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Summary

� Oxygen and hydrogen isotopes of cellulose in plant biology are commonly used to infer

environmental conditions, often from time series measurements of tree rings. However, the

covariation (or the lack thereof) between δ18O and δ2H in plant cellulose is still poorly under-

stood.
� We compared plant water, and leaf and branch cellulose from dominant tree species across

an aridity gradient in Northern Australia, to examine how δ18O and δ2H relate to each other

and to mean annual precipitation (MAP).
� We identified a decline in covariation from xylem to leaf water, and onwards from leaf to

branch wood cellulose. Covariation in leaf water isotopic enrichment (Δ) was partially pre-

served in leaf cellulose but not branch wood cellulose. Furthermore, whilst δ2H was well-

correlated between leaf and branch, there was an offset in δ18O between organs that

increased with decreasing MAP.
� Our findings strongly suggest that postphotosynthetic isotope exchange with water is more

apparent for oxygen isotopes, whereas variable kinetic and nonequilibrium isotope effects

add complexity to interpreting metabolic-induced δ2H patterns. Varying oxygen isotope

exchange in wood and leaf cellulose must be accounted for when δ18O is used to reconstruct

climatic scenarios. Conversely, comparing δ2H and δ18O patterns may reveal environmentally

induced shifts in metabolism.

Introduction

The potential for hydrogen (H) and oxygen (O) isotope analysis
of plant cellulose to yield inferences about past climates and phy-
siological processes has long been recognised (Schiegl &
Vogel, 1970; Epstein et al., 1976; Gray & Thompson, 1976;
Libby et al., 1976). However, despite its research history, sub-
stantial uncertainty remains around the exact biological and
environmental information recorded in cellulose, limiting its
application to tree-ring archives (e.g. Yakir, 1992; McCarroll &
Loader, 2004; Gessler et al., 2014).

The source of all organically bound hydrogen and the majority
of oxygen in organic molecules derives from plant water. Com-
pared with root and xylem stem water (i.e. ‘source’ water), leaf
water becomes enriched in the heavier isotopes (18O and 2H)
during transpiration (Dongmann et al., 1974; Leaney
et al., 1985; Flanagan et al., 1991; Farquhar & Lloyd, 1993).

The climatic and physiological processes that influence the isoto-
pic composition of leaf water are well-understood and lead to
predictable relationships between oxygen and hydrogen isotope
compositions (δ) of leaf water (Cernusak et al., 2016, 2022). As
primary sugars are synthesised in leaves, sugars and by extension
plant cellulose should theoretically show similar δ18O–δ2H cov-
ariation as plant water due to the incorporation of O and H
sourced both directly and indirectly from water during com-
pound biosynthesis. Across large spatial scales, this appears to be
a reasonable assumption (Lehmann et al., 2022). However, at the
local scale, analysing temporal variation in tree-ring chronologies,
weak relationships between δ2H and δ18O are often observed
(Nabeshima et al., 2018; Nakatsuka et al., 2020; Vitali
et al., 2022). This perhaps explains why the climate sensitivity of
one element is often found to be different to the other (e.g. Loa-
der et al., 2008; Boettger et al., 2014; Gori et al., 2015) –
although not always (e.g. Hafner et al., 2011; An et al., 2014).
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Oxygen and hydrogen cellulose isotope models provide a use-
ful framework to understand the drivers of isotopic variation
(Yakir & DeNiro, 1990; Barbour & Farquhar, 2000; Roden
et al., 2000). They are conceptualised as a two-pool mixing
model reflecting the initial synthesis of sugars via photosynthesis
in source tissue (i.e. leaves) and its subsequent export to sink tis-
sue (e.g. developing leaves, wood) where some isotope exchange
with sink cell water can occur during sugar metabolism. Most
applications have assumed that biochemical isotope effects in the
models are invariant. However, recent studies have challenged
this assumption. For example, the incorporation and exchange of
oxygen from water in organic matter, which is an equilibrium
isotope process, is thought to vary with temperature (Sternberg
& Ellsworth, 2011), and the extent to which isotopic exchange
occurs with water during sink cell metabolism has been shown to
exhibit considerable variation, particularly in response to the
environment (reviewed in Song et al., 2022).

Initial estimates of hydrogen isotope effects during carbohy-
drate biosynthesis suggested that there is a large isotope fractiona-
tion against 2H during the Calvin–Benson–Bassham cycle
(�171‰), whereas the sum of hydrogen isotope fractionation
during postphotosynthetic isotope exchange and metabolism is
in favour of 2H (+158‰) (Yakir & DeNiro, 1990). However,
the constancy of these values has also been challenged on both
theoretical (Cormier et al., 2018; Zhou et al., 2018) and experi-
mental (Holloway-Phillips et al., 2022; Schuler et al., 2023)
grounds. Also, position-specific intramolecular δ2H analysis has
suggested different fractionation factors for individual H-atom
positions, which respond to environmental conditions (Schleu-
cher et al., 1999; Augusti et al., 2006; Wieloch et al., 2022a,b).
Variation in the isotopic offset between cellulose δ2H and plant
water pools also supports the view that fractionation factors can
change with species and growth conditions (Sternberg &
Deniro, 1983; Cormier et al., 2018, 2019; Baan et al., 2022,
2023; Lehmann et al., 2022).

As long as the extent to which sink cell isotopic exchange
occurs and the values for biosynthetic fractionation remain con-
stant or change proportionally between elements, covariation
between δ18O and δ2H will persist through biosynthetic transfor-
mations from source water to cellulose. However, there are sev-
eral reasons to explain a potential decoupling between δ18O and
δ2H values:
(1) First, using the default model parameterisation of the cellu-
lose isotope models and assuming normal leaf and xylem water
isotope patterns observed in nature, the cellulose isotope models
predict that whilst variation in xylem and leaf water δ values
result in positive covariation, variation in the fraction of sugars
that undergo isotopic exchange in sink cells (f ) results in nega-
tive covariation (when all other variables are held constant).
This is because an increase in f lowers cellulose δ18O values
(greater proportion of sugars derived from an 18O-depleted
xylem water pool compared to leaf water), and increases δ2H
values (in this case, the large positive isotope fractionation dur-
ing heterotrophic sugar metabolism outweighs the 2H-depeleted
xylem water pool as f increases). Thus, where cellulose isotopic
variation is driven by variability in both plant water and f, the

relationship between δ18O and δ2H has the potential to weaken
and/or invert.
(2) Second, variability in isotope fractionation during com-
pound biosynthesis would add another mechanism by which the
δ18O–δ2H covariation may disappear, especially given that
hydrogen is subject to additional kinetic isotope effects (during
enzymatic reactions) that do not impact oxygen (discussed in
Holloway-Phillips et al., 2022 and elaborated on in the Discus-
sion section).
(3) Third, tissue-specific patterns have been observed for both
cellulose δ18O (Cheesman & Cernusak, 2016) and δ2H (Ish-
Shalom-Gordon et al., 1992; Ruppenthal et al., 2015; Sanchez-
Bragado et al., 2019), suggesting that different C sources and
metabolism in sink and source tissues can influence the extent to
which climatic δ18O and δ2H signals are recorded by plant cellu-
lose (Barnard et al., 2007; Offermann et al., 2011; Gessler
et al., 2013; Kimak et al., 2015; Zhu et al., 2020; Lehmann
et al., 2021).

However, there is a lack of studies that have tested whether
noncovariation in δ18O–δ2H is driven by variable biochemical
isotope effects in one or both elements, and whether this depends
on the tissue type assessed and plant compounds analysed (lipids,
cellulose, lignin). For example, δ18O in wood cellulose from
eucalypts across a climatic gradient in north-eastern Australia
showed no climatic trend (Cheesman & Cernusak, 2016). By
contrast, δ2H in leaf wax n-alkanes across another similar Austra-
lian transect recorded the leaf-water climatic signal, suggesting
that the biochemical isotope effects were invariant with environ-
mental conditions (Kahmen et al., 2013).

To clarify the origin of the potential decoupling between δ18O
and δ2H in organic compounds, we examined both δ18O and
δ2H in leaf and branch-wood cellulose from dominant tree spe-
cies, including eucalypts and acacia, sampled across a 1500-km
climatic gradient in northern Australia (Hutley et al., 2011),
where leaf water enrichment was largely driven by both site varia-
tion in relative humidity (RH) and RH-independent changes in
the isotope composition of xylem water (Kahmen et al., 2013;
Cernusak et al., 2016). We addressed the following questions: (1)
Is there a δ18O–δ2H decoupling in cellulose, and if so, is the loss
of the climatic isotope signal element dependent? (2) Can we see
differences in the delta values between organs and if so, does it
relate to expected differences in biochemistry? We then used cel-
lulose isotope models parameterised with commonly accepted
values and looked at whether the discrepancy between modelled
estimates and observed δ18O and δ2H values of leaf and branch
wood cellulose followed an aridity-dependent isotopic offset in
order to suggest predictable shifts in biochemical isotope effects.

Materials and Methods

Field sites, species, and sampling of plant material

We made use of leaf and wood (branch) xylem samples collected
within the original sampling campaign published in part by Kah-
men et al. (2013). The study sampled 11 sites spanning 1500 km
from Alice Springs to Darwin in the Northern Territory,
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Australia, as part of the North Australian Tropical Transect
(Hutley et al., 2011; Fig. 1). For the study of Kahmen
et al. (2013), only six of the 11 sites were analysed for the δ2H of
n-alkanes in leaf waxes. The isotopic composition of leaf water
was also sampled diurnally (four time points) at five of the 11
sites, and the data set published in full by Cernusak et al. (2016).
Across all sites, branch xylem was collected for water extraction,
and subsequently used for cellulose isotope analyses. Branch sec-
tions were c. 1 cm diameter, that is ‘twigs’. Leaf tissue was also
collected at all 11 sites and similarly used for cellulose isotope
analyses. Until this study, the cellulose isotope information had
not been published. For further details on when the samples were
collected and processed, see Supporting Information Dataset S1 –
‘Metadata’.

Across the sites, long-term mean annual precipitation (MAP)
and mean relative humidity (RH) ranged from 313 mm yr�1 and
34% in Alice Springs to 1739 mm yr�1 and 62% in Darwin.
Mean annual temperature across sites was much less variable (see
Dataset S1 – ‘Metadata’ for source information). The two domi-
nant genera, represented across most sites, were Acacia and Euca-
lyptus, as well as the genus Corymbia, which is phylogenetically
close to Eucalyptus (see Dataset S1 – ‘Isotopic data’ for informa-
tion on which species were represented at each site).

At each site, five to six mature trees of a single acacia or eucalypt
species were sampled for leaf and branch material in April 2010 at
the end of the wet season. Samples were randomly collected from
the sunlit canopy of trees, and bulked, respectively, per replicate
tree. Whole leaves were placed in paper bags and the bark of branch
material was immediately removed, and the samples sealed in Exe-
tainer® vials (Labco Ltd, Lampeter, UK). All material was kept on
ice during transportation before being dried in paper bags at 60°C
for 48 h in a drying oven. In the case of the branch material, xylem
water was first extracted before being oven-dried.

Cellulose purification

After drying, leaves and wood were ground to a fine powder using
a ball mill (Retsch, Düsseldorf, Germany), before cellulose was
purified according to the method of Gaudinski et al. (2005).
Briefly, c. 200 mg of ground material was sealed into Ankom
bags. The lipids were extracted by reflux in a Soxhlet apparatus
with 2 : 1 toluene : ethanol (95%) mixture for c. 24 h under high
heat, and then under ethanol only until the solvent was clear.
Samples were air-dried before being boiled in deionised water for
4 h to remove water-soluble sugars. Lignin was removed with a
bleaching solution of sodium chlorite and acetic acid (pH 4)
under ultrasonic bath at 70°C for c. 24 h. Finally, α-cellulose was
purified from holocellulose with a 15% sodium hydroxide solu-
tion at room temperature in an ultrasonic bath. Samples were
oven-dried at 50°C for 3 d before being rehomogenised in 2.0-ml
tubes.

Isotope analysis

Cellulose was analysed for δ18O and δ2H according to
Holloway-Phillips et al. (2022) in the Stable Isotope Ecology Lab
at the University of Basel. Long-term analytical precision for
δ18O was monitored through repeated analysis of additional
quality control samples and was 0.24‰ (n = 188) for samples
analysed in 2018. An online dual-equilibration technique was
used for analysis of the nonexchangeable hydrogen δ2H
(Wassenaar et al., 2015). This method aims to account for the
exchangeable hydrogen on hydroxy groups by exchanging with
hydrogen from water vapour of known δ2H value. The fraction
of exchangeable hydroxy hydrogen relative to total hydrogen,
expressed as Xe, is in theory 30% for cellulose (Schuler
et al., 2022). We observed values of c. 6%, suggesting that we did

Fig. 1 Map of Australia showing spatial
distribution of long-term mean annual
precipitation (1976–2005) at 0.01° resolution
(Hutchinson et al., 2014), with site locations
for the North Australian Tropical Transect
(Hutley et al., 2001) (‘This study’), and the
comparative aridity gradient of Cheesman &
Cernusak (2016) (‘C&C’).
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not equilibrate all hydrogen on hydroxy groups; but this is
similar to the theoretical fraction of freely exchangeable
hydroxy hydrogen under normal conditions (Meier-Augenstein
et al., 2014). That said, to determine whether the low Xe
values caused systematic bias in our data set, we analysed a
subset of leaf and branch wood samples by the same method
as Schuler et al. (2022), at the Swiss Federal Institute for For-
est, Snow and Landscape Research (WSL), where higher Xe
values were obtained. We found a very strong correlation
between the two methods (leaf tissue, R2 = 0.92 and branch
wood tissue; R2= 0.97; Fig. S1). Despite there being a small
statistically significant offset between the two methods (inter-
cept �14.92‰ and �7.10‰ for leaf and branch wood,
respectively) and a small statistically significant deviation of the
slope from 1 (slope 1.05 and 1.14 for leaf and branch wood,
respectively), the slopes of δ2H and δ18O between analytical
methods for each tissue were not significantly different from
each other suggesting that inferences made between elements
are robust (data not shown). This was confirmed with a sensi-
tivity analysis (Notes S1). Thus, we chose to present the origi-
nal data where we had good confidence on the internal
consistency of the analyses. Analytical performance of the
dual-water exchange method at the University of Basel was
monitored through routine analysis of bulk cellulose (Sigma-
Aldrich) and an in-house quality control standard consisting of
powdered Fagus leaves. The δ2H values of the nonexchangeable
hydrogen in these materials were �50.7� 1.3‰ (n = 242)
and �66.0� 1.6‰ (n= 224), respectively, during the year
over which analyses were conducted.

Isotopic values are reported either as isotopic compositions
(δ), defined as:

δsample ¼
R sample

R std
�1 Eqn 1

where, Rsample is the isotope ratio of the measured sample and Rstd
is the isotope ratio of VSMOW, or as enrichment above source
(xylem) water (Δ), which was calculated as:

Δcompound ¼
δcompound � δXW

1þ δXW
Eqn 2

where, δXW is the isotopic composition of xylem water and
δcompound refers to the compound measured. Isotopic values were
multiplied by 1000 to scale to per mil (‰). Isotopic enrichment
above source water is particularly useful to isolate the impact of
leaf water evaporative enrichment and the extent to which this
signal is transferred to cellulose.

Modelling cellulose isotopic composition: theory and
parameters

The seasonally integrated isotope composition of leaf and branch
cellulose (δcellulose) can be modelled according to a generalised
two-process model: one fraction (1� f ) of O and carbon-bound
H comes from leaf water (δLW) during photosynthetic reactions

with biosynthetic fractionation, εA. The other fraction (f ) comes
from water in developing cells (δsink_water) during postphotosyn-
thetic reactions in developing leaves or stem cambium, with bio-
synthetic fraction, εH (Yakir & DeNiro, 1990; Roden
et al., 2000; Holloway-Phillips et al., 2022):

δcellulose ¼ 1�fð Þ δLW 1þ εAð Þ þ εAð Þ
þ f δsink_water 1þ εHð Þ þ εHð Þ Eqn 3

The isotope composition of bulk leaf water is generally less
enriched in the heavier isotope compared with the estimated
isotope composition of water at evaporative sites (δe) (Cernu-
sak et al., 2016). However, in Kahmen et al.’s (2013) study,
diurnal observations of δLW were well-predicted by the Craig–
Gordon equation for leaf evaporative sites (Fig. S2), δe (Far-
quhar & Lloyd, 1993; Cernusak et al., 2016) and there was
no evidence of a Péclet effect (Fig. S3). Furthermore, a sensi-
tivity analysis using an empirical correction between the
observed diurnally measured values and the Craig–Gordon leaf
water estimates, indicated that it did not change the interpre-
tation of the data (Notes S1). Therefore, we also used the
Craig–Gordon equation here to estimate seasonally averaged
δLW for both elements:

δe ¼ 1þ εþð Þ 1þ εkð Þ 1þ δEð Þ 1� ea
e i

� �
þ ea

e i
1þ δvð Þ

� �
�1

Eqn 4

where εþ is the isotope fractionation between liquid water and
vapour at equilibrium, εk is the fractionation during diffusion of
water from the leaf intercellular airspaces to the atmosphere, δE is
the isotope composition of transpired vapour, which at steady-
state is equal to xylem water (δXW), ea/ei is the ratio of ambient to
intercellular saturated vapour pressure, and δv is the isotope com-
position of atmospheric water vapour.

Enriched water from the leaf mesophyll can be transferred to
developing cells by translocation in the phloem. As such,
δsink_water can be modelled as a mixture of xylem (δXW) and leaf
water, where the proportion of unenriched xylem water is often
termed pX. For simplicity, we assumed that pX= 1, that is
δsink_water ¼ δXW, which is a good assumption for wood, but for
leaves, it may be the case that pX< 1 (Cernusak et al., 2005; Liu
et al., 2017).

For modelling the δ18O value in cellulose, fO (also referred to
as pex in the literature) is assumed to be c. 0.4 (Song et al., 2022).
We use 0.39 based on studies that also measured fH (Table S1).
Isotope fractionation between carbonyl-O and water (εA and εH
in Eqn 3) is denoted as εwc and taken to be the same value for
photosynthetic and postphotosynthetic reactions. The value of
εwc is c. 27‰ (Cernusak et al., 2003), which we corrected for
temperature using the empirical relationship in Sternberg & Ells-
worth (2011). For modelling the δ2H value in cellulose, we used
the commonly applied parameter values for εA=�171‰ and
εH=+158‰ (Yakir & DeNiro, 1990; Roden et al., 2000), and
the average literature value of fH of 0.38� 0.06 (Table S1).
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Assumptions to integrate the cellulose isotope signature on
a seasonal basis

To estimate seasonally integrated cellulose isotope values, long-
term mean annual 09:00 and 15:00 h observations of RH and air
temperature (Tair) were obtained from the Australian Bureau of
Meteorology (www.bom.gov.au) (see Dataset S1 for more detail
on weather station number and data collection date range for
each station). As it is not known how variable the phenological
patterns were across sites, we took the pragmatic approach of
using annually averaged information to represent gross differ-
ences in site climate. This approximation is reasonable provided
we do not seek to estimate exact values, but instead aim to repli-
cate any patterns associated with changes in site climatic condi-
tions along the spatial gradient. This is further justified because
leaves were chosen randomly and thus represent an annual cohort
of leaves. In addition, wood growth, whilst peaking at certain
times of the year, can utilise both carbon reserves stored at differ-
ent times of the year and current assimilates. The isotope compo-
sition of water vapour was measured along with leaf water during
the diurnal campaigns. However, as the day of sampling is not
necessarily representative of longer term water vapour isotopic
patterns, we assumed that the water vapour is in isotopic equili-
brium with the measured xylem water, which was sampled in
March and September 2010, and which integrates the meteoric
water isotope signals over longer timescales (see Kahmen
et al., 2013 for more details). The kinetic isotope fractionation
for the leaf water model, εk, was calculated using the average of
all stomatal conductance observations (Cernusak et al., 2016).
Note that the calculation of δLW is fairly insensitive to uncer-
tainty in stomatal conductance (e.g. �0.2 mol m�2 s�1 equates
to less than �0.04‰ for oxygen and �0.06‰ for hydrogen).
For a summary of the model inputs and data sources, see
Table S2.

Derived model parameters

There are up to four parameters in the cellulose isotope model
that could theoretically vary: f, εA, εH and δsink_water as a function
of px (Eqn 3); but, to model the isotopic composition of cellu-
lose, a value for each parameter must be assumed. However, if
the isotope composition of cellulose is known, any discrepancy
between modelled and measured isotopic compositions of cellu-
lose can be removed by adjusting the value of one of the model
parameters, that is parameter estimation via model inversion. At
this stage, hydrogen and oxygen must be considered separately.

For oxygen, the discrepancy between modelled and observed
δcellulose has previously been explained according to either varia-
tion in fO, assuming Tleaf= Tair (e.g. Cheesman & Cernu-
sak, 2016), or decoupling between leaf and air temperature,
assuming fO is constant (e.g. Helliker & Richter, 2008; Song
et al., 2011). As Kahmen et al. (2013) observed minimal differ-
ence between leaf and air temperature during diurnal measure-
ments, we do not consider leaf temperature decoupling to be an
issue in this study. An empirical relationship developed using
Australian published observations of leaf and air temperature

(229 observations) also indicated close agreement (McInerney
et al., 2023), which is the relationship we adopted in this study to
estimate seasonally integrated leaf temperature for modelling the
leaf water isotopic composition (Eqn 4). Similarly, variability in
εwc is assumed to only vary as a function of temperature, which
we accounted for. Thus, rationalising the observed δcellulose values
by solving for fO seems justified, especially for wood where px= 1
is a good assumption. Eqn 3 can thus be rearranged to solve for
fO:

f O ¼ δcellulose � δLW 1þ εwcð Þ � εwc
δxylem�δLW
� �

1þ εwcð Þ Eqn 5

For hydrogen, there is evidence that all biochemical parameters
(f, εA, εH) could vary, and on a mathematical basis, there is nega-
tive compensation between parameters (Holloway-Phillips
et al., 2022). Thus, rather than arbitrarily choosing a variable
to rationalise the discrepancy between observed and modelled
δcellulose values for hydrogen, we instead asked the more general
question of whether any modelled discrepancy related to site arid-
ity, so that a model correction could be used across similar envir-
onmental gradients. For this purpose, we take mean annual
precipitation as representative of site aridity (Hutley et al., 2011;
Nijzink & Schymanski, 2022), which is inversely related to arid-
ity (taken as potential evapotranspiration/mean annual precipita-
tion) to a close approximation (refer to Dataset S1 – ‘Metadata’).

Data analysis

All statistical analyses were conducted in R (v.3.6.1, R Core
Team, 2019) with RSTUDIO (v.1.2.1335, www.rstudio.com).
Fig. 1 was produced using packages NCDF4 (Pierce, 2023), RASTER
(Hijmans, 2023), RGDAL (Bivand et al., 2023), GGPLOT2 (Wick-
ham, 2016), RCOLORBREWER (Neuwirth, 2022), PRISMATIC (Hvit-
feldt, 2022) and VIRIDISLITE (Garnier et al., 2022). Dual isotope
plots (Fig. 2) and covariation between plant tissues (Fig. 3) were
investigated using standard major axis regression due to large nat-
ural variation between individual trees, with the ‘sma’ function in
the package SMATR (Warton et al., 2012). Outliers were consid-
ered with the ‘robust = T’ option, which uses Huber’s M estima-
tion in place of least squares. Relationships where modelled
values were regressed against observations (Fig. 4), or the model
discrepancy (defined as εexp�obs ¼ δexp � δobs

� �
= 1þ δobsð Þ� �

)
and fO estimates were regressed against mean annual precipitation
(Figs 5, 6), were investigated using ordinary least squares regres-
sion with the ‘lm’ function in the base R package STATS. Separate
analyses for each genus were not performed as acacia was not
represented across all sites. Also, given species within a genus var-
ied across sites, we had no a priori reason to suggest that species
within a genus were more similar than between genera to warrant
separating the two groups; that is, we did not have the power in
this study to test the significance of species identity on isotope
patterns. Figs 2–6 were graphed in SIGMAPLOT v.11 (SPSS Inc.,
Chicago, IL, USA).

To ensure that the interpretations of the model coefficients of
Figs 4–6 were robust, we assessed alternative parameterisations
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Fig. 2 Observed covariation between hydrogen and oxygen isotopic compositions on a delta basis (δ) for xylem water, water vapour, leaf water, leaf
cellulose and branch wood cellulose (a); and, on a 2H-18O enrichment basis (Δ) relative to xylem water, for leaf water (b), leaf cellulose (c) and branch
wood cellulose (d). Data compiled from Cernusak et al. (2016) and this study. The solid line in (a) refers to the meteoric water line and in (b–d) reflect
significant (P< 0.05) regression lines fitted by standardised major axis regression.
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of the cellulose isotope model, which can be viewed in Notes S1
– Tables S3–S6. This included testing alternative assumptions for
leaf temperature, the isotopic composition of water vapour, and
the model used to estimate leaf water delta values, as well as the
impact of the analytical method for the δ2H of leaf cellulose. As
the sensitivity analysis indicated that there was minimal change
to the conclusions, we only present the data based on the model
parameterisations given in Table S2.

Results

δ18O–δ2H relationship in water and cellulose

Across the 1500 km aridity transect, the observed range in xylem
water δ values sampled from branches varied by 5‰ for δ18O and
35‰ for δ2H (Table 1). Both xylem and water vapour δ values fell
approximately on the global meteoric water line (GMWL; Fig. 2a;
Table 2). Leaf water fell below the GMWL reflecting isotope frac-
tionations during transpiration (Fig. 2a). Leaf cellulose had a simi-
lar slope to that of leaf water in the dual-isotope plot (3.47 vs 2.93;
Table 2), but the δ18O values were all higher than those of leaf
water δ18O values, whereas the δ2H values were within the range of
the leaf water isotope δ2H values (Fig. 2a).

When isotope delta values were converted to enrichment above
source water (Δ), leaf water and leaf cellulose also had similar
slopes (Fig. 2b,c; slopes not significantly different), suggesting
that the evaporative isotopic signal was partially retained within
leaf cellulose (strength of the relationship c. 40% of that of leaf
water covariation). We consider the comparison between
leaf water and leaf and branch wood cellulose isotopic variation
across sites (rather than within sites), given the different time-
scales of integration (leaf water – diurnal; cellulose – seasonal).
The slope of the regression between Δ2H vs Δ18O of branch
wood cellulose (8.57) was much larger than that of leaf water

(3.07) (Fig. 2d vs Fig. 2b), and the δ2H/δ18O relationship had a
similar slope as xylem water (although the relationship was weak,
R2= 0.08, Table 2).

The change in slope between leaf and branch wood cellulose
was largely driven by a compression in the δ18O range going
from 16‰ (leaf cellulose) to 8‰ (wood cellulose), whilst the
isotopic range was more conserved for δ2H: 90‰ (leaf cellulose)
and 80‰ (wood cellulose) (Table 1). Consequently, there was
little covariation between leaf and branch wood cellulose for
δ18O (R2= 0.12; Fig. 3a), but strong covariation for δ2H
(R2= 0.59; Fig. 3b). Notably, the strength of the correlation
between δ2H and δ18O progressively weakened moving from
plant water pools into cellulose: xylem water (R2= 0.83)< leaf
water (R2 = 0.69)< leaf cellulose (R2 = 0.17)< wood cellulose
(R2= 0.08) (Table 2). This pattern was also visible with isotope
enrichments, Δ (Fig. 2b–d).

Comparison of observed and predicted isotope
compositions

The majority of the variation in cellulose δ18O–δ2H delta values
could not be explained by the cellulose isotope models. In effect,
modelled cellulose delta values assuming biochemical parameters
are invariant, explained only 21% of leaf and 16% of branch
wood cellulose δ18O values, and 19% of leaf and 35% of
branch wood cellulose δ2H values (Fig. 4). There was a signifi-
cant isotopic offset (εexp-obs) between modelled and observed leaf
cellulose delta values for both leaf δ18O and δ2H (Fig. 5a,c). In
contrast, for branch wood cellulose, there was a significant nega-
tive isotopic offset with mean annual precipitation (MAP), which
explained 60% of the variation in the model discrepancy for the
δ18O of branch wood cellulose (Fig. 5b). In comparison, only
3% of the model discrepancy in branch wood cellulose δ2H
values could be explained by MAP (3%; Fig. 5d); in other words,

Fig. 3 Observed covariation between branch wood and leaves for the oxygen isotope composition, δ18O (a) and hydrogen isotope composition, δ2H (b) of
cellulose. Solid regression lines are significant (P< 0.05) and fitted by standardised major axis regression. Slope and intercept significantly different from 1
and 0 for δ18O. For δ2H, the slope was not significantly different from 1, but intercept significantly different from 0. Colours represent different sites.
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biochemical parameters (f, εH, and εA) varied across sites inde-
pendently of MAP.

Rationalising the discrepancy between modelled and observed
values by varying the contribution of oxygen derived from
xylem water (fO) is justified for oxygen since it is believed that
changes in isotope fractionation (εwc) are minimal (see ‘Derived
model parameters’ in the Materials and Methods section). fO
(calculated with Eqn 5 using temperature corrected εwc) in
branch wood cellulose was always higher than that of leaf cellu-
lose (Fig. 6a). With respect to mean annual precipitation, a
negative correlation was found, which was particularly strong
for branch wood cellulose. In fact, fO decreased by 0.02 for
every 100 mm increase in mean annual precipitation, compared
with 0.01 for leaf cellulose (Fig. 6a). Interestingly, the relation-
ship between fO values associated with branch wood cellulose

and mean annual precipitation was not significantly different
between this study and that obtained by Cheesman & Cernu-
sak (2016) (Fig. 6b). However, the absolute values were found
to be sensitive to the model parameterisation used (Fig. S4).
For the interested reader, we provide (but do not interpret or
discuss) fH estimates, and alternatively rationalise the discre-
pancy according to px. A summary of site averaged fO, fH and px
values can be found in Table S7.

Discussion

δ18O–δ2H covariation depends on the plant organ

The extent to which climatic information is recorded by the
δ18O and δ2H of plant cellulose has been mostly assessed in tree-

Fig. 4 Relationship between expected and observed cellulose delta values for δ18O (a, b) and δ2H (c, d). Expected values were modelled according to
Eqn 3, assuming biosynthetic isotope parameters are invariant (Supporting Information Table S2). Regression lines are significant (P< 0.05) and fitted with
ordinary least squares regression. 1 : 1 line also shown. Colours represent different sites.
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rings where time provides the source of environmental variation.
Using European-wide century-long timeseries, the climatic asso-
ciations were found to be more consistent for O than for H,
reflecting weak covariation between the two elements (Vitali
et al., 2022). Here, we also found that covariation was weakened
in cellulose compared with plant water pools, despite the
expected hydrologic isotope signals induced by the environmen-
tal gradient being larger in this study than is typically found
within a timeseries of a given site. Moreover, covariation declined
to a greater extent in branch wood cellulose compared with leaf
cellulose (Fig. 2). Whilst the leaf water enrichment signal cap-
tured across the environmental gradient was partially retained
within leaf cellulose Δ values (Fig. 2c), the loss of covariation
between Δ2H and Δ18O in branch wood cellulose (Fig. 2d)
appeared to be driven by an aridity-dependent isotope effect that
impacted oxygen but not hydrogen (Fig. 5). This is supported by
the fact that the slope of the regression between leaf and wood
cellulose δ values was significantly different from unity for oxy-
gen but not for hydrogen (Fig. 3). However, δ2H variation
remained dominated by biochemical isotope effects based on the
variability between expected and observed δ values (Fig. 4c,d).
The lack of simple (e.g. linear) environmental predictability to
the modelled discrepancy (Fig. 5) adds increased complexity in
accounting for biochemical-induced variation within cellulose
isotope models. Below, we take advantage of the differential iso-
tope patterns for oxygen and hydrogen between leaf and branch

wood cellulose to examine the biochemical origin of the
δ18O–δ2H decoupling.

Principle of biochemistry impacting on δ18O and δ2H

The main mechanism by which carbon metabolism has been
hypothesised to enrich sugars in 2H and deplete in 18O in sink
cells is isotopic exchange with source water, with corresponding
equilibrium isotope effects. As highlighted by Holloway-Phillips
et al. (2022), mechanisms for oxygen and carbon-bound hydro-
gen isotope exchange with solvent water are rather different,
despite the reactions associated with isotope exchange being simi-
lar between the two elements (see Fig. S5 for a simplified sche-
matic of the reactions involved). On the one hand, oxygen
exchange with water occurs in carbonyl groups of sugars. This
can occur during hydrolysis (e.g. aldolase reaction) or sponta-
neously, that is without a reaction needing to proceed (e.g. in car-
bonyl O of triose-phosphates), but the probability of exchange
likely increases during enzymatic reactions that facilitate covalent
bond breakage (e.g. reactions involving triosephosphate isomer-
ase; TPI, and phosphoglucose isomerase; PGI) (Farquhar
et al., 1998). Based on studies that have compared the isotopic
composition of leaf sucrose from terrestrial plants (Cernusak
et al., 2003), or cellulose of aquatic plants with isotopic
measures of the leaf water pool or growth media (DeNiro &
Epstein, 1981), respectively, isotopic equilibrium seems to be

(a)

(c) (d)

(b) ×

×

Fig. 5 Isotopic offset (εexp-obs) between
modelled and observed oxygen, δ18O (a, b)
and hydrogen, δ2H (c, d) isotopic
compositions (δ) as dependent on long-term
mean annual precipitation, for leaf (a, c) or
branch wood (b, d) cellulose. Individual plant
values are shown by the grey circles; means
are shown by the black circles with SD used
for the error bars. Regression (solid) lines are
significant (P< 0.05) and fitted with ordinary
least squares regression. Dashed lines
indicate the intercept is significantly different
from 0 (P< 0.05).
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mostly achieved at the whole compound level for oxygen (Water-
house et al., 2013). On the other hand, exchange of C-bound
hydrogen atoms with water always requires the facilitation of
enzymes to break covalent bonds. Water can be incorporated
directly during hydrolysis (e.g. aldolase), or indirectly whilst the
abstracted hydrogen resides on the enzyme residue (e.g. TPI and
PGI). In the latter case, isotopic equilibrium is not guaranteed
with a high degree of intramolecular transfer noted during uni-
directional assessment of PGI (Rose & O’Connell, 1961; Nolt-
man, 1972; Malaisse et al., 1991) and TPI (especially in

the direction glyceraldehyde-3-phosphate to dihydroxyacetone
phosphate; O’Donoghue et al., 2005a,b). In other words, even if
a reaction proceeds, hydrogen exchange with water is not sys-
tematic. Additionally, for hydrogen, there are also opportunities
for large kinetic isotope effects (KIE) to occur that do not involve
water (e.g. glucose-6-phosphate dehydrogenase, KIE= 2.97;
Hermes & Cleland, 1984; glyceraldehyde-3-phosphate dehydro-
genase, KIE= 1.89; Canellas & Cleland, 1991), which were not
considered in the original interpretation of isotope effects asso-
ciated with cellulose production in the Yakir & DeNiro
model (1990).

Therefore, there are two important differences in the mechan-
isms shaping isotope variability between hydrogen and oxygen:
(1) First, fO and fH are unlikely to covary given that isotopic
exchange with water can occur spontaneously for oxygen
(independent of C fluxes), and intramolecular transfer for
hydrogen (with 1H/2H isotope effects) may introduce variable
isotope fractionations (dependent on carbon fluxes and metabolic
pathways).
(2) Second, 16O/18O isotope effects are mostly equilibrium iso-
tope effects (dependent on temperature but otherwise considered
constant; Sternberg & Ellsworth, 2011), whereas hydrogen meta-
bolism involves additional kinetic isotope effects (observed iso-
tope effect dependent on metabolite partitioning; Hayes, 2001).

Therefore, it is conceivable that oxygen and hydrogen could
show different environmentally induced metabolic dependencies.
These metabolic effects thus impact on key parameters describing
cellulose isotope variability (Eqn 3): fO and fH, and fractionation
factors, ε. They are anticipated to depend on organs, since leaves
and branches have contrasting carbohydrate metabolisms, as
explained below.

Metabolic differences at the origin of leaf-branch wood
isotope patterns

As found here and elsewhere (e.g. Kahmen et al., 2011; Chees-
man & Cernusak, 2016), wood cellulose δ18O values tend to be
lower than leaf cellulose δ18O values. A number of previously
proposed mechanisms have rationalised the relative 18O-
depletion of wood compared with leaf cellulose according to
either (1) that ‘metabolic’ water in which sugars and cellulose are
synthesised is 18O-depleted in heterotrophic tissues compared
with leaves (Cernusak et al., 2005; Gessler et al., 2013; Cheesman
& Cernusak, 2016; Zhu et al., 2020); and/or, (2) that the extent
of isotopic exchange in heterotrophic tissues is greater than that
in leaf tissue (Cheesman & Cernusak, 2016). Indeed, when we
eliminated the discrepancy between observed and modelled δ18O
values by allowing fO estimates to vary, our results indicated that
fO differed between tissues (estimates in branch wood> leaves;
Fig. 6a) and was negatively related to mean annual precipitation
(slope of fO vs MAP for branch wood> leaves; Fig. 6a). Strik-
ingly, the environmental sensitivity of fO in branch wood cellu-
lose with MAP was statistically the same as determined
for branch wood cellulose of eucalypts across a similar aridity
gradient in Queensland, Australia (Fig. 6b; Cheesman &
Cernusak, 2016).

(a)

(b)

Fig. 6 Relationship between the fraction of oxygen exchanged during
sugar processing in sink cells (fO) with respect to long-term mean annual
precipitation in leaf and branch wood cellulose (a) and with wood cellulose
between studies (b). Note in (b), for this study values include those of both
acacia and eucalypts combined, whereas the values of Cheesman & Cer-
nusak (2016) relate only to eucalypt species. Mean values are shown in (a)
with SD used for the error bars. Regression lines are significant (P< 0.05)
and fitted with ordinary least squares regression.
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In principle, mechanisms driving δ18O tissue patterns should
also be applicable to hydrogen. In the first case (mechanism 1
above), 2H-depleted water in heterotrophic tissues should simi-
larly result in 2H-depleted branch wood cellulose relative to leaf
cellulose (all else being equal). In the second case (mechanism 2),
greater isotopic exchange should result in the opposite pattern
with 2H-enriched branch wood relative to leaf cellulose (due to
the particularly large isotopic fractionations during heterotrophic
metabolism as discussed in the Introduction section). There are
only two studies that we could find that compared leaf/needle
and wood cellulose δ2H values to assess the likelihood of either
mechanism: in piñon pine (Pinus edulis and Pinus monophylla)
sampled intra-annually, needle and stem wood δ2H values were
similar (Pendall et al., 2005); whereas in avocado (Persea ameri-
cana) grown from seed in terrariums, there was a variable δ2H
offset between tissues, even within a relative humidity treatment
(Terwilliger & Deniro, 1995). Nonetheless, both studies con-
cluded that whilst leaf cellulose δ2H values retained the leaf water
climatic signal, the strength of the signal retention in stem cellu-
lose varied. To this end, Terwilliger & Deniro (1995) hypothe-
sised that the extent to which stem cellulose reflected leaf water
isotope signals depended on internal metabolic drivers, which
impact on postphotosynthetic processes, including the reliance
on stored C vs current assimilates. Although direct evidence is
still lacking, the idea that different internal C sources may have
different δ2H values was also recently proposed by Lehmann
et al. (2021) and may be another mechanism that differentiates
O and H in terms of isotopic effects leading to weakened covaria-
tion.

In comparison with the other two studies, we found that
branch wood cellulose was 2H-enriched compared with leaf cellu-
lose; although, the offset was statistically nonsignificant according
to the intercept of Fig. 3. The simplest interpretation of the con-
sistency in δ2H values between organs is that hydrogen is less sen-
sitive to isotopic exchange during sink cell metabolism. This may
be the consequence of either intramolecular transfer and/or
because equilibrium fractionation is smaller than the estimated
value of 158‰, resulting in an insensitivity to isotopic exchange.
Given the large kinetic isotope effects associated with dehydro-
genase reactions (discussed in the ‘Principle of biochemistry
impacting on δ18O and δ2H’ in the Discussion section), it is

plausible that the value estimated for isotope fractionation during
exchange with water in Yakir & DeNiro (1990) is a composite of
equilibrium and kinetic isotope effects. Furthermore, it was
recently shown that the majority of leaf cellulose δ2H variation
across species could be explained by isotope fractionation during
sucrose synthesis (Holloway-Phillips et al., 2022), and at the
position-specific level, 2H-enrichment in wood could be
explained by isotope effects on carbon-bound positions H-1 and
H-2 of glucose, which was assumed to originate from source
leaves (Wieloch et al., 2022b). Therefore, we hypothesise that the
similarity in the δ2H values between organs may reflect biosyn-
thetic variability induced during photosynthesis and before
sucrose export (‘source-cell isotope effects’). Consequently, we
suggest that it is the different metabolic isotope signals captured
by each element that led to a loss of covariation, particularly
in branch wood material where isotopic exchange of oxygen
with water appeared to be particularly responsive to metabolic-
induced responses to aridity.

Interpreting the metabolic isotope signals

The lack of environmental predictability to the hydrogen meta-
bolic signal may reflect the shift in species identity across the arid-
ity gradient, since species differences in cellulose δ2H values and
biosynthetic isotope effects associated with source-cell metabo-
lism have recently been noted (Holloway-Phillips et al., 2022;
Lehmann et al., 2022; Baan et al., 2023; Schuler et al., 2023).
Conversely, the trend towards increasing isotopic exchange of
oxygen with water with increasing aridity may be supported by
ecological knowledge of the sites, as suggested below.

Isotopic exchange has been experimentally linked to the
cycling of triose-hexose phosphates (Hill et al., 1995), which led
to the suggestion by Barbour & Farquhar (2000) and experimen-
tally supported by Song et al. (2014), that the longer the resi-
dence time of sugars within sink cells, the greater the opportunity
for metabolite cycling and hence isotopic exchange. This cycle
often interacts with a cycle of sucrose synthesis and degradation
(Dancer et al., 1990; Hatzfeld & Stitt, 1990). Altogether, these
cycles are thought to allow for large and rapid changes in the net
rate of sucrose breakdown in response to the demand in the cell
(e.g. during stress events), whilst minimising changes in steady-
state concentrations of metabolites (Geigenberger, 2003). In
applying this interpretation to fO changes, it would therefore sug-
gest that metabolite cycling (and/or the flux through the cycle)
increases with increasing aridity, particularly in heterotrophic
tissues.

Despite significant periods of absent rain throughout the trans-
ect and decreasing predictability of rainfall patterns (Rogers &
Beringer, 2017), plant water stress of the woody overstory is
minimal based on measures of leaf water potential, water use
(O’Grady et al., 1999; Eamus et al., 2000; Hutley et al., 2001)
and δ13C (Schulze et al., 1998; Miller et al., 2001). Furthermore,
modelling suggests shifts in growth strategies and C
allocation to capitalise on small, isolated rain events (Cook &
Heerdegen, 2001; Cook et al., 2002). As such, the capacity to
respond opportunistically to rainfall may be facilitated by

Table 2 Parameter values for slope and intercepts of significant (P< 0.05)
correlations of δ2H vs δ18O for water and cellulose data presented in
Fig. 2(a), fitted using standard major axis regression.

Sample Slope Intercept R2 n

Water vapoura 7.41 6.37 0.99 332
Xylem watera 9.17 7.94 0.83 132
Leaf water 2.93 �43.25 0.69 332
Leaf celluloseb 3.47 �148.58 0.17 132
Branch wood cellulosec 10.78 �332.99 0.08 132

aSlope significantly different from global meteoric water line of 8.
bSlope significantly different (P= 0.045) from that of leaf water correlation
but within 95% CI.
cSlope not significantly different from that of xylem water correlation.
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increased metabolite cycling. To test this hypothesis, it would be
interesting to use the approach of Hill et al. (1995) to determine
whether there are shifts in metabolite cycling along the transect,
aligned with shifts in fO estimates. Similarly, to investigate the
relative importance of intramolecular hydrogen transfer during
cytosolic metabolism as the reason for why shifts in fO and fH
may not covary, analysing the position-specific δ2H of glucosyl
and fructosyl moieties of sucrose may be useful, particularly when
combined with 13C labelling to quantify flux changes and cycling
rates (e.g. Krook et al., 2000; van der Merwe et al., 2010).

Limitations and implications

Whilst δ18O has generally been found to retain climatic signals
in tree-ring series, we did not observe that here. In fact, the cellu-
lose isotope model predicted the observed isotopic variability bet-
ter for δ2H in wood (R2= 0.35; Fig. 4). This perhaps reflects the
larger range in isotopic variability associated with plant water
pools in hydrogen compared with oxygen, relative to that
induced by metabolism (inferred from the range in expected
values vs the scatter around the line in Fig. 4). Thus, our data
have demonstrated that metabolic-induced isotopic variation is
not only an issue that needs to be considered for hydrogen, but
also for oxygen, especially over large spatial gradients where plant
adaptation has occurred. In this regard, due to confounding
changes in environmental parameters across sites and species
shifts, the transfer of climatic isotope signals from plant water
pools to leaf and wood cellulose should be isolated and experi-
mentally tested before space-for-time experimental results are
applied to understand temporal variation in isotopic data (e.g. to
tree-ring time series). This similarly applies to understanding
(and thus modelling) the drivers of metabolic-induced isotope
variability. Specifically, the link between aridity and isotopic
exchange with water needs to be independently tested within a
given species, where all other environmental factors remain
the same.

In addition, model inversion to estimate model parameters
from cellulose δ values is only as good as the input data, as was
recently highlighted by Lin et al. (2022). In the current study,
this meant modelling leaf water δ values. Whilst the leaf water
model successfully predicted diurnally measured δ values (Kah-
men et al., 2013), a number of simplifying assumptions were
made to provide seasonal averages applicable to the time integra-
tion of cellulose synthesis (Table S2). Determining the relevant
climate period captured within the sugar used for cellulose synth-
esis depends on the synchrony of assimilation and growth and
sugar pool mixing processes including the use of previously stored
C. Determining this period remains a major challenge for the
field, but progress is being made with the development of
process-based modelling solutions (e.g. Hirl et al., 2021).

Critically, our data have demonstrated that the metabolic
information captured by each element and plant tissue differs.
Whilst this drives the decoupling between δ18O and δ2H and
therefore complicates efforts to combine isotopic information for
estimating climatic parameters (e.g. Voelker et al., 2014), it

points to new opportunities to explore different aspects of plant
metabolic responses to the environment.
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