed to a disturbance through a change in the trajectory of an 

observed phenotype. The variability of this change is linked to the environmental variability of the 

production phenotype itself and to the variance of the smoothing curve (Tsybakov, 2009). In other 

words, the residual variance of the production phenotype also contributes to the one of the measured 

robustness criteria. To illustrate our point, we carried out 50 additional simulations of set 3 with very 

low residual variance for the production phenotype (results not shown) leading to noise in the 

trajectory of the same order of magnitude as that observed for CFI and BW in the real data. 

Heritability estimates were then higher for Smin and Sresil: 0.23 and 0.43 on average, respectively; 

but similar for ABT (0.17). In addition, the proposed criteria are only proxies of these changes in 

trajectory. Furthermore, only animals detected as experiencing a group level disturbance have 

measured phenotypes. Nonetheless, given the non-negligible correlation between their EBV and BV 

for resistance, the two criteria, Smin and ABT, can provide an indication about the genetic potential of 

the animal in terms of resistance. Based on the simulation results, Sresil was the phenotype that gave 

the higher accuracy for resilience and thus remains the best proxy for this trait. Nonetheless, the 

accuracy was low. This may be because it is necessary to estimate the animal's end-of-response date 

to determine this slope, which is not feasible when the disturbance occurs late. Furthermore, this 

estimated slope depends on resilience as well as on the difference that exists at each time point 

between the observed phenotype and the value it should have had in the absence of disturbance, which 

may tend to add noise to the measurement.  

When applying the UpDown method to real data, we standardized the longitudinal phenotypes (BW, 

CFI, FR) in order to obtain disturbance characteristics and Smin, Sresil and ABT on the same scale, 

regardless of the longitudinal phenotype used. The aim of this is to make it possible to analyze the 

criteria as the same trait and thus increase the number of animals with Smin, Sresil or ABT records to 

avoid bias in the heritability estimates. Nonetheless, this pretreatment of the data may have slightly 

reduced the sensitivity of the UpDown method. The UpDown method detected different disturbances 
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depending on the phenotype used. This is not surprising since the resource acquisition and allocation 

strategies (Friggens et al., 2017) that animals implement in response to disturbance may depend on the 

type of disturbance and the animal (Ben Abdelkrim et al., 2021). For instance, in response to heat 

stress, animals can reduce their feed intake, feeding rate and/or their activity, which, in turn, have or 

do not have consequences on their ADG (Gourdine et al., 2019; Mayorga et al., 2019). Nevertheless, 

we would have hoped for more concordance between analyses of different phenotypes. This would 

perhaps have been the case if the data analyzed had been from commercial farms where the 

environment is less well controlled (Lenoir et al., 2022) and where disturbances of high intensity, with 

consequences on multiple phenotypes, can be expected. In the experimental farm considered in this 

study where the environment is highly controlled, so that the disturbances encountered were a priori 

of low intensity, the impact of disturbances on multiple phenotypes is less obvious. In the same vein, 

the concordance with the disturbances suggested by the analysis of treatment and climate data was 

low as well. When a treatment takes place in such facilities, it is usually early before the spread of the 

disease and the animals have therefore not had the time to be highly exposed (more preventive than 

curative treatment). This seems to be confirmed by the results obtained. Indeed, 54% of the batches 

that received a curative treatment were identified as disturbed by the UpDown method, but at least 

one pen of each of the five undetected batches receiving a treatment has been identified as disturbed 

(1, 4, 2, 1 and 2 pens of these five batches, respectively). In addition, at least one animal of each of the 

seven pens considered as experiencing a sanitary challenge based on treatment data but not detected 

as being a disturbed pen using the UpDown method, was detected by the UpDown method as facing 

an individual disturbance. The temperature and humidity data used in the study were measured 

outside the facility and may not accurately reflect the environmental conditions inside the facility. 

That may explain why only three (21%) of the batches considered as having suffered thermal stress 

based on climate data were also detected by the UpDown method.  

Genetic parameters were estimated considering that robustness criteria correspond to the same trait 

regardless of the longitudinal phenotype used to obtain it. We tried to investigate this hypothesis by 

performing additional analysis. We estimated the genetic correlation for each robustness criterion, 

considering the trait as different according to the type of longitudinal phenotype used to obtain it 

(CFI, BW, FR), through a series of two-trait models. It was difficult to get all the models to converge, 

and estimates of genetic correlations were associated with large standard errors, thus results should be 

interpreted with caution. The genetic correlation between robustness traits obtained with BW or CFI 

were >0.9 for the 3 robustness criteria, and varied between 0.40 and 0.71 between those obtained with 

FR and those obtained with the other phenotypes, depending on the criterion considered. It would 

therefore seem that the robustness traits obtained with BW and CFI correspond to the same trait, 

although this is less obvious for those obtained with FR.  Heritabilities obtained for the three criteria 

were low to moderate, and tended to fall within the highest heritability values reported in the literature 

for different robustness/resilience proxies. The heritabilities based on the study of the residuals were 

reported to be generally low (< 0.15 (Berghof et al., 2019)), but recent studies have reported moderate 

values of heritability for the logarithm of the residual variance (≃0.20 (Poppe et al., 2020)) and 

RMSE (≃0.25 (Putz et al., 2019)). Heritability of the area-between-curves criterion proposed by 

Revilla et al. (2022), which corresponds more or less to our ABT criterion, was low (0.03-0.04), as 

were the robustness scores proposed by Lenoir et al. (2022) based on routinely recorded phenotypes at 

the end of the growing period in pig (≃0.09). Provided that Smin was, as anticipated, a proxy of the 

resistance and Sresil a proxy of the resilience, we found no genetic correlation between these two 

components of the robustness. To our knowledge, there is no study in the literature that has estimated 

this genetic correlation. The heritabilities obtained on the real data were greater than those obtained 
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on the simulated data, probably because the trajectories of the real production phenotypes were less 

noisy than the simulated ones (illustration of real BW and CFI in additional file 2). 

In order to evaluate the relationship between robustness and production, we used summarized 

production phenotypes derived from undisturbed longitudinal phenotypes, i.e., recorded before any 

disturbance was detected. The summarized phenotypes must correspond to the same criterion 

regardless of whether the animals are exposed to a disturbance or not and must reflect the true 

production potential of the animals. This seems to be the case for ADG and ADFI for which the 

genetic correlations between the two situations (disturbed or not) were high, but not for AFR for 

which the correlation was only 0.60. A slightly weaker correlation for a trait may be due to the fact 

that: (i) the sensitivity of UpDown based on this trait is lower than expected; (ii) the start date of the 

disturbance estimated by UpDown on this trait is much later than the true start date. Consequently, the 

data used to calculate summarized phenotype comprised disturbed observations; and/or (iii) the trait 

considerably changes with age. It is not possible to evaluate the true sensitivity of UpDown based on 

FR. Nevertheless, we suspect that the sensitivity of pen disturbance detection using FR was low, since 

the number of pens detected by FR is almost 5 times lower than that detected by CFI or BW. This 

may be linked to the quality of the measurement, which is probably less accurate than that of ADG or 

FI because it accumulates the uncertainties of the different variables used to calculate it: FI and time 

spent at the ASF per visit (in addition an animal can remain in the ASF without eating resulting in an 

error in the calculation of FR). For disturbances detected using FR and another production phenotype, 

the start dates of disturbance estimated using FR were generally earlier (3.4 days on average) than 

those estimated using the other phenotypes, which does not support the second hypothesis but is 

consistent with the intuition that FR reacts early to disturbance. Multiple trait animal models applied 

to the by-period (4 distinct periods of 25days each: [1,25], [26,50], [51,75], [76,100]) summarized 

phenotypes of animals not detected as exposed to any disturbance did not provide any arguments in 

favor of the third hypothesis, the average genetic correlation between successive periods being in the 

same range for ADG (0.85), AFI (0.91) than AFR (0.94). The phenotypic correlation between the 

summarized production phenotypes were in line with those reported by Rauw et al. (2006), strong 

correlation between ADG and FI, and positive correlation between FR and the other production traits. 

It is difficult to draw conclusions from genetic correlation estimates between robustness criteria and 

production because of their large standard errors. It is nevertheless interesting to note the trend 

towards very low genetic correlations between Smin and production traits, which would indicate, 

provided that Smin is a good indicator of the animal's resilience, the independence between resilience 

and production. On the other hand, the positive correlation between Smin and ADG in the non-

disturbed situation (0.25), and the negative correlation between ABT and ADG indicate a favorable 

genetic correlation between resistance, robustness and growth, which is not consistent with the 

allocation theory (Friggens et al., 2017). In any case, further investigations on larger or different 

datasets are needed to confirm or refute these trends. 

Given that the heritability of ABT was the lowest, integrating the Smin and Sresil traits into the 

selection objective seems to be the most appropriate approach for improving robustness. In any case, 

before considering it, it is still necessary to validate them as good proxies for resistance and resilience, 

especially for Sresil for which the results of the simulation were not favorable. A way to validate them 

could be to evaluate the genetic correlation between these traits and functional traits such as 

longevity, but that are difficult to identify in the pig production system where culling is rapid. 

However, longevity corresponds to robustness over a long term period of time, whereas the resistance 

and resilience that we have considered correspond to short term responses, and it is unclear how long 

and short term robustness are related (Friggens et al., 2022). The best option would be to perform two 
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divergent selections, one on Sresil and the second on Smin, and to evaluate the dynamic response of 

the descendent in the face of a well-controlled challenge.  

 

Conclusion 

 This study presented a validation and an application of the UpDown method to detect and 

characterize disturbances and to estimate robustness of animals via three proxies. The results 

presented throughout this study proved the relevance of the UpDown method to reach these goals. To 

further evaluate the interest of this method for characterizing disturbances, it would be interesting to 

apply it to other real datasets under less controlled conditions and/or known/provoked disturbances 

and/or with other population structures. The three proposed robustness criteria are promising, but still 

need to be validated. 
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List of figures 

Figure 1: Theoretical elastic changes in the state of an animal facing a disturbance 

When the disturbance appears (start line), the importance of change in state will depend on the 

resistance of the animal and the intensity of the disturbance. As soon as the animal has quit its initial 

state, the resilience capacity is involved in order to limit the effect of the perturbing factor so that it 

can return to its initial state. 

 

Figure 2: Illustration of the simulated phenotypes (points) associated with their smoothing curve for 

three animals 

 

Animal 1 did not face any disturbance; animals 2 (resistance=0.5170, resilience=0.5490) and 3 

(resistance=0.3650, resilience=0.5423) belonged to the same pen where a disturbance occurred 

between days 60 and 77 (vertical blue lines). The trajectory of animal 3 was more deviate than that of 

animal 2 due to its lower resistance. 

 

Figure 3: Forest plot of the factors impacting the sensitivity of disturbance detection 

Intensity: intensity of the disturbance in 3 classes, low (    ), moderate (MOD) ([       [) and 

strong (    ). Duration: duration of the disturbance in 3 classes, short (     ), medium 

(MED)([          [) and long (      ). Period: period where the disturbance occurs in 3 classes, 

early (before day 33), medium (MED) (between days 33 and 66)  and late (after day 66) 

Figure 4: Impact of disturbance duration and intensity on the estimation of its start date 

Intensity: intensity of the disturbance in 3 classes, low (    ), moderate (MOD) ([       [) and 

strong (    ). Duration: duration of the disturbance in 3 classes, short (     ), medium 

(MED)([          [) and long (      ) 

 

Figure 5: Impact of disturbance intensity and occurrence period on the estimation of its duration 

Intensity: intensity of the disturbance in 3 classes, low (    ), moderate (MOD) ([       [) and 

strong (    ). Period: period where the disturbance occurs in 3 classes, early (before day 33), 

medium (MED) (between days 33 and 66)  and late (after day 66) 

 

 

Figure 6: Impact of disturbance duration and period of occurrence of the estimation of its intensity 

Duration: duration of the disturbance in 3 classes, short (     ), medium (MED)([          [) and 

long (      ). Period: period where the disturbance occurs in 3 classes, early (before day 33), 

medium (MED) (between days 33 and 66)  and late (after day 66) 
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Figure 7: Venndiagram of the elements detected at the different hierarchical levels depending on the 

phenotype used 

 

BW: Body weight; CFI: cumulative feed intake; FR: feeding rate; th: theoretical disturbed elements 

based on THI and medical treatments 
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Tables 

Table 1: Sets of parameters used for the simulation 

 Set1 Set2 Set3 Set4 

#batches per generation 8 8 8 4 

#pens within batch 10 10 10 10 

#animals per pen 15 15 15 30 

% batches disturbed 20 40 20 20 

% pens disturbed 20 40 20 20 

% animals disturbed 20 40 0 20 

same population for each set: 1,200 phenotyped individuals per generation, five generations 
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Table 2: Proportion of well detected elements among the disturbed elements (sensitivity) and among 

the undisturbed element (specificity) using the UpDown method for the different group levels and sets 

of parameters (mean ± sd) 

 

 

Set 1: 20% of all hierarchical levels (batch, pen, individual) exposed to disturbances, Set 2: 40% of all 

hierarchical levels exposed to disturbances, Set 3: 20% of batch and pen level exposed to disturbance. 

Set 4: 20% of all hierarchical levels exposed to disturbances, 4 batches. 

  

Set batch pen individual 

 Sensitivity 

set1 0.82 ± 0.15 0.54 ± 0.07 0.32 ± 0.04 

set 2 0.77 ± 0.13 0.45 ± 0.07 0.23 ± 0.06 

set 3 0.83 ± 0.14 0.55 ± 0.07 - 

set 4 0.88 ± 0.17 0.59 ± 0.1 0.30 ± 0.05 

 Specificity 

set1 0.99 ± 0.02 0.98 ± 0.01 0.95 ± 0.01 

set 2 0.98 ± 0.03 0.98 ± 0.02 0.96 ± 0.01 

set 3 0.99 ± 0.02 0.99 ± 0.01 0.95 ± 0.01 

set 4 0.99 ± 0.04 0.99 ± 0.02 0.95 ± 0.01 
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Table 3: Performances of the UpDown method to characterize detected disturbances for the different 

group levels and sets of parameters (mean±sd) 

set level 
Estimated-true 

start date 

Estimated-true 

duration 

Correlation between 

estimated and true intensity 

1 

batch 2.60 ± 1.72 -1.35 ± 3.15 0.83 ± 0.008 

pen 2.83 ± 4.88 -1.71 ± 3.57 0.77 ± 0.003 

individual 1.78 ± 14.47 -1.68 ± 5.15 0.42 ± 0.002 

2 

batch 2.81 ± 2.79 -1.55 ± 3.15 0.81 ± 0.008 

pen 2.93 ± 6.30 -1.74 ± 3.85 0.75 ± 0.004 

individual 1.94 ± 15.29 -1.63 ± 5.49 0.37 ± 0.002 

3 
batch 2.54 ± 2.46 -1.31 ± 3.03 0.84 ± 0.009 

pen 2.72 ± 4.82 -1.69 ± 3.48 0.78 ± 0.004 

4 

batch 2.59 ± 1.98 -1.38 ± 3.04 0.83 ± 0.014 

pen 2.78 ± 3.93 -1.65 ± 3.45 0.81 ± 0.006 

individual 1.85 ± 14.56 -1.71 ± 5.14 0.43 ± 0.002 

 

Set 1: 20% of all hierarchical levels (batch, pen, individual) exposed to disturbances, Set 2: 40% of all 

hierarchical levels exposed to disturbances, Set 3: 20% of batch and pen level exposed to disturbance. 

Set 4: 20% of all hierarchical levels exposed to disturbances, 4 batches. 
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Table 4: Heritability of the different robustness criteria and accuracy of their EBV for resistance and 

resilience (mean   ±sd) 

Set     (          )  (          ) 

  Smin  

set1 0.12 ± 0.14 0.29 ± 0.09 0.05 ± 0.10 

set 2 0.12 ± 0.09 0.33 ± 0.09 0.04 ± 0.08 

set 3 0.17 ± 0.17 0.30 ± 0.09 0.04 ± 0.09 

set 4 0.16 ± 0.17 0.27 ± 0.12 0.03 ± 0.09 

  Sresil  

set1 0.19 ± 0.24 -0.11 ± 0.09 0.09 ± 0.08 

set 2 0.19 ± 0.16 -0.14 ± 0.08 0.11 ± 0.08 

set 3 0.23 ± 0.26 -0.12 ± 0.09 0.10 ± 0.09 

set 4 0.18 ± 0.19 -0.11 ± 0.09 0.09 ± 0.09 

  ABT  

set1 0.13 ± 0.17 -0.17 ± 0.09 -0.03 ± 0.09 

set 2 0.13 ± 0.14 -0.21 ± 0.09 -0.04 ± 0.08 

set 3 0.16 ± 0.20 -0.18 ± 0.09 -0.03 ± 0.09 

set 4 0.13 ± 0.17 -0.16 ± 0.11 -0.03 ± 0.09 

 

Smin:  slope minimum, Sresil:  Slope for resilience, ABT:  area between trajectories. 

Set 1: 20% of all hierarchical levels (batch, pen, individual) exposed to disturbances, Set 2: 40% of all 

hierarchical levels exposed to disturbances, Set 3: 20% of batch and pen level exposed to disturbance. 

Set 4: 20% of all hierarchical levels exposed to disturbances, 4 batches. 
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Table 5: Heritability (on the diagonal), phenotypic correlation (above the diagonal) and genetic correlation (below the diagonal) of the different robustness 

criteria measured on LW pigs 

 Smin Sresil ABT ADGnd ADGd ADFInd ADFId AFRnd AFRd 

Smin 0.20±0.04 -0.10±0.03 -0.52±0.03  -0.12±0.03  0.18±0.03  0.09±0.03 

Sresil -0.01±0.17 0.16±0.04 0.07±0.03  -0.09±0.04  0.07±0.04  0.10±0.04 

ABT -0.76±0.14 0.19±0.21 0.11±0.04  0.03±0.04  -0.03±0.04  -0.02±0.04 

ADGnd 0.25±0.22 0.04±0.26 -0.47±0.30 0.38±0.07 - 0.80±0.02  0.42±0.02  

ADGd -0.17±0.13 0.00±0.16 -0.39±0.22 0.86±0.18 0.39±0.12  0.45±0.03  0.36±0.03 

ADFInd 0.08±0.19 0.14±0.21 -0.30±0.24   0.55±0.07 - 0.57±0.02  

ADFId -0.33±0.10 0.01±0.12 0.01±0.17   0.91±0.10 0.37±0.09  0.81±0.02 

AFRnd 0.02±0.18 -0.14±0.23 0.17±0.28     0.50±0.07 - 

AFRd -0.58±0.08 -0.02±0.13 0.07±0.17     0.60±0.14 0.50±0.09 

Smin:  slope minimum, Sresil:  Slope for resilience, ABT:  area between trajectories, ADG: average daily gain, ADFI: average daily feed intake, AFR: 

average feeding rate. Subscript nd: non disturbed, d: disturbed. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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