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the centuries-old categorical conception we may have of 
species (Taylor et al. 2006; Harrison and Larson 2014; 
Barraclough and Humphreys 2015; Moran et al. 2021; Kim 
et al. 2022). The transfer, via hybridization and backcross-
ing, of novel alleles from one species into the gene pool of 
another species also constitutes a non-negligible source of 
genetic diversity, which may positively or negatively impact 

Introduction

Introgressive hybridization is a process of major interest for 
evolutionary biology. By blurring the lines between species, 
interspecific gene flow reveals the gradual nature of repro-
ductive isolation and its possible reversibility, complicates 
species delimitation, and more generally calls into question 
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Abstract
Hybridization between the European smooth and palmate newts has recurrently been mentioned in the literature. The 
only two studies that attempted to quantify the frequency of hybridization and gene admixture between these two species 
came to strikingly opposite conclusions. According to Arntzen et al. (1998, 42 allozymes), hybrids are rare in nature and 
introgression negligible, while according to Johanet et al. (2011, 6 microsatellites), introgressive hybridization is signifi-
cant and widespread across the shared distribution range. To clarify this question, we implemented high-throughput SNP 
genotyping with diagnostic biallelic SNPs on 965 specimens sampled across Europe. Our results are in line with Arntzen 
et al., since only two F1 hybrids were identified in two distinct French localities, and no further hybrid generations or 
backcrosses. Moreover, reanalysis of 78 of the samples previously studied by Johanet et al. (2011) using our SNPs panel 
could not reproduce their results, suggesting that microsatellite-based inference overestimated the hybridization frequency 
between these two species. Since we did not detect methodological issues with the analyses of Johanet et al., our results 
suggest that SNP approaches outperform microsatellite-based assessments of hybridization frequency, and that conclusions 
previously published on this topic with a small number of microsatellite loci should be taken with caution, and ideally be 
repeated with an increased genomic coverage.
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the adaptive capacities of species (Barton 2001, Pfenning et 
al. 2016, Seabra et al. 2019, Steensels et al. 2021, Wacker 
et al. 2021). Importantly, anthropogenic hybridization is 
increasingly common and its impact on conservation issues 
has been the topic of much debate (Chan et al. 2019, Mc 
Farelane & Pembertone 2019, Hirashiki et al. 2021).

Hybridization in animals has for a long time been con-
sidered as an anecdotal phenomenon, but in recent years, 
a growing body of evidence has demonstrated that a broad 
range of animal species experience it during their his-
tory (Mayr 1963; Mallet 2005; Taylor and Larson 2019; 
Adavoudi and Pilot 2022). In amphibians, introgressive 
hybridization has been documented in numerous anurans 
(e.g. Dufresnes et al. 2021), possibly as a result of their 
frequently external fertilization reducing the efficiency of 
pre-zygotic reproductive barriers. In Eurasian Urodela (with 
internal fertilization), several well documented examples 
have been reported in the genera Triturus (Jehle et al. 2001, 
Arntzen et al.  2009, 2021, Cogălniceanu et al. 2020) and 
Lissotriton, where L. vulgaris and L. montandoni exhibit 
some dramatic genomic consequences of past introgression 
(Babik et al. 2003, 2005; Babik and Rafiński 2004; Gher-
ghel et al. 2012; Zieliński et al. 2013, 2014, 2016; Pabijan 
et al. 2017; Niedzicka et al. 2017, 2020; Dudek et al. 2019). 
Prior to these works, several sources (Griffiths 1987; Arnt-
zen et al. 1998; Beebee et al. 1999, Schlüpmann et al. 1999) 
have also mentioned hybridization between the smooth and 
palmate newts, Lissotriton vulgaris and L. helveticus, two 
distantly related and non-sister species within the genus that 
diverged from each other relatively early (the divergence 
is imprecisely estimated between ~ 15 Mya and 24 Mya 
(Rage and Bailon 2005; Steinfartz et al. 2007; Böhme 2010; 
Arntzen et al. 2015). The first work aiming at quantifying 
the extent of hybridization between these two species was 
based on multivariate analyses of 16 morphological traits 
and electrophoretic analyses of 42 protein loci (Arntzen 
et al. 1998). Although this work irrefutably demonstrated 
natural hybridization between L. vulgaris and L. helveticus, 
it concluded that this phenomenon was rare (only one F1 
hybrid identified from a large sample (> 5,000) of larvae, 
recently metamorphosed newts and adults) and no introgres-
sion was detected between the species (cf. Figure 3 of Arnt-
zen et al.). More recently, and in striking contrast to this first 
work, Johanet et al. (2011) used mitochondrial and micro-
satellite markers on ~ 1,300 individuals from 37 sites across 
Europe and concluded that introgression was instead rela-
tively widespread in the area of sympatry, with a frequency 
of hybridization of 1.7% and significant levels of introgres-
sion detected at most sites (73%) shared by both species. 
To determine the extent of hybridization and introgression 
between L. vulgaris and L. helveticus and to elucidate the 
causes of the discrepancy between the former studies, we 

reinvestigated the frequency of hybridization between the 
two species, using extended geographical sampling and, 
for the first time, high-throughput SNP genotyping. Most 
of the samples used in our study have never been analyzed 
before, but we also included in our SNP genotyping some of 
the samples genotyped for microsatellites and analyzed by 
Johanet et al. (2011) to make sure that our results are com-
parable with this previous study (see “Sampling” below). 
We also reanalyzed Johanet et al.’s (2011) microsatellite 
dataset with the same settings as our SNP datasets to pro-
vide fully comparable results.

Materials and methods

Sampling . ─ Currently, Lissotriton vulgaris has a broad 
Eurasian distribution, whereas L. helveticus is restricted to 
the western part of Europe (Wielstra et al. 2018; Sillero et 
al. 2014). Both species occur in sympatry across a wide area 
including Great Britain, the north of France, Switzerland, 
the Benelux countries and the west of Germany (Fig.  1). 
Designed to take into account their respective distribution, 
our sampling includes a total of 965 individuals from 59 
localities (= ponds): 29 samples from 11 allopatric locali-
ties for L. helveticus (in Spain and southern part France), 
23 samples from 8 allopatric localities for L. vulgaris (in 
Norway, Sweden, Poland, Romania and Hungary), and 913 
samples of both species from 40 sympatric localities (in 
Great Britain and northern France), of which 829 are from 
32 localities where both species co-occur in syntopy (see 
Fig.  1; Table  1). All these samples were collected during 
the reproductive phase (aquatic phase) and therefore cor-
respond to viable adult individuals. For comparative pur-
pose, we also included 78 syntopic individuals that were 
previously analyzed using microsatellites by Johanet et al. 
(2011), including those that showed the most substantial 
rates of introgression (see Table 1 for the populations origin 
of these 78 samples and Sup. Table 3 for the whole list of 
these 78 samples with their microsatellites and SNP Struc-
ture membership coefficients). These 78 samples were cho-
sen on the basis of their Structure membership coefficients 
and positions in the PCA as reported by Johanet et al. (2011, 
see their Fig. 2 for the PCA) to include most samples show-
ing clear signs of introgression in Johanet et al. (2011). The 
original microsatellites genotypes from Johanet et al. (2011) 
were also retrieved (Supplementary material S5).

Single-nucleotide polymorphism (SNP). ─ DNA extrac-
tions were done on 96 well plates with the DNeasy blood 
and tissues kit (QUIAGEN). DNA extracts were diluted to 
obtain a target concentration of 10-15ng/µL. To identify a 
set of candidate diagnostic SNPs, we used a total of 1380 
nuclear ORF contigs/alignments from transcriptomic data 
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for L. vulgaris and L. montandoni (Stuglik and Babik 2016). 
Each of these 1380 alignments encompassed the same 13 
individuals: six L. vulgaris from Romania and Poland, six 
L. montandoni from Romania and Poland and one L. helve-
ticus from France (cf. Supplementary Table 1).

For population-level genotyping, we selected the Mas-
sARRAY System approach (Sequenom). The MassARRAY 
assay consists of an initial locus-specific PCR reaction, fol-
lowed by single base extension using mass-modified dide-
oxynucleotide terminators of an oligonucleotide primer 
which anneals immediately upstream of the polymorphic 
site of interest. Using MALDI-TOF mass spectrometry, 
the distinct mass of the extended primer identifies the 
SNP allele. This technology can genotype a SNP only if it 
presents biallelic variability and conserved upstream and 
downstream sequences of about 100  bp each (cf. Gabriel 
and Ziaugra 2004 and Gabriel et al. (2009) for more details 
about the Sequenom MassARRAY technology). Among the 
1380 alignments examined, only 127 presented sequences 
meeting the above mentioned specifications and were used 
to develop 127 multiplexable candidate probes that were 
preliminarily tested on 20 L. vulgaris and 20 L. helveticus 

from different allopatric localities, in Poland (Krakow), 
Hungary (Pilisz mount and Budapest), Romania (Apuseni), 
Norway and Sweden for L. vulgaris, and Spain (Escobedo, 
Fresnedo and Poza de la Sal) and the southern part of France 
(Dordogne, Cazevielle, Ferrières-les-Verries, Notre-Dame-
de-Londres and Aumelas) for L. helveticus. This screening 
phase enabled the extraction of 39 SNPs presenting a low 
amount of missing data and unambiguously distinguishing 
L. vulgaris from L. helveticus (cf. Supplementary Table 2 
for the sequences of these probes). The selected alignments 
were used to design a 39-plex array to genotype the 1035 
samples. The genotyping was subcontracted to the Genome 
Transcriptome facility at the Center for Functional Genom-
ics in Bordeaux (CGFB), France.

Population structure. ─ Sample allocation and admix-
ture level based on the 39 SNPs dataset were assessed 
with STRUCTURE v2.2 (Pritchard et al. 2000; Falush et 
al. 2003) under models assuming two populations (K = 2) 
as STRUCTURE has been shown to be less sensitive to 
the proportion of hybrids included in the sample than 
NEWHYBRIDS (another widely used population genetic 
programs to address questions related to genetic structure, 

Fig. 1  Population sampling. The 
red and blue areas indicate the 
approximate distribution of Liss-
otriton helveticus and L. vulgaris, 
respectively (sympatric distribu-
tion range represented in purple). 
Each white dot represents one or 
several sampled ponds from the 
same area (cf. Table 1 for details)
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the microsatellites dataset to reliably estimate ancestry in 
Smooth and Palmate Newts, we used the software Hybrid-
labs (Nielsen et al. 2006) to generate simulated genotypes 
of various ancestry classes. Because many individuals in 
Johanet et al. (2011) had missing data, we generated sim-
ulated genotypes with all six loci and with only four loci 
(th09, Tv3Ca19, th14 and thca14) to match the loci present 
in the real specimens with missing data and 90% probability 
intervals that did not overlap 0/1. With the six loci dataset 
we simulated 1000 simulated genotypes of each class: pure 
helveticus, pure vulgaris, F1 hybrids, backcross to helve-
ticus and backcross to vulgaris. With the four loci dataset 
only pure genotypes of each species were simulated (1000 
individuals of each class). Parental populations used to sim-
ulate genotypes of the various classes were made of 1392 
L. helveticus and 220 L. vulgaris selected from the micro-
satellites dataset and having a probability of membership to 
their own cluster of 0.99 or more. Simulated genotypes were 
analyzed in the exact same way as real genotypes.

admixture, and hybridization, Anderson and Thompson 
2002) (Vähä and Primmer 2006). We estimated posterior 
distributions based on 3  million MCMC generations of 
which 50% were discarded as burnin. We used a model that 
considers the possibility of mixed population ancestry and 
of correlated allele frequencies among populations due to 
migration or shared ancestry (Falush et al. 2003), with an 
alpha value of 1/k (0.5) (Wang 2017). For comparison, we 
repeated the same analyses using the microsatellite dataset 
generated by Johanet et al. (2011, six loci: Tv3ca9, Th09, 
Tv3Ca19, Th14, Th27, Thca14), to compare membership 
coefficients of the 78 specimens for which both SNP and 
microsatellite data were generated. The microsatellites gen-
otype data were obtained from the authors of Johanet et al. 
(2011) and microsatellite genotyping was not repeated for 
our study. We used the same options for the microsatellite 
dataset STRUCTURE analyses as for the SNPs. Probabil-
ity intervals (90% probability intervals) for the member-
ship coefficients were obtained with STRUCTURE by 
turning on the ANCESDIST option. To assess the power of 

Fig. 2  Overview of the genetic structure using STRUCTURE (with 
K = 2). (A) All the samples genotyped with SNPs are unambiguously 
inferred as pure representatives of one species or another, except for 
two putative F1 hybrid specimens with membership coefficients of 
0.50 to both species. Only results from Ecordal (NE France), where 
one of the two hybrids was detected, are illustrated (cf. Table 1 for 
overall results). (B) Two STRUCTURE analyses based on the same set 
of samples from various localities illustrating the differences between 

microsatellite and SNP genotyping: the structure inferred from the 
microsatellite dataset suggests significant introgressive hybridiza-
tion between both species (above, raw data from Johanet et al. 2011), 
whereas on the contrary, the structure inferred from the newly gener-
ated SNP dataset does not show any signs of admixture between spe-
cies (below). The photos represent anesthetized males of each species 
in nuptial coloration
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Among the 1000 pure vulgaris simulated genotypes, 14 
have admixed estimation > 0.10, with a maximum helveti-
cus ancestry = 19%, and two have 90% probability intervals 
that doe not overlap 0 /1 (with helveticus ancestry of 11% 
and 16%). Simulated F1 were all identified as admixed but 
their ancestry estimates varied widely, from 0.18/0.82 to 
0.76/0.24 (vulgaris/helveticus membership, respectively), 
and 200 simulated F1 genotypes have their probability of 
membership to the majority cluster > 0.6. Simulated back-
crosses were all assigned to the species with the highest 
ancestry with a high probability and did not differ visibly 
from pure genotypes (Sup. Material S5).

Counterintuitively, STRUCTURE performance with the 
4-loci dataset was better for simulated helveticus samples: 
out of 1000 simulated genotypes, none had a probability of 
assignation below 0.9 (minimum: 0.93) and none had a 90% 
probability interval that did not overlap 0/1. Pure simulated 
vulgaris genotypes were less reliably identified by STRUC-
TURE: 11 were recovered as admixed over 10%, with a 
maximum value of 0.342 assignation probability to helveti-
cus, but again none had a 90% probability interval that did 
not overlap with 0/1.

Discussion

These results confirm the conclusions of Arntzen et al. 
(1998): Lissotriton helveticus and L. vulgaris can hybridize 
in nature but this phenomenon remains rare, as we found 
only two F1 individuals out of a total of 829 adults from 
syntopic populations. Such hybrids are likely sterile as we 
detected no signs of introgression between both species. In 
addition, SNP analyses of 78 of the samples previously ana-
lysed by Johanet et al. (2011), including samples identified 
as admixed individuals by microsatellite genotypes, detected 
no sign of hybridization either, suggesting that detection of 
hybridization and introgression with microsatellites pro-
duced biased results that overestimated the frequency of 
hybridization between these two species (Fig.  2B). The 
lack of introgression is consistent with the maintenance of a 
broad sympatric zone and supports the hypothesis that con-
vergence of certain color traits (dorsum, tail) observed in 
sympatry would primarily be the result of plastic or adaptive 
responses to environmental variables and not introgression 
(de Solan et al. 2022). This result also echoes the findings 
of Drillon et al. (2019) who found hardly any hybridization 
and no introgression between Hyla tree frog species that 
diverged around 20 Mya. Yet, the possibility of introgres-
sive hybridization can persist for a very long time in newts, 
as exemplified by Triturus cristatus and T. marmoratus that 
hybridize frequently and can still exchange genes in spite 
of their divergence estimated at around 24 Mya (Wielstra et 

Results

Samples with three or more missing SNP loci (70 samples) 
were discarded from the dataset, leading to a final bial-
lelic SNP data-set for 965 usable individual newts, with 
only 5.3% of missing data (4,256 undetermined SNP geno-
types out of a total of 80,730). From the 39 selected SNPs, 
two showed shared alleles at significant frequencies: SNP 
10,797 and SNP 10,913. For both loci, the “vulgaris” allele 
was found in Lissotriton helveticus in low frequencies that 
were similar between syntopic (3.3% for SNP 10,797 and 
13.2% for SNP 10,913) and allopatric populations (4.0% 
and 20.0%, respectively); these two loci are thus not fully 
diagnostic. In spite of this, the SNPs allowed specific dis-
crimination of every sample, including newly collected 
sample as well as those previously studied by Johanet et al. 
(2011), and no significant sign of introgression between spe-
cies was detected, i.e., species-specific alleles of one species 
were not found in the other. Only two samples collected in 
two syntopic localities in France revealed an F1-hybrid gen-
otype: one (sample T9-12-LH8f-2, from Roissy-en-Brie) is 
heterozygous (vh) for 37 SNP loci (homozygous for the two 
remaining SNP loci, one of vv type and one hh type) and 
a second sample (T36-14-24-1, from Ecordal) is heterozy-
gous for all the 38 SNP loci available (genotype at one locus 
missing). No other signs of hybridization or introgression 
were detected (Fig. 2A; Table 1).

In contrast with the SNP-based results, the sample allo-
cation and admixture level presently inferred from the mic-
rosatellite dataset previously generated by Johanet et al. 
(2011) suggest a substantial admixture of genes from the 
other species (i.e., ≥ 0.1) for 11 of the 78 samples pres-
ently reanalyzed with SNPs, in accordance with the results 
of the original publication (See Fig. 2B and Supplementary 
Table 3 for a comparison, for the same 78 samples, of the 
admixture levels inferred from microsatellites and SNP, 
respectively). Note however that, for all these 78 samples, 
the 90% probability intervals include 0/1, even when the 
assignation is 0.45/0.55, so none of these samples is “sig-
nificantly” admixed when it comes to assessing their ances-
try with Structure (Sup Table 4). Only six helveticus out of 
1923 samples of both species genotyped with microsatel-
lites by Johanet et al. (2011) have 90% probability intervals 
that do not overlap 0/1 in our reanalysis and their assigna-
tion to helveticus ranges from 0.14 to 0.34 (Sup Material 5).

Simulated genotypes revealed a pattern similar to the 
empirical samples. With the six loci dataset, nine simulated 
“pure helveticus” samples out of 1000 have admixed esti-
mations > 0.10 (probability of helveticus assignation < 0.9), 
with a maximum vulgaris ancestry of 0.17, and four out 
of 1000 have 90% probability intervals that doe not over-
lap 0 /1 (with vulgaris ancestry estimates from 9 to 16%). 
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much missing data (Grünwald et al. 2017; Hodel et al. 2017; 
Yi and Latch 2022). Analyses of datasets simulated under 
scenarios with different levels of genetic divergence and 
varying number of loci have shown that two popular model-
based Bayesian methods for detecting hybridization (i.e. 
STRUCTURE and NEWHYBRIDS) require a significantly 
higher number of loci than commonly applied in microsat-
ellite-based studies (Vähä and Primmer 2006). According to 
this study, efficient detection of F1 hybrid individuals would 
require the use of 12 or 24 loci (for pairwise FST between 
hybridizing parental populations of 0.21 or 0.12, respec-
tively), and separating backcrosses from pure individuals 
would require an even more significant genotyping effort 
(≥ 48 loci, even when divergence between parental popula-
tions are high). In addition to the low number of loci usually 
involved in microsatellites studies (n = 6 in Johanet et al. 
2011), it should be noted that these markers are also notori-
ously difficult to use to assess hybridization because they 
are highly polymorphic (from 12 to 35 alleles per locus, 
with an average of 25 alleles in both species in Johanet et 
al. 2011) which, coupled with homoplasy, often result in a 
lack of diagnostic loci (Putman and Carbone 2014; Daïnou 
et al. 2017; Šarhanová et al. 2018). Additionally, the study 
by Johanet et al. (2011) was affected by a significant amount 
of microsatellite missing data (22.2% for the original data-
set). Within the 1924 samples involved, 41.8% were miss-
ing at least one third of the data (i.e., 2 or 3 loci out of a 
total of six) and 11.4% were missing half of the data (i.e., 
3 out of 6). However, some of the samples for which mic-
rosatellites suggested substantial admixture of genes from 
the other species (i.e., ≥ 0.1, n = 11) had no missing data, 
including two of them where the 90% probability interval 
did not overlap 0/1 (Sup. Material 5).

Taken together, these considerations prompt us to con-
clude that the most parsimonious explanation for the dis-
crepancy between Johanet et al. (2011) on the one hand, and 
Arntzen et al. (1998) and the present study on the other hand, 
is the poor performance of NEWHYBRIDS (microsatellite 
analysis by Johanet et al. 2011) and STRUCTURE (reanaly-
sis of the same dataset in the present study) to reliably assess 
ancestry using a small number of hypervariable microsatel-
lite loci. This hypothesis is strengthened by the examina-
tion of the 90% probability intervals of the STRUCTURE 
membership coefficients (see Sup. Table S3 and S4) that all 
overlap 0 or 1 except for 6 individuals (in bold in Sup. Table 
S3). In particular, the four individuals that seem to have 
the strongest signs of admixture in Fig. 2B (one in popula-
tion Offham, one in population Liré and two in population 
Varennes) all have 90% probability overlap that overlap 0 
or 1. It thus seems that the microsatellite data simply did not 
have enough resolution to assess reliably the occurrence (or 
lack of) admixture in the previous study. This interpretation 

al. 2011, Arntzen et al. 2021, comparable with the timing of 
divergence between L. vulgaris and L. helveticus presented 
in introduction).

An alternative explanation would be that the SNP geno-
typing underestimated hybridization and introgression, 
whereas the microsatellites returned the correct pattern of 
admixture. Our SNP loci have been selected to be (near) 
perfectly diagnostic (fixed alternative alleles in both spe-
cies) and might therefore over-represent genomic regions 
highly differentiated between species, and thus, indirectly, 
genes involved in barriers to gene flow (which, by counter-
selection, would be less likely to introgress in the long term 
in the other species). On the contrary, microsatellites have 
been designed and selected independently of their level of 
divergence between species and should thus not overrepre-
sent genomic regions that resist introgression. This hypoth-
esis could be valid if the microsatellite results were used 
to detect long-term (historical) interspecific gene flow, as 
this would indeed be reduced in genomic regions involv-
ing barrier loci. However, it does not apply to the detection 
of recent admixture (F1 hybrids and backcrosses), in which 
case the SNP results are expected to be more robust than 
the microsatellite results due to a larger number of loci and 
unambiguous allelic assignment in the former. Thus, this 
hypothesis does not explain the low frequency of F1s and 
the total absence of F2 or backcrosses in the SNP dataset, in 
contradiction with the previous study based on microsatel-
lites who inferred the presence of recently admixed indi-
viduals (Johanet et al. 2011).

It thus seems more likely that the microsatellite analyses 
by Johanet et al. (2011) led to an overestimation of intro-
gression. In general, SNPs have recurrently been shown to 
outperform microsatellites (e.g. Camacho-Sanchez et al. 
2020, Bradbury et al. 2015, Hoffman et al. 2014, Lemopou-
los et al. 2019, Sunde et al. 2020, Zimmerman et al. 2020, 
Szatmári et al. 2021). These works most often involved a 
far greater number of SNP loci than in the present study (i.e. 
hundreds or thousands of SNPs versus 39 SNPs) but they 
did not select diagnostic SNP loci, which would be trivial as 
diagnostic SNP provide unambiguous detection of F1 and 
backcrosses. More specifically, several recent studies com-
paring relative performance of SNPs and microsatellites for 
hybridization detection effectiveness have shown that many 
hybrids indicated by microsatellites are not validated by 
SNPs (Daïnou et al. 2017, Szatmári et al., 2021). Assess-
ment of hybridization usually rests, as in the present case, 
on statistical estimation of the likelihood to observe a given 
multilocus genotype in a population (assignment methods 
such as STRUCTURE or NEWHYBRIDS) or comparisons 
of multivariate axes scores (Johanet at al. 2011). These 
assignment methods can produce unreliable results when a 
small number of microsatellites are used or when there is too 
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source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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is strengthened by the STRUCTURE analyses of simulated 
pure and F1 microsatellite genotypes that confirm that (i) 
STRUCTURE infers as admixed (admixture > 0.1) some 
pure genotypes, some of them with 90% probability inter-
vals that do not overlap 0/1 and (ii) STRUCTURE assig-
nation probabilities of simulated F1 hybrids have a wide 
range of values reaching as low as 20% of admixture. The 
“admixture” identified by Johanet et al. (2011) thus seem 
to result from a mixture of low frequency hybridization (as 
confirmed with the SNPs) and false signals of admixture 
resulting from the low power of the microsatellite dataset.

Over the past decades, microsatellite genotyping has 
been the approach favored by the research community to 
look for hybridization between non-model species. The 
present study suggests that many of these works may have 
overestimated the frequency of this phenomenon, as was 
the case here. The conclusions from these studies, and the 
subsequent works based on them, should therefore be care-
fully reconsidered in the light of their respective datasets 
coverage. By providing a broad coverage of loci, includ-
ing diagnostic loci, genomic approaches (such as the SNP 
approach of the present study) would certainly represent 
preferable alternatives to microsatellite approaches to inves-
tigate introgressive hybridization, and should contribute to 
refining our understanding about the extent of this phenom-
enon in nature.
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