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Rice

The Inferior Grain Filling Initiation Promotes 
the Source Strength of Rice Leaves
Zhengrong Jiang1,2,3, Hongyi Yang1,2, Meichen Zhu1,2, Longmei Wu4, Feiyu Yan5, Haoyu Qian1,2, Wenjun He1,2, 
Dun Liu1,2, Hong Chen1,2, Lin Chen1,2, Yanfeng Ding1,2, Soulaiman Sakr3 and Ganghua Li1,2* 

Abstract 

Poor grain-filling initiation in inferior spikelets severely impedes rice yield improvement, while photo-assimilates 
from source leaves can greatly stimulate the initiation of inferior grain-filling (sink). To investigate the underlying 
mechanism of source-sink interaction, a two-year field experiment was conducted in 2019 and 2020 using two large-
panicle rice cultivars (CJ03 and W1844). The treatments included intact panicles and partial spikelet removal. These 
two cultivars showed no significant difference in the number of spikelets per panicle. However, after removing spike-
let, W1844 showed higher promotion on 1000-grain weight and seed-setting rate than CJ03, particularly for inferior 
spikelets. The reason was that the better sink activity of W1844 led to a more effective initiation of inferior grain-filling 
compared to CJ03. The inferior grain weight of CJ03 and W1844 did not show a significant increase until 8 days poster 
anthesis (DPA), which follows a similar pattern to the accumulation of photo-assimilates in leaves. After removing 
spikelets, the source leaves of W1844 exhibited lower photosynthetic inhibition compared to CJ03, as well as stronger 
metabolism and transport of photo-assimilates. Although T6P levels remained constant in both cultivars under same 
conditions, the source leaves of W1844 showed notable downregulation of SnRK1 activity and upregulation of phyto-
hormones (such as abscisic acid, cytokinins, and auxin) after removing spikelets. Hence, the high sink strength of infe-
rior spikelets plays a role in triggering the enhancement of source strength in rice leaves, thereby fulfilling grain-filling 
initiation demands.

Keywords  Rice, Sink, Source, Sugar, Phytohormone

Introduction
Rice (Oryza sativa L.) acts a staple role in food produc-
tion for entire global population. However, to meet the 
escalating demands, rice production needs to approxi-
mately double by 2030 (Foley et al. 2011). In China, high-
yield rice cultivars, particularly large-panicle rice, have 
gained significant importance due to their potential for 
increased yield with a large number of spikelets (You 
et  al. 2016). Nevertheless, in large-panicle rice, the fill-
ing of inferior spikelets (IS) on the secondary branches of 
the panicle often lags behind the superior spikelets (SS) 
on the primary branches after flowering, thereby limiting 
the yield (Fu et al. 2011; Chen et al. 2019). Inferior grain-
filling is mainly limited by poor initiation, which is asso-
ciated with poor sink activity (enzyme activity of grains 
to utilize carbohydrates) during grain filling initiation 
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(Chen et al. 2019; Jiang et al. 2021). The initiation of infe-
rior grain filling is influenced by various factors, includ-
ing sink strength (sink size and sink activity), source 
strength (capacity to supply photo-assimilates), and flow 
strength (capacity to transport carbohydrates) (Deng 
et al. 2021). Photosynthesis of source leaves is responsi-
ble for producing carbohydrates to meet the demand of 
sink growth in rice (Makino 2011; Zhu et al. 2022). Fully 
mature source leaves have the capacity to export up to 
80% of photo-assimilates to sink tissues (Kalt-Torres 
and Huber 1987). Since the allocation of carbohydrates 
between sink and source is crucial determinant of crop 
yield (Braun et  al. 2014), maintaining a balance in the 
partitioning of photo-assimilates from source to sink is 
essential for the initiation of grain filling in rice.

The cytoplasm of source mature leaves synthesized 
sucrose through the photosynthetic conversion of car-
bon dioxide to triose phosphate during the daytime, 
and starch remobilization occurs at night (Wang et  al. 
2021a, b). The main carbohydrate transported in rice 
is sucrose, which is transported into the apoplast space 
by OsSWEET11 (Oryza sativa Sugar Will Eventually Be 
exported Transporter 11) before being actively loaded 
in the leaf phloem by OsSUTs (Oryza sativa Sucrose 
transporters) against a concentration gradient (Hu et al. 
2021; Wang et al. 2021a, b). Sucrose-phosphate synthase 
(SPS), encoded by OsSPS1, is responsible for generating 
sucrose by photosynthesis (Gesch et al. 2002; Ohara et al. 
2010). The genes of OsSUS3 and OsSUS4 encode sucrose 
synthase (SuSase), initiating the first degradative step of 
sucrose utilization (Yao et al. 2019). The OsAGPL1 gene 
encodes the ADP-glucose pyrophosphorylase (AGPase) 
to regulate starch synthesis, while the α-Amylase 
(OsAmy3) catalyzes starch degradation (Meng et  al. 
2020). These processes are crucial for providing carbon 
and energy to prevent sugar starvation (Graf and Smith 
2011). However, the heavy carbohydrate accumulation of 
leaves can repress photosynthesis and regulate sugar dis-
tribution in plants (Goldschmidt and Huber 1992; Ains-
worth and Bush 2011). Several studies have shown that 
sink strength plays a crucial role for controlling plants 
growth and the rate of photosynthetic activity in source 
leaves (Sonnewald and Fernie 2018; Xu et al. 2021; Cabon 
et al. 2022; Dai et al. 2023). The activities associated with 
high sink growth need to consider not only the efficiency 
of photo-assimilate production and sucrose transport, 
but also the sink’s capacity to utilize carbohydrates (Chen 
et  al. 2019; Jiang et  al. 2021). However, the underlying 
relationship between sink strength and source strength 
remains unclear.

Source activities, including photosynthesis activity, 
are typically regulated by photo-assimilate allocation 
and phytohormones metabolism (Rolland et al. 2006; Yu 

et al. 2015; Müller and Munné-Bosch 2021). Recently, the 
sugar signaling pathway involving trehalose-6-phosphate 
(T6P) and Snf1-related protein kinase-1 (SnRK1) has 
gained considerable attention due to their sensitiveness to 
allocation of photo-assimilate and phytohormones (Jiang 
et  al. 2021; Ishihara et  al. 2022). The T6P level, serving 
as an indicator of sucrose availability, is synthesized by 
trehalose-6-phosphate synthase (TPS) and degraded by 
trehalsoe-6-phosphate phosphatase (TPP), which sig-
nificantly stimulates starch biosynthesis in leaves through 
post-translational regulation of AGPase (Martins et  al. 
2013; Ishihara et  al. 2022). The SnRK1 signaling path-
way, acting as the core regulator of carbon and energy 
sensing in various plant organelles (Tsai and Gazzarrini 
2014), is inhibited by sugars and closely intertwined with 
phytohormone signaling pathways (Hulsmans et al. 2016; 
Baena-González and Hanson 2017). However, the roles 
of sugar signaling and hormone levels in the source-sink 
interaction have thus far investigated separately and in 
different biological contexts.

As a major regulator for photosynthesis and abi-
otic stress, the phytohormone abscisic acid (ABA) can 
repress photo-assimilates production of source leaf (Pan-
tin et  al. 2012). The ABA accumulation of leaves favors 
the stomatal closure (Kim et  al. 2010) and downregula-
tion of several genes involved in photosynthesis (Zhu 
et  al. 2020). The genes OsNCED1 and OsABA3 can 
regulate ABA biosynthetic pathway in rice leaves (Zeng 
et al. 2015; Zhang et al. 2021; Liu et al. 2022; Zhou et al. 
2022), while the expression of OsCYP707A6 can pro-
mote ABA degradation (Piao et  al. 2019). Intriguingly, 
cytokinin can antagonize the inhibitory effects of ABA 
by optimizing photosynthetic efficiency in leaves (Mül-
ler and Munné-Bosch 2021; Wang et al. 2021a, b). Cyto-
kinins (CKs), such as zeatin (ZT), have a pivotal role in 
affecting both the functional and structural aspects of 
photosynthesis machinery (Hönig et al. 2018; Mao et al. 
2022). Meanwhile, CKs control carbohydrate transport 
by regulating SWEETs and SUTs transporters, influenc-
ing the source-sink interaction (McIntyre et al. 2021). In 
addition, the auxin (IAA) content has a positive correla-
tion with photosynthesis activity in some species, indi-
cating a regulatory role in chloroplast development and 
stomata patterning (Tivendale and Millar 2022). Notebly, 
ABA, CKs, and IAA are important for photo-assimilates 
remobilization and the sugar signaling of SnRK1 pathway 
(Yu et  al. 2015). All these findings underline the crucial 
role of hormone in regulating photosynthesis and carbon 
level in source leaves (Yu et al. 2015).

Here, we examined the relationship of source-sink 
by comparing their roles in the same study model. Two 
large-panicle rice varieties (CJ03 and W1844), with dif-
ferent sink strength in inferior spikelets, provide an 
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excellent system to study the relationship between leaf 
source strength and grain filling initiation. In a two-year 
field experiment, we aimed to test the following hypothe-
ses: (1) The initiation of inferior grain filling drives source 
leaves photosynthesis. (2) High sink strength promotes 
carbohydrate transport and allocation in source leaves 
during grain filling initiation. (3) A sugar and hormones-
dependent mechanism is involved in the regulation of 
sink strength on source leaves.

Materials and Methods
Plant Materials and Management
Field experiments were conducted in a randomized block 
design with three replications in 2019 and 2020, at Dan-
yang Experimental Base of Nanjing Agricultural Univer-
sity, Jiangsu Province, China (31°54′31″ N, 119′28′21″ 
E). The size of plot was 7  m × 10  m. According to our 
previous data (Jiang et al. 2021), two homozygous large-
panicle rice cultivars, CJ03 and W1844, were selected to 
analyze the deep relationship of sink strength and source 
leaves during grain filling. These two cultivars were com-
ing from the State Key Laboratory of Rice Genetics and 
Germplasm Innovation, Nanjing Agricultural Univer-
sity. Seeds were sown on May 21 in 2019 and May 23 in 
2020. The 25-d old seedlings were transplanted with two 
seedlings per hill, at a hill spacing of 13.3 cm × 30 cm. The 
soil of experimental site was clay loam. The basic physi-
cal and chemical properties of 0 ~ 20 cm soil in 2019 and 
2020 are showed in Additional file 1: Table S1. A total of 
280  kg  ha−1 nitrogen (N) was applied with the ratio of 
5:5 at one day before transplanting and the day of leaf-
age remainder 3.5, respectively. The meteorological 
data, which were measured during the growth period of 
CJ03 and W1844 at a weather station in the experimen-
tal site, are shown in Additional file 1: Fig. S1. All agro-
nomic management practices (e.g., pest, weed control, 
and water management) were all done following local 
recommendations.

The time (50% panicles emerged from flag-leaf sheath) 
was recorded as heading date of each rice cultivar. The 
time (98% grains in the field turned yellow) was recorded 
as maturity date of each rice cultivar. Detail informa-
tion of two rice cultivars was shown in Additional file 1: 
Table  S2 (e.g., the heading and maturity dates, duration 
from heading to maturity, and the total growth duration).

Experimental Design
A total of 1400 panicles with similar growth patterns 
that headed on the same day were chosen and labeled 
from each plot. The flowering date and the position of 
each spikelet on the tagged panicles were recorded. The 
spikelet-thinning treatment was performed according to 
our previous protocol on the flowering date of CJ03 and 

W1844 (Jiang et  al. 2021). In general, the experiment 
included two treatment groups: the control group with 
no spikelet thinning (labeled as T0 group) and the upper 
2/3 followers removed (labeled as T1 group) when the 
lower-part inferior spikelets were flowering (Additional 
file 1: Fig. S2). The difference of flowering date between 
upper-part superior spikelets (SS) and lower-part infe-
rior spikelets (IS) was nearly 4–5 days in a panicle. In this 
experiment, SS was the grain locating in the first three 
primary branches of the upper part of the panicle, and IS 
was the grain locating in the last three second branches 
in the basal part (Jiang et al. 2021).

Sampling and Analysis
Agronomic Analysis of Panicle
All the panicles were harvested at maturity in 2019 and 
2020. Agronomic features were measured, and then dried 
at 80 °C for 1 week. Dry weights of grains were measured 
to calculated 1000-grain weight. Seed setting rate was 
calculated by using Kobata’s method (Kobata et al. 2013). 
Superior spikelets (SG) rate and inferior spikelets (IG) 
rate on per panicle were calculated as follows.

Seed setting rate = plump grain number/total grain 
number

SG rate = superior spikelets located on all primary 
branches /total grain number

IG rate = inferior spikelets located on all secondary 
branches of rice panicle/total grain number

Grain Weight
The grain weight of superior spikelets and inferior spike-
lets were measured at early grain filling stage and matu-
rity in 2019 and 2020. According to our previous method 
(Jiang et al. 2021), we sampled about 30 tagged panicles 
from each replicate plot every 2 days post anthesis (DPA) 
during early grain-filling stage (2, 4, 6, 8, and 10 DPA). 
Additionally, about 30 panicles from each replicated plot 
were sampled at maturity. The panicle of T0 group (no 
spikelets thinning) were separated into two parts: SS (all 
superior spikelets on the upper three primary branches 
of panicle), IS (all inferior spikelets on the basal three sec-
ondary branches of panicle). And the panicle of T1 group 
(upper 2/3 spikelets removed) were separated into one 
part: IS (all inferior spikelets on the basal three secondary 
branches of panicle). All the samples were dried in the 
oven at 105 °C for 30 min, and dried at 80 °C for 1 week.

Analysis of Photosynthesis
On 8 DPA of inferior spikelets, the photosynthesis of 
the flag leaves was measured with a portable photosyn-
thesis system (LI-6400; Li-Cor) at 10 am. On sunny day, 
the measurement was conducted in 9 tagged rice in each 
replicate plot with a constant saturated light level of 
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1500  μmol  m−2  s−1 provided by red/blue light-emitting 
diodes. Leaf temperature was maintained at 30  °C and 
relative humidity in the chamber at c. 0–6 (humidity defi-
cit c. 1.1 kPa). Before using gas-exchange measurements 
for data analysis, the flag leaves were allowed to equili-
brate nearly 20 min at each setting.

Analysis of Dry Weight and Carbohydrates Accumulation 
in Leaves
For dry weight analysis, all the source leaves of 9 tagged 
plants were sampled from each replicate plot on 8 DPA of 
inferior spikelets. The leaves were first dried in the oven 
at 105 °C for 30 min, and then dried at 80 °C for 1 week 
before getting dry weight of source leaves.

All the upper three leaves of 30 tagged panicles were 
sampled from each replicate plot on 8 DPA of infe-
rior spikelets. The leaves were first dried in the oven at 
105  °C for 30  min, and then dried at 80  °C for 1  week. 
The samples were ground to fine powder and weighed 
nearly 100  mg per replicant for sucrose and starch 
extraction. The sucrose and starch extraction methods 
were flowed according to Cock et al. (1976). Final values 
were expressed as mg g−1 dry weight for comparison. 
For sucrose analysis, the reaction mixture was meas-
ured at 480  nm. The starch analysis needs to be done 
after extracting sucrose, the reaction mixture was read at 
620 nm.

Analysis of Key Enzyme Activities in Leaves
On 8 DPA of inferior spikelets, the upper three leaves 
of 30 tagged plants were sampled from each replicant 
in the morning. These samples were used to determine 
the enzymes activities (SPS, AGPase, α-Amylase, and 
SnRK1). The leaves were first frozen in liquid nitrogen 
for 1  min before storing at −  80  °C, and ground to fine 
powder. Before adding 1  mL extraction buffer, all the 
samples were weighed about 100 mg fine powder for test-
ing enzyme activity. The activity of SPS was determined 
using the method described by Okamura et  al. (2011). 
AGPase activity was measured based on the method out-
lined by Nakamura et  al. (1989). α-amylase activity was 
evaluated using the method developed by Bhatia and 
Singh. (2002). The SnRK1 activity was measured accord-
ing to the method of Samuel Bledsoe et  al. (2017) and 
determined as described procedure Zhang et  al. (2009). 
The samples were measured following the instructions.

Detection of Trehalose‑6‑phosphate and Hormone Level
On 8 DPA of inferior spikelets, about 30 tagged panicles 
were sampled their upper three leaves from each repli-
cant for detection of trehalose-6-phosphate and hormone 
level. The samples were first frozen in liquid nitrogen for 

1  min before storing at −  80  °C. All the samples were 
ground to fine powder for next step.

For trehalose-6-phosphate (T6P) assay, the analysis way 
was according to our previous method (Jiang et al. 2021). 
The T6P of the purified plant was used to capture the 
antibody and coat the microplate to make a solid-phase 
antibody. The samples were added into the coated micro-
plate in turn and combined with Horse Radish Peroxidase 
(HRP) labeled detection antibody to form antibody-anti-
gen enzyme-labeled antibody complex. Then it is impor-
tant to add tetramethylbenzidine (TMB) for developing 
the color after thorough washing. TMB is trans-formed 
into blue under the catalysis of the HRP enzyme and yel-
low under the action of acid. For T6P content measure-
ment, the supernatant was measured at 450  nm before 
calculating by standard curve.

For analysis of hormone content, the method was 
slightly modified according to Fang et  al. (2018). About 
250  mg samples were extracted with 1  mL pre-cooled 
methanol/water/formic acid (15:4:1, v/v/v). The mixture 
was kept in dark at 4  °C for overnight. Then the mix-
ture was centrifuged at 12,000  rpm for 15  min at 4  °C, 
repeating three times to collect all the supernatants. The 
nitrogen gas stream was used to evaporate the combined 
extracts to dryness. And then the dryness was reconsti-
tuted in 80% (v/v) methanol before filtering with C18 col-
umns (Waters, Sep-Pak ® Vac, 6 cc, 500 mg) at 4 °C. The 
extracts were analyzed using high-performance liquid 
chromatography-tandem mass spectrometry (HPLC–
MS/MS) analysis. In this system, the mobile phase con-
tained methanol and ultrapure water containing 0.5% 
formic acid. With a flow rate of 0.25 mL  min–1, 5 μL of 
each sample was injected into a ZORBAX SB-C18 (Agi-
lent Technologies) column (2.1  mm × 150  mm; 3.5  mm) 
to test the content of ABA, IAA and ZT. MS conditions 
were as follows: the pressure of the air curtain, nebulizer, 
and aux gas were 15, 65, and 70 psi, respectively; and the 
atomizing temperature was 400 °C, the spray voltage was 
4500 V.

Analysis of Relative Genes Expression
The upper three leaves of 15 tagged panicles were sam-
pled from each replicant on 8 DPA of inferior spikelets. 
The leaves were first frozen in liquid nitrogen for 1 min 
before storing at minus 80  °C. Before RNA extraction, 
the samples were ground to fine powder and weighed 
nearly 100  mg per replicant for next step. Total RNA 
was extracted by using Plant RNA Kit (Omega Biotek, 
Inc., USA), and reversed-transcribed into the first-
strand cDNA with the Prime-Script-TM RT Reagent Kit 
(Takara, Kyoto, Japan), oligo-dT. The qRT-PCR was per-
formed by an ABI 7300 and SYBR Premix Ex Taq-TM 
(Takara, Kyoto, Japan) according to the manufacturer’s 
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protocol. All the experiments were analyzed by three 
biological replicants with three technical repeats per bio-
logical replicate. As shown in Additional file 1: Table S3, 
the cDNA was amplified by specific primers of 5′-UTR 
and 3′-UTR for the analysis of relative gene expression 
(OsSWEET11, OsSUT1, OsSUT2, OsSUT4, OsSPS1, 
OsSUS3, OsSUS4, OsAGPL1, OsAmy3, OsTPS1, OsTPP2, 
OsTPP6, OSK1, OSK24, OSK35, OsNCED1, OsABA3, and 
OsCYP707A6).

Statistical Analysis
Statistics were evaluated by analysis of variance 
(ANOVA). For all data, P < 0.05 was considered statisti-
cal significance. Statistical analyses were performed using 
SPSS Statistics (IBM SPSS Inc, Chicago, IL, USA).

Results
Pattern of Grain Dry Matter Accumulation
At maturity, there was no significant difference in the 
number of spikelets per panicle between the T0 group 
of CJ03 and W1844 in both 2019 and 2020 (Table  1). 
The values were approximately 267.67 and 259.75 for 
CJ03, and 275.67 and 273.67 for W1844. A large num-
ber of inferior spikelets were located on the second-
ary branches of rice panicle of CJ03 and W1844, while 
W1844 had a higher rate of inferior spikelets compared 
to CJ03 (Table 1, Fig. 1A). Intriguingly, the seed setting 

rate of W1844 in T0 group was notably lower than that 
of CJ03 in 2019 and 2020 (Table  1), while the 1000-
grain weight of W1844 (22.91  g and 24.35  g) was sig-
nificantly higher than that of CJ03 (21.87 g and 22.38 g). 
After removing superior spikelets, the seed setting 
rate of both CJ03 and W1844 increased significantly. 
In 2019 and 2020, the 1000-grain weight of W1844 
(25.95 g and 25.19 g) remained significantly higher than 
that of CJ03 (20.10 g and 20.97 g) (Table 1).

In 2019 and 2020, the spikelets removal led to a sig-
nificant improvement in both the dry grain-weight and 
seed setting rate of inferior spikelets (Fig.  1). Notably, 
the inferior grain weight of W1844 T1 group could even 
surpass the weight of superior spikelets in T0 group, 
while CJ03 did not exhibit this characteristic (Fig. 1B). 
Meanwhile, the seed setting rate of IS in T1 group was 
significantly higher than that of SS in W1844 (Fig. 1C). 
Based on the observed long stagnation in accumulation 
of inferior grain weight (Fig. 1D), the grain weight of IS 
in CJ03 and W1844 could not be significantly increased 
until 8 DPA. However, the accumulation of inferior 
grain in W1844 was higher than that of CJ03 dur-
ing the early gran filling stage (Fig. 1D and Additional 
file  1: Fig. S3), which may be attributed to the higher 
sink strength in the inferior spikelets of W1844, as sug-
gested by previous studies (Jiang et al. 2021).

Table 1  Agronomic traits of test materials at maturity in 2019 and 2020

T0, control group with no removing-spikelets; T1, removing top 2/3 of the spikelets in panicle; SG, superior spikelets located on all primary branches of rice panicle; 
IG, inferior spikelets located on all secondary branches of rice panicle; Different letters indicate statistically significant differences under the same year at the P = 0.05 
level; The data are the means of three replications ± SD, consisting of 30 plants each

Year Variety Treatment Spikelets per panicle 1000-grain weight (g) Seed setting rate 
(%)

2019 CJ03 T0 267.67a 21.87c 87.67c

T1 91.17b 20.10d 93.00b

W1844 T0 275.67a 22.91b 84.92d

T1 97.92b 25.95a 95.58a

2020 CJ03 T0 259.75a 22.38c 92.25b

T1 77.50c 20.97d 94.17a

W1844 T0 273.67a 24.35b 85.17c

T1 92.58b 25.19a 94.67a

Year Variety Treatment SG per panicle IG per panicle SG rate (%) IG rate (%)

2019 CJ03 T0 104.65a 163.02b 39.10a 60.90b

T1 31.04c 60.13d 34.05a 65.95b

W1844 T0 68.31b 207.36a 24.78b 75.22a

T1 24.15d 73.77c 24.67b 75.33a

2020 CJ03 T0 80.83a 178.92b 31.12a 68.88b

T1 23.25c 54.25d 30.00a 70.00b

W1844 T0 67.33b 206.34a 24.60b 75.40a

T1 22.42c 70.16c 24.21b 75.79a
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Difference of Photosynthesis in Leaves
From 8 DPA onwards, along with the initiation of infe-
rior grain filling, the accumulation of photo-assimilate 
(sucrose and starch) in CJ03 and W1844 exhibited a sig-
nificantly increase (Fig.  1D and Additional file  1: Figs. 
S3-S4). To assess the difference in photosynthesis in the 
source leaves of CJ03 and W1844, measurements were 
taken at 8 DPA in 2019 and 2020 (Table 2, Fig. 2). No 
notable differences in photosynthetic parameters were 
observed between the T0 group of CJ03 and W1844 

(Table  2). However, in 2019, the dry weight of source 
leaves in W1844 was significantly higher than that of 
CJ03 (Fig.  2A). After removing spikelets, the photo-
synthetic parameters of flag leaves were decreased in 
both varieties (Table 2), but those of W1844 remained 
higher than that of CJ03. The dry weight of source 
leaves in W1844 noticeably increased after removing 
spiklets, which was significantly higher than that of 
CJ03 (Fig.  2A). The accumulation of sucrose in leaves 
of both CJ03 and W1844 exhibited an increasing trend 
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during the daytime of 8 DPA, while those of W1844 
notably exhibited higher starch accumulation than 
CJ03 (Fig. 2B). After removing spikelets, only the leaves 
of W1844 (W-T1 group) had a significant increase 
in starch accumulation, compared with CJ03 (C-T1 
group) (Fig.  2B). Although the daily accumulation of 
starch content did not exhibit significant changes after 
removing spikelets in 2020 for both CJ03 and W1844, 
the sucrose accumulation in the source leaves clearly 

increased in both 2019 and 2020 (Fig.  2B). This dif-
ference might be attributed to the variation in source 
strength between CJ03 and W1844.

Sucrose Loading and Carbon Metabolism in Leaves
The difference in sucrose loading of the leaves were 
examined between CJ03 and W1844 at 8 DPA (Fig.  3), 
by investigating the transcript levels of four main 
sucrose transporters (OsSWEET11, OsSUT1, OsSUT2, 

Table 2  Differential sensitivity of photosynthesis in flag leaves to remove spikelets in CJ03 and W1844 at 8 DPA in 2019 and 2020

T0, control group with no removing-spikelets; T1, removing top 2/3 of the spikelets in panicle; Different letters indicate statistically significant differences under the 
same year at the P = 0.05 level; The data are the means of three replications ± SD, consisting of 9 plants each

Year Variety Treatment Net photosynthetic 
rate
(umol·m−2 s−1)

Stomatal conductance
(mmol·m−2 s−1)

Intercellular CO2 
concentration
(μmol·mol−1)

Trmmol rate
(mmol·m−2 s−1)

2019 CJ03 T0 22.51a 0.65b 285.30b 6.53a

T1 20.06c 0.52c 268.55c 5.32c

W1844 T0 21.91a 0.74a 305.32a 6.28a

T1 20.72b 0.60bc 274.15b 5.68b

2020 CJ03 T0 25.40a 0.86a 225.50ab 13.73a

T1 20.92c 0.54c 210.57c 11.72c

W1844 T0 24.91a 0.89a 233.63a 13.78a

T1 21.92b 0.75b 220.72b 12.71b
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and OsSUT4). The gene expression of OsSWEET11 and 
OsSUT1 in leaves of W1844 was significantly higher 
than that of CJ03 (Fig.  3). After removing spikelets, the 
gene expression of OsSWEET11 and OsSUTs (OsSUT1, 
OsSUT2, and OsSUT4) significantly decreased in leaves 
of CJ03, while W1844 did not show any repression in 
the expression of sucrose transporters. Compared to 
W-T0 group, the expression level of OsSUT2 is doubled 
in leaves of W1844 (W-T1), while the expression levels of 
OsSUT1 and OsSUT4 remain unchanged (Fig. 3). These 
results emphasize the high sucrose loading ability of 
W1844 source leaves in response to the removal of spike-
lets, supporting findings from previous studies (Chen 
et al. 2019).

To investigate the potential link between sucrose-
loading ability and carbon metabolism in source leaves, 
we evaluated the key enzymes activities (SPS, AGPase, 
and α-Amylase) and gene expression (OsSPS1, OsSUS3, 
OsSUS4, OsAGPL1, and OsAmy3) related to sucrose-
starch conversion (Fig.  4). Comparing with same treat-
ment, the SPS activity in leaves of W1844 was obviously 
higher than that of CJ03 (Fig. 4A). The removal of spike-
lets resulted in a huge decrease in starch metabolizing 
enzymes (AGPase and α-Amylase) in the leaves of both 
CJ03 and W1844. However, the leaves of W1844 T1 
group exhibited significantly higher activities in these 
enzymes compared to CJ03. Most of the gene expres-
sion (OsSPS1, OsSUS3, OsSUS4, OsAGPL1) related to 
sucrose-starch conversion decreased significantly after 
removing spikelets, particularly for source leaves of CJ03 
(Fig. 4B).

Sugar Signaling and Hormones Content
The compound levels and gene expression levels relating 
to the module T6P/SnRK1 signaling and to some hor-
mones (CKs, IAA and ABA) were tested in source leaves 
at 8 DPA (Fig.  5). After removing spikelets (groups of 
C-T1 and W-T1), the T6P content significantly increased 
in CJ03 and W1844, which is in accordance with the 

upregulation of TPS (OsTPS1). The expression of 
OsTPP2 was also increased in the same conditions while 
that of OsTPP6 were only notably upregulated in W-T1 
group. SnRK1 is subdivided into two subgroups, SnRK1a 
(OSK1) and SnRK1b (OSK24 and OSK35), acting to 
counterbalance the level of T6P and maintain an appro-
priate level of sucrose in plant (Tsai and Gazzarrini 2014; 
Figueroa and Lunn 2016). After removing spikelets, the 
SnRK1 activity and relative gene expression of OsOSK1, 
OsOSK24, and OsOSK35 were down-regulated in W1844 
(W-T1 group). However, there was no significant differ-
ence in different treatments of CJ03. Meanwhile, only 
the leaves of W1844 showed a significant up-regulation 
in hormone content in both photosynthesis-repressing 
phytohormones (ABA) and photosynthesis-promoting 
phytohormones (ZT, IAA). In addition, the expression 
of genes for ABA-synthesizing enzymes (OsNCED1 and 
OsABA3) and ABA-catabolizing enzyme (OsCYP707A6) 
were significantly up-regulated in leaves of W1844 after 
removing spikelets. The elevated ABA content in leaf of 
W1844 T1 group would result from-a homeostasis of 
ABA biosynthesis and degradation.

Discussion
The Photosynthesis Is Promoted by the Initiation of Inferior 
Grain Filling
The poor sink strength of inferior spikelets in rice culti-
vars could result in poor grain filling (Liang et al. 2001; 
Kato 2020; Jiang et al. 2021). The rate of inferior grains 
in entire panicle (IG rate) was high in both CJ03 and 
W1844, and the IG rate of W1844 was significantly 
higher than that of CJ03 in 2019 and 2020 (Table  1). 
Thus, the poor grain filling of inferior spikelets could 
hugely limit the yield of CJ03 and W1844. The seed 
setting rate of CJ03 and W1844 both increased signifi-
cantly after removing superior spikelets, but the dry 
grain-weight and seed setting rate of inferior spike-
lets in W1844 could showed greater improvement 
compared to CJ03 in 2019 and 2020 (Fig. 1). Available 
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studies have found that the long lag phase and poor ini-
tiation of inferior grain filling were the major limitation 
to poor grain filling of inferior spikelets (Das et al. 2016; 
Chen et al. 2019). The initiation of inferior grain filling 
began at 8 DPA in both CJ03 and W1844, with higher 
grain weight accumulation observed in W1844 IS com-
pared to CJ03 (Fig. 1D). This higher sink accumulation 
potentially resulted by higher sink activity in the infe-
rior spikelets of W1844 (Fig. 1). Improving source sup-
ply has become an important way to promote inferior 
grain filling and crop yield (Fu et  al. 2011; Won et  al. 
2022; Slafer et al. 2023). Thus, it is necessary to deeply 

understand the relationship of source supply and infe-
rior grain growth.

The photo-assimilates accumulation of source leaves 
in CJ03 and W1844 did not increased significantly until 
8 DPA (Additional file 1: Fig. S3), which was similarly to 
the trend of grain weight accumulation during grain fill-
ing initiation in both varieties (Fig.  1D and Additional 
file  1: Fig. S3). Spikelets removal resulted in a reduc-
tion of photosynthetic parameters in the flag leaves, 
while the W1844 T1 group exhibited higher photosyn-
thetic parameters and dry weight in the source leaves 
(Table 2; Fig. 2A). The inferior spikelets of W1844 exhib-
ited higher sink activity compared to CJ03 (Jiang et  al. 
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2021), as evidenced by a superior capacity for grain-fill-
ing initiation (Fig. 1). The pervasive control of sinks over 
plant growth and carbon partitioning becomes increas-
ingly prominent (Smith et  al. 2018; Bairam et  al. 2019; 
Cabon et al. 2022). Defoliation of source leaves leads to 
an increase in the photosynthetic rate of the remaining 
leaves to match the rate photo-assimilates use in sinks 
(McIntyre et al. 2021). These results indicated that there 
was a potential regulation between the initiation of grain 
filling of inferior grains and the photosynthesis of source 
leaves. Less sink demand represses the sucrose export 
from source leaves (Slafer et al. 2023), leading to elevated 

level of sucrose in source leaves in CJ03 and W1844 after 
removing spikelets (Fig. 2B). The source leaves of W1844 
showed enhanced daytime starch accumulation com-
pared to CJ03 at 8 DPA, especially in 2020, indicating its 
stronger source strength during grain filling initiation, 
particularly after spikelet removal (Fig.  2B). Therefore, 
the high sink strength of inferior spikelets in W1844 pro-
mote source strength during grain filling initiation.

Fig. 5  Antagonistic regulation of compound levels and gene expression levels relating to the hormone-sugar pathway in the top three leaves at 8 
DPA of 2020. C, CJ03; W, W1844; T0, control group with no removing-spikelets; T1, removing top 2/3 of the spikelets in panicle; Blue color correspond 
to sugar signaling pathway; Yellow color correspond to hormone metabolism; Different letters indicate significant differences among treatments 
(P < 0.05); The data are the means of three biological replications ± SD, consisting of 3 technical replications in each biological replication
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High Sink Strength Triggers Sucrose Loading and Carbon 
Metabolism in Source Leaves During Inferior Grain‑Filling 
Initiation
Photosynthesis of source leaves is a key step in produc-
ing carbohydrates to meet the demand of highly meta-
bolic active in sink (Jansson et al. 2018). At 8 DPA, when 
the initiation of inferior grain filling began (Fig. 1D and 
Additional file  1: Fig. S3), the accumulation of photo-
assimilates (sucrose and starch) significantly increased in 
source leaves (Fig. 1 and Additional file 1: Fig. S4). Mean-
while, a number of genes and enzymes related to sucrose-
loading and sucrose-starch conversion came into play in 
source leaves (Figs. 3 and 4).

Sucrose loading is the initial process of transporting 
sucrose from source (leaves) to sink (grains) and is essen-
tial for increasing rice yields (Rennie and Turgeon 2009; 
Wang et al. 2015). The expression of rice sucrose trans-
porters OsSWEET11 and OsSUT1 in sources leaves of 
W1844 was two-fold higher than of CJ03 (Fig. 3). Spike-
lets removal resulted lower expression of OsSWEET11 
and OsSUT1 in source leaves of CJ03, while the expres-
sion of W-T1 group remains five-fold higher than C-T1 
group (Fig. 3). The rice sucrose transporters, OsSUT2 and 
OsSUT4, are strongly associated with the accumulation 
of soluble carbohydrates and the photosynthetic main-
tenance (Mengzhu et  al. 2020; Zhang et  al. 2020; Wang 
et  al. 2021a, b). Notably, the expression of OsSUT2 and 
OsSUT4 in W1844 was not significantly down-regulated 
by removing spikelets, and the expression of OsSUT2 in 
source leaves of W1844 T1 group was higher than that 
of CJ03 (Fig. 3). According to our findings and previous 

researches (McCormick et al. 2009; Chen et al. 2019), the 
high sucrose-loading ability of W1844 T1 group could 
be possibly due to W1844’s high sink strength, result-
ing from its strong sink demand and sucrose import. It 
was observed that a high source accumulation, achieved 
through spikelet removal, resulted in significant sucrose 
accumulation in source leaves. This photosynthetic pro-
duction exceeds the sink demand, providing why some 
carbohydrates are allocated to starch accumulation and 
the stimulation of leaf biomass. It will be interesting to 
study how sink strength affects all these processes.

The key carbohydrate metabolic enzymes (eg. SPS, 
AGPase, and α-Amyase) play a crucial role in regulating 
metabolic status of source leaves to balance source-sink 
dynamics (Mathan et al. 2021). The α-Amylase (OsAmy3) 
is known as the major enzyme for starch degradation, 
which can hydrolyze starch into sucrose for use and 
export carbon (Zhao et  al. 2021). Removing spikelets 
significantly decreased these activities and relative gene 
expressions, indicating that the conversion of sucrose 
and starch were reduced in rice leaves, particularly for 
CJ03 (Fig.  4). These data revealed that sink size was a 
crucial factor for regulating photosynthesis and sucrose 
metabolism in source leaves. Intriguingly, the SPS activ-
ity and expression of OsSPS1 in W1844 T1 group were 
significantly higher than that of CJ03, along with higher 
activities of AGPase and α-Amylase and relative genes 
expression (Fig. 4). The higher levels of carbon metabo-
lism and sucrose loading in the source leaves, as well 
as the differential expression patterns of related genes, 
suggest that the sink of the W1844 T1 group receives a 
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greater amount of sucrose utilization from the source 
leaves as compared to CJ03. The promotion of photo-
synthesis and sucrose-loading in source leaves may be 
attributed to the high sink strength of inferior spikelets 
in W1844.

The Regulation of Sink Strength on Source Strength May 
Involve a Sugar and Hormones‑Dependent Mechanism
The sugar signaling of T6P-SnRK1 pathway is intimately 
linked to photosynthesis of source leaves, and is primar-
ily involved in carbohydrate and energy metabolism, 
stress responses, and plants growth (Czedik-Eysenberg 
et  al. 2016; Wurzinger et  al. 2018; Baena-Gonzalez 
and Lunn 2020). T6P concentration is sensitive to the 
changes of sugar abundance (Jiang et al. 2022), Spikelets 
removal led to an increased accumulation of sucrose and 
promoted T6P metabolism in the source leaves of both 
CJ03 and W1844 (Figs. 2 and 5). Moreover, SnRK1 func-
tions as a central sensor of sugar status and abiotic stress, 
enabling plants to properly balance sugar production and 
consumption for growth (Lin et al. 2014; Nukarinen et al. 
2016). Removing spikelets noticeable down-regulated 
the SnRK1 signaling pathway in source leaves of W1844, 
while CJ03 showed no significant difference (Fig.  5). 
SnRK1 signaling, as the central mediator, undergoes con-
stant changes in response to the carbon demand of the 
sink (Wurzinger et  al. 2018). It is activated by energy 
deprivation and hormone signals while being inactivated 
by carbohydrates that restore energy balance in source 
and sink organs (Baena-González et al. 2007; Mair et al. 
2015). Spikelet removal inhibited photosynthesis in CJ03 
and W1844, with higher accumulation in the W1844 T1 
group attributed to its strong sink and source character-
istics (Table 2; Fig. 2). Compared to W1844 T0 group, the 
high sugar status of sources leaves in W1844 T1 group 
could contribute to downregulation of SnRK1 in source 
leaf. The poor inferior spikelet initiation in CJ03 low-
ered sink carbon demand and sucrose loading in source 
leaves (Figs. 1 and 3). Conversely, the high sink strength 
of W1844 inferior spikelets activated the central sugar 
signaling pathway of SnRK1, enhancing grain filling 
initiation.

The response of sugar levels and hormone signaling is 
closely linked to photosynthesis to response changing 
environmental cues (Jossier et  al. 2009; Rodrigues et  al. 
2013; Yu et  al. 2015; Crepin and Rolland 2019). Mean-
while, the sugar signaling of SnRK1 pathway interacts 
with hormone signaling in a complex regulation, such 
as ABA, cytokinins and auxin pathways (Rodriguez 
et al. 2019; Belda-Palazón et al. 2020). Both positive and 
negative interactions have been reported on SnRK1 and 
ABA signaling in different (source and sink) organs and 
conditions (Wurzinger et  al. 2018). While ABA leads 

to stomatal cells closure and photosynthesis repres-
sion (Nambara and Marion-Poll 2005; Li et  al. 2011; 
Zhang et  al. 2021; Zhou et  al. 2022), ZT and IAA pro-
mote photosynthesis activity (Li et al. 2019). In addition, 
CKs antagonize the inhibitory effect of ABA-mediated 
repression of photosynthesis, through the downregula-
tion of the transcription factor ABI5 (Guan et al. 2014). 
Compared to CJ03, removing spikelets significantly 
increased promote hormone metabolism in source leaves 
of W1844, along with the increased ratio of ABA/ZT 
and ABA/IAA (Fig.  5). Some recent studies have found 
that sugar levels interact with CKs to regulate the sup-
ply of carbon and energy (Garapati et  al. 2015; Sakr 
et al. 2018). It is more likely that the downregulation of 
SnRK1 in W1844 is due to the high sucrose status of the 
leaves, which could be enhanced by the positive effect of 
CKs and auxin on photosynthetic activity. This observa-
tion suggests that W1844 exhibits a significantly higher 
capacity to regulate sugar status and hormone content, 
enabling it to control source strength and meet the high 
sugar demand during the initiation of grain filling (Fig. 6).

Conclusion
The present study deeply identified the interaction of 
sink strength and source strength during grain fill-
ing initiation. The photosynthetic capacity of W1844 
source leaves was higher than that of CJ03, which is 
partly attributed to its stronger sink strength of inferior 
spikelets during grain filling initiation. The source leaves 
of CJ03 and W1844 showed distinct difference in sugar 
accumulation, SnRK1-related signaling pathway and 
hormone content, suggesting a potential cross talk of 
sugar-hormone signaling might be involved in regulating 
strength of source leaves during grain filling initiation.
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in CJ03 and W1844 at 8 DPA in 2020; T0, control group with no removing-
spikelets; T1, removing top 2/3 of the spikelets in panicle; SS, superior 
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