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Abstract
Key message  Green Leaf Area Index dynamics is a promising secondary trait for grain yield and drought toler-
ance. Multivariate GWAS is particularly well suited to identify the genetic determinants of the green leaf area index 
dynamics.
Abstract  Improvement of maize grain yield is impeded by important genotype-environment interactions, especially under 
drought conditions. The use of secondary traits, that are correlated with yield, more heritable and less prone to genotype-
environment interactions, can increase breeding efficiency. Here, we studied the genetic basis of a new secondary trait: the 
green leaf area index (GLAI) dynamics over the maize life cycle. For this, we used an unmanned aerial vehicle to characterize 
the GLAI dynamics of a diverse panel in well-watered and water-deficient trials in two years. From the dynamics, we derived 
24 traits (slopes, durations, areas under the curve), and showed that six of them were heritable traits representative of the panel 
diversity. To identify the genetic determinants of GLAI, we compared two genome-wide association approaches: a univariate 
(single-trait) method and a multivariate (multi-trait) method combining GLAI traits, grain yield, and precocity. The explicit 
modeling of correlation structure between secondary traits and grain yield in the multivariate mixed model led to 2.5 times 
more associations detected. A total of 475 quantitative trait loci (QTLs) were detected. The genetic architecture of GLAI 
traits appears less complex than that of yield with stronger-effect QTLs that are more stable between environments. We also 
showed that a subset of GLAI QTLs explains nearly one fifth of yield variability across a larger environmental network of 
11 water-deficient trials. GLAI dynamics is a promising grain yield secondary trait in optimal and drought conditions, and 
the detected QTLs could help to increase breeding efficiency through a marker-assisted approach.

Introduction

Maize (Zea mays subsp. mays) is the most produced crop in 
the world, and a major staple food in several cultures. How-
ever maize yields are stagnating or decreasing in around 30% 
of its growing areas despite a continuous genetic progress 
(Duvick 2005; Tollenaar and Lee 2006; Ray et al. 2012; 
Laidig et al. 2014). Indeed, in some regions, the genetic 

progress is partially countervailed by climate change (Lobell 
et al. 2011; Ray et al. 2019). Among climatic limiting fac-
tors, drought reduces maize yield of 5–6% globally (Lesk 
et  al. 2016) and climate forecasts indicate that drought 
risk will increase in several maize growing regions around 
the world by the end of the century (Harrison et al. 2014; 
Hoegh-Guldberg et al. 2018; Pörtner et al. 2022) leading 
to even more serious losses (Webber et al. 2018; Leng and 
Hall 2019). Drought tolerance has therefore become a cru-
cial goal for maize breeding.

Improving grain yield under drought stress is however a 
difficult task. Grain yield is a highly complex trait resulting 
from the interaction of the environment and the plant struc-
tural characteristics, physiological processes and regulatory 
pathways along the whole growth cycle. It thus presents 
large G × E (genotype × environment) interactions and a low 
heritability, especially under drought stress, that limit breed-
ing efficiency. Conversely, physiological components of 
grain yield are simpler traits, which may be more heritable 
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and less prone to G × E interaction. Using such secondary 
traits in breeding programs, based on a well-identified ideo-
type, could enhance selection efficiency when drought stress 
occurs and allow a better understanding of yield establish-
ment in limiting conditions. To this aim, secondary traits 
must be correlated with yield under drought stress, be more 
heritable and less prone to G × E interaction than yield, and 
must be measurable at low cost in small plots in a nonde-
structive and rapid manner (Bolaños and Edmeades 1996; 
Bänziger and Lafitte 1997; Araus et al. 2012). Breeding pro-
grams incorporating secondary traits in addition to yield, 
through selection indices, have been shown to be particularly 
effective in stressful environments (Monneveux et al. 2006), 
and notably more effective than selection on yield alone 
(Fischer et al. 1989; Bänziger and Lafitte 1997). Accord-
ingly, genomic selection studies have shown that using sec-
ondary traits in trait-assisted approaches could improve pre-
dictive ability compared to classical model (Rutkoski et al. 
2016; Sun et al. 2017; Sandhu et al. 2021). Ribaut and Ragot 
(2007) and Beyene et al. (2016) also achieved substantial 
yield gains under drought conditions by using secondary 
traits QTLs in marker-assisted selection programs.

The green leaf area index (GLAI), the cumulative area 
of one leaf face per square meter of soil, plays a major role 
in light interception, transpiration and CO2 exchanges. Its 
dynamics have thus a predominant impact on grain yield 
establishment (Monteith 1977; Passioura 1977). It corre-
sponds to the integration, at the canopy level, of the radia-
tion and water use efficiency over the plant cycle, which 
makes it a promising secondary trait to study drought toler-
ance. However, its measurement in the field have long been 
too tedious to use it as a secondary trait. Recent advances 
now make possible to phenotype hundreds of genotypes in 
the field for the whole GLAI dynamics (Blancon et al. 2019) 
and pave the way for its use as a secondary trait to identify 
and better understand the genetic determinants of drought 
tolerance.

The benefits of such an approach, both in terms of bio-
logical understanding and statistical power, depend on the 
efforts made to model the temporal evolution of the pheno-
type (Wu and Lin 2006). The most straightforward approach 
for detecting longitudinal quantitative trait loci (QTLs) is 
the discrete approach. It considers the different observations 
made during the growth cycle as independent traits that are 
each analyzed through a standard QTL model (Wu and Lin 
2006; Hurtado et al. 2012; Würschum et al. 2014; Condorelli 
et al. 2018). However, the biological interpretation of such 
analysis is not always obvious because it is difficult to give 
sense to QTL affecting an arbitrarily chosen point across the 
curve (Malosetti et al. 2006; Hurtado et al. 2012). Further-
more, measurement dates are often determined by practical 
rather than biological considerations, and the comparison 
between different studies is difficult because it is unlikely 

that measurements were made at identical time points. This 
method also assumes the independence of the measurements 
made at different times, which can lead to a loss of power for 
the QTL detection (Wu and Lin 2006; Malosetti et al. 2006). 
To account for the observations’ covariance over time, it is 
possible to integrate them within a multivariate (i.e. multi-
trait) model (Galesloot et al. 2014). However, this method, 
like the previous one, does not account for the temporal 
dimension and simply represents the studied phenotype as 
a set of correlated point measurements. It is also difficult to 
apply in practice because it requires the adjustment of a large 
number of parameters, and implies that each genotype is 
characterized at the same date, which is not always possible 
(Wu and Lin 2006; Malosetti et al. 2006).

A second family of approaches relies on a two-step analy-
sis (Reymond et al. 2003; Hurtado et al. 2012; Crispim et al. 
2015; Campbell et al. 2017). The first step consists in esti-
mating a small number of genotypic parameters that summa-
rize the trait dynamics. These parameters can be computed 
directly from the raw dynamics (slopes, durations, areas, 
etc.), or extracted from a temporal model most often using 
exponential, logistic, or Gombertz functions (van Eeuwijk 
et al. 2019). These genotypic parameters thus incorporate a 
temporal dimension and present the advantage to be easily 
interpretable at the biological level. The second step relies 
on the use of these parameters as response variables in a 
classical GWAS model. Nevertheless, because these geno-
typic parameters are often correlated, a joint analysis in a 
multivariate QTL detection model could better distinguish 
the effects of markers on each trait, and increase testing 
power (Campbell et al. 2017). Although this method has 
been shown to be effective, the quality of the results obtained 
remains dependent on the accuracy of the estimation of 
genotypic parameters (Verbeke and Molenberghs 2009). A 
loss of information between the two steps is also inevitable 
and may result in a loss of statistical power (Campbell et al. 
2019).

Methods that combine temporal modeling and QTL 
detection in one step, grouped under the functional map-
ping terminology, have also been proposed, such as the use 
of mixture models or nonlinear mixed models (Ma et al. 
2002; Wu and Lin 2006; Malosetti et al. 2006; Li et al. 
2010). However, the use of parametric models may be too 
restrictive to model the temporal evolution of some traits, 
including leaf area and senescence (van Eeuwijk et al. 2019). 
Random regression, using covariance functions (spline or 
polynomial functions), then offers a nonparametric alterna-
tive to model the dynamics of the trait over time, while con-
sidering the temporal covariance between each measurement 
(Kirkpatrick et al. 1990; Wu and Lin 2006; Ning et al. 2017; 
Campbell et al. 2019). This approach has been widely used 
in animal genetics (Huisman et al. 2002; Kranis et al. 2007; 
Howard et al. 2015; Ning et al. 2017, 2018) but is still rare 
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in plant genetics. In plants, it is mainly applied in genomic 
selection (Sun et al. 2017; Campbell et al. 2018), with the 
exception of Campbell et al. (2019) that published the first 
GWAS using a random regression model performed on a 
major crop (rice). This approach is however highly compu-
tationally demanding (Ning et al. 2017; Moreira et al. 2020).

The main objective of the present study was to explore 
the genetic determinism of maize GLAI dynamics in drought 
and optimal conditions. We also aimed to better understand 
its link with grain yield, and to evaluate the potential of 
GLAI dynamics as a secondary trait in selection. For this, 
we evaluated a multi-parent advanced generation inter-cross 
(MAGIC) panel in four environments with contrasted hydric 
regimes. We also phenotyped the GLAI dynamics over the 
whole maize life cycle using a multispectral camera mounted 
on a UAV (unmanned aerial vehicle). A simple physiological 
GLAI model was then used to derive the parameters of the 
dynamics. To appraise the potential of GLAI dynamics as a 
secondary trait in selection, its sensitivity to G × E interac-
tion was compared to that of yield and its components. We 
then applied a univariate and a multivariate two-step GWAS 
approach based on these parameters to identify and charac-
terize the GLAI dynamics genetic determinants.

Materials and methods

Plant material, genotyping and relatedness

We used a broad diversity panel of doubled haploid (DH) 
maize lines derived from a MAGIC population. This popula-
tion originated from a funnel cross with 16 parents chosen 
among historical lines that are representative of the genetic 
diversity of temperate material (Buet et al. 2013). To limit 
confounding effects due to precocity differences, certain DH 
lines were discarded to narrow the range of flowering times, 
with 95% of the panel flowering within an eight-day period 
when evaluated in a hybrid context.

The 16 parents of the panel were sequenced with the 
Illumina HiSeq 2000 at a 12–16 X depth of coverage. The 
324 DH lines were genotyped with the Illumina 50 K array 
(Ganal et al. 2011) and the 600 K Affymetrix array (Unter-
seer et al. 2014). Using the genotyping data, parental hap-
lotypes were reconstructed with a modified version of the R 
package qtl (Broman et al. 2003; R Core Team 2017), then 
the parental origin was inferred for each allele in every DH 
line. Based on parental mosaic and sequencing data for each 
of the 16 parents, the panel was genotyped in silico, result-
ing in around 17 million single nucleotide polymorphisms 
(SNPs), that were narrowed down to 7,806,995 SNPs after 
filtering out any with missing data in parents or a low minor 
allele frequency (3.5% threshold).

The genomic relatedness between individuals was esti-
mated from the Illumina 50 K array genotyping data. Removal 
of SNPs with missing data or at biased SYNGENTA loci 
(Ganal et al. 2011) resulted in 32,466 SNPs evenly distributed 
on the 10 chromosomes, which were then used to compute a 
global identity-by-state (IBS) kinship matrix and 10 leave-one-
chromosome-out (LOCO) IBS kinship matrices (Rincent et al. 
2014) in the R package GAPIT (Lipka et al. 2012).

Agronomic evaluation of maize hybrids

DH lines were crossed with the tester line MBS847 and 360 
of the resultant hybrids were evaluated in the field in 2016 
and 347 were evaluated in 2017, 330 being common to both 
years. Each year, a well-watered (WW, irrigated) trial and a 
water-deficient (WD, rain-fed with monitored irrigation) trial 
were carried out in Saint-Paul-lès-Romans, close to Romans-
sur-Isère, France (45°04′06″N, 5°08′01″E). The trials were 
laid out as alpha-lattice designs with two replicate blocks in 
each treatment. The microplots were sown at a density of 9 
plants/m2 with two rows per microplot, a 0.8 m row spacing 
and a row length of 6 m. The combination of the two years 
and two water treatments were considered as four environ-
ments 16STPAULWD, 16STPAULWW, 17STPAULWD, and 
17STPAULWW. More details about climatic conditions and 
agronomic practices are given in Blancon et al. (2019).

In the 16STPAULWD environment, as evidenced by water 
balance analysis (Fig. S1), drought stress occurred for a short 
period during flowering and more severely during grain filling 
leading to 38% grain yield loss compared to 16STPAULWW. 
In the 17STPAULWD environment, stress only occurred dur-
ing flowering (Fig. S1) leading to 20% grain yield loss com-
pared to 17STPAULWW. In each trial, we measured grain 
yield (GY, in q.ha−1) and thousand kernel weight (TKW, in g), 
both adjusted to 15% humidity. We computed kernel number 
per square meter (KN, in grain.m−2), and scored the female 
flowering date (FF, in °C.j) and the anthesis to silking interval 
(ASI, in °C.j).

Between 2014 and 2017, the performance of the maize 
hybrid panel was evaluated in 11 field trials under WD condi-
tions in five locations: Blois, Saint-Paul-lès-Romans and Nérac 
in France, Szeged in Hungary and Graneros in Chile. More 
details on trial conditions can be found in Table S1. These 11 
environments include 16STPAULWD and 17STPAULWD, 
described above. GY data was obtained in each of these 11 
experiments (GY11).
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Characterization of GLAI dynamics and derived 
traits

UAV model‑assisted phenotyping of GLAI dynamics

We flew a hexacopter UAV mounted with a six-band mul-
tispectral camera nine times over the 2016 trial plots and 
eleven times over the 2017 trial plots. The multispectral 
camera is composed of six cameras with 10-nm spectral 
resolution bands centered, respectively, at 450, 532, 568, 
675, 730, and 850 nm. Images were recorded continuously 
during the flight at a frequency of 1 Hz, and the integra-
tion time was adjusted automatically to minimize satu-
ration and maximize the range of variation. The reflec-
tances recorded in the first five bands were normalized 
by dividing the values by the reflectance measured in the 
near-infrared to limit the effect of illumination variations 
during the flight. More details about the processing of 
multispectral images are given in Fig. S2 and in Blancon 
et al. (2019).

For each flight, we calibrated empirical relationships 
linking ground level measurements of GLAI achieved over 
a small sample of microplots to normalized reflectances. 

We then estimated GLAI value at each time point from 
these transfer functions for each microplot of the trials.

Finally, we used a simple, physiologically-based dynam-
ics model to fit the GLAI estimates and predict the con-
tinuous GLAI dynamics for each microplot over the whole 
season in steps of one growing degree day with a 6 °C base 
(GDD6). More details can be found in Blancon et al. (2019).

Estimation of traits describing GLAI dynamics

To describe the GLAI dynamics, we derived integrative 
traits over five physiological distinct stages: an early veg-
etative (EV), late vegetative (LV), flowering (F), slow senes-
cence (SS) and rapid senescence phase (RS).

We delimited the first two phases with a bent-cable 
regression (R package SiZer, Sonderegger (2022)) fitted 
to the GLAI dynamics between shoot emergence (when 
GLAI becomes positive) and the time when GLAI achieves 
its maximum (Fig. 1, SEV and SLV). The abscissa of the 
intersection between the two linear parts of the regres-
sion defines the limit between the EV and LV phases. The 
flowering phase extends from the time when GLAI reaches 
its maximum until the onset of senescence, here defined 

Fig. 1   Estimation of 24 parameters derived from maize GLAI 
dynamics. A Two bent-cable regressions were fitted, one during the 
vegetative phase and the other during the senescence phase, to esti-
mate four slopes (SEV, SLV, SSS, SRS) and to define five distinct phases 
during the development cycle. B The phases previously defined were 
used to derive eight areas under the curve (AUC​EV, AUC​LV, AUC​V, 

AUC​F, AUC​SS, AUC​RS, AUC​S, AUC​C) and the eight corresponding 
durations (DEV, DLV, DV, DF, DSS, DRS, DS, DC). Finally, the maxi-
mum GLAI reached during the cycle (GLAIM) was extracted from the 
model and then used to derive three additional durations (C: D75, D50, 
D25) (color figure online)
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as the time when the GLAI becomes less than 95% of 
the maximum GLAI. We delimited the last two phases 
by fitting a bent-cable regression to the GLAI dynamics 
between the start of senescence and complete senescence 
(when the GLAI becomes zero) (Fig. 1, SSS and SRS). The 
abscissa of the intersection between the two linear parts 
of this regression delimits the SS from the RS phase. A set 
of 24 traits counting slopes, durations, and areas under the 
curve were finally computed from these five phases, alone 
or combined (Fig. 1). These traits were extracted for each 
microplot of the four trials.

Adjusted means, heritability, and variance 
decomposition

For each combination of trait, year and treatment, we used 
a linear mixed model with block effect, genotype effect and 
autocorrelated errors (Model S1) to estimate the adjusted 
means. The same model, with random genotype effect, was 
used to compute generalized heritability (Eq. S1, Cullis 
et al. 2006).

To analyze variance components at the network scale, 
we used a multi-environmental model with random geno-
type and G × E interaction effects (Model S2). Each ran-
dom effect was tested with a restricted likelihood-ratio test 
comparing the full model and the null model without the 
considered effect. The variance components were extracted 
to be compared, and the standard deviation was expressed 
as a percentage of the mean � (CVg). All linear models 
were fitted using the R package asreml-R v3.2 (Butler et al. 
2009).

Trait correlation analysis

To get an overall picture of correlations between traits at 
the network scale, we performed a principal component 
analysis (PCA) with the R package FactoMiner (Lê et al. 
2008), based on standardized adjusted means of GLAI and 
agronomic traits from the four environments. From the PCA 
results, six GLAI traits were retained for further analysis 
because they were representative of the panel diversity and 
characterize complementary biological processes: DV, DS, 
GLAIM, AUC​V, AUC​F and AUC​S, the duration of the vegeta-
tive phase, the duration of the senescence phase, the maxi-
mum of GLAI, the area under the curve during the vegeta-
tive, the flowering and the senescence phase respectively.

To better understand the link between GLAI dynamics 
and GY we evaluated the phenotypic correlation (rp) by 
computing the Pearson correlation coefficient between these 
six GLAI traits and yield components, and tested it with a 
Student test in each of the four environments.

Genome wide association studies

To identify the genetic determinants of GLAI dynamics, we 
used two GWAS methods: a univariate approach (MUV) and 
a multivariate approach (MMV). For both approaches, the 
LOCO method was used to avoid proximal contamination 
(Rincent et al. 2014).

Univariate approach

A first association study was done trait by trait for each envi-
ronment of the network, using an univariate model. The six 
chosen GLAI traits and the five agronomic traits were ana-
lyzed with this univariate approach. Model S3 was fitted 
with FaST-LMM v2.07 (Lippert et al. 2011), and the null 
hypothesis H

0
∶ � = 0 was tested with a likelihood-ratio test.

Multivariate approach

In the second association study, we analyzed several GLAI 
and agronomic traits jointly in the same multivariate model 
for each environment. Model S4 was fitted using GEMMA 
software (Zhou and Stephens 2014) for t  = 8 traits namely 
AUC​V, AUC​F, AUC​S, GLAIM, DV, DS, GY and FF. Because 
of convergence issues, it was not possible to include 
other agronomic traits in the model. The null hypothesis 
H

0
∶ �

1
= ⋯ = �d = 0 was tested with a Wald test. GEMMA 

was also used to estimate genetic correlations (rg) between 
these eight traits.

SNP clustering

To correct for multiple testing and account for the false 
discovery rate (Storey 2002), we computed a qvalue for 
each test with the R package qvalue (Storey et al. 2021). 
SNPs with q value ≤ 0.05 were considered as significantly 
associated.

For the multivariate approach, rejecting the null hypothe-
sis ( H

0
∶ �

1
= ⋯ = �d = 0 ) does not give information about 

the trait(s) associated with the significant SNP. Significant 
SNPs effect for each trait were estimated with their stand-
ard deviation. The significance of these effects was tested a 
posteriori with a Wald test ( � = 0.01 ) for each trait, to assign 
each significant SNP to its trait(s).

For an environment-chromosome-trait combination, associ-
ated SNP were clustered with the method proposed by Corm-
ier et al. (2014) with a linkage disequilibrium threshold of 
R2 ≥ 0.6 . For a given combination, overlapping clusters were 
aggregated. Three different types of clusters were computed: 
MUV clusters built from SNP detected with MUV, MMV clusters 
built from SNP detected with MMV; and MALL clusters built 
from SNP detected with MUV or MMV. Clusters longer than 
30% of the chromosome length were discarded as artifacts. 
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Each cluster was finally described by its most strongly associ-
ated SNP (peak SNP with the smallest pvalue) and the interval 
covered by its SNP components.

QTL identification

We used a multi-environment multilocus backward selection 
model to identify SNP clusters playing a major role in the 
genetic determinism of each trait in the trial network (Model 
S5). Initially, the effects of all candidate clusters were incor-
porated in Model S5. The effect of each cluster was tested with 
a Wald test when it was added last to the model. The cluster 
with the least significant effect was iteratively removed, until 
all remaining clusters had been declared significant ( � = 0.01 ). 
After the backward elimination, the remaining clusters were 
called QTL. QTL effects were estimated in each environ-
ment with Model S5, and tested a posteriori with a Wald test 
( � = 0.01 ) to identify the environment(s) in which each QTL 
significantly affects the considered traits. Finally, we defined 
the QTL limit as the initial cluster interval extended by the 
local linkage disequilibrium extent at each extremity. QTL 
effects were defined as B73 allele effect, a parental line of 
the panel.

QTL colocalization

To decipher the genetic link between the traits, we studied 
QTL colocalization for every combination of trait and environ-
ment. Colocalization was defined as, at least, two overlapping 
QTL.

Grain yield prediction from GLAI QTL

A multi-environment model was used to confirm the utility of 
GLAI as a yield secondary trait under drought stress condi-
tions using GY11 data from the eleven-environment WD trial 
(“Agronomic evaluation of maize hybrids” section). We quan-
tified the proportion of GY11 variance explained by the GLAI 
QTLs with a backward selection approach. This led to a list of 
GLAI QTLs that significantly impact GY at the GY11 network 
scale. As this approach was applied to the GLAI QTLs result-
ing from an initial backward elimination (“QTL identification” 
section), and not to all the clusters detected, a less conservative 
threshold was applied (α = 0.05). A Wald test ( � = 0.05 ) was 
used a posteriori to identify which QTL were significant in 
each environment.

Results

Six parameters of GLAI dynamics are good 
descriptors of maize diversity and environmental 
constraints

To get a global picture of GLAI and agronomic traits cor-
relation in the trial network, we ran a principal component 
analysis of the 24 GLAI related and the 5 agronomic traits 
in the four environments together (Fig. 2). The first two PCA 
axes explained respectively 40% and 28% of the panel diver-
sity. The first axis differentiated genotypes with a long veg-
etative phase (DV) from those with a long senescence phase 
(DS, SSS). The second axis was more related to the GLAI 
maximum (GLAIM) and the flowering phase (AUC​F, AUC​C). 
In this plane, the GLAI traits are better represented than the 
agronomic traits. Six traits—DV, DS, GLAIM, AUC​V, AUC​
F and AUC​S—are particularly well correlated with the axes, 
each showing a Pearson r2 > 0.57 with one of the two axes. 
These traits also captured most of the information carried 
by the other GLAI traits at the network scale, for example, 
DS for DSS, DRS, DF, D25, D50, and D75, or AUC​S for AUC​
C, AUC​SS, AUC​RS and SLV (Fig. 2). The aforementioned six 
traits were therefore chosen as good descriptors of the GLAI 

Fig. 2   Correlation circle from principal component analysis of 29 
maize traits. A normalized PCA was done on the adjusted means for 
five agronomic traits (green arrows) and 24 GLAI traits (black and 
red arrows) in 324 maize hybrids in four environments. The first two 
axes (Dim) are plotted together with their proportion of explained 
variance. For trait abbreviations see the “Material and methods” sec-
tion and Fig. 1. Six GLAI traits were chosen as representing the panel 
diversity (red arrows) (color figure online)
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diversity in the panel. Of the agronomic traits, GY is the best 
represented, mainly by the second component (r2 = 0.39). 
GY is thus more correlated to the GLAIM and the AUC traits 
than to the duration of the vegetative or senescence phase. 
Conversely, grain yield components TKW and KN were 
more weakly linked with the GLAI traits, while flowering 
traits FF and ASI, are poorly related to GLAI dynamics and 
GY on the whole network.

Environmental conditions affected differently GLAI 
and agronomics traits in 2016 and 2017 (Fig. 3). Drought 
stress affected agronomic traits in the same direction in 
2016 and 2017, with decreases in GY, KN and TKW, and 
a delay in FF, leading to a slight increase in ASI. TKW 
was barely impacted in 2017 by the drought stress as it 

occurred during the flowering phase. GLAI traits were 
more affected by the different timing of the drought stress 
in 2016 and 2017, which reveal contrasting physiological 
constraints between the two years. GLAI traits related to 
the vegetative phase were less affected by drought stress 
than those related to the magnitude or senescence phase, 
perhaps because drought had no impact on the duration 
of the vegetative phase (DV Fig. 3, DEV and DLV Fig. S4). 
Indeed, drought stress began a few days before flower-
ing in 2016 and 2017, so had only a marginal impact on 
vegetative processes. However, drought stress was early 
enough to decrease the dynamics amplitude (GLAIM) 
in 2017, mainly by reducing leaf area (Blancon et  al. 
2019), and thus AUC​V and AUC​S. The lower GLAIM in 

Fig. 3   Drought stress impact on five agronomic traits and six mod-
eled GLAI traits representative of maize diversity. The agronomic 
traits are GY (q.ha−1), KN (kernels.m−2), TKW (g), FF (GDD6) and 
ASI (GDD6). The GLAI traits are DV (GDD6), DS (GDD6), GLAIM 
(m2.m−2), AUC​V (m2.m−2.GDD6), AUC​F (m2.m−2.GDD6), and AUC​S 
(m2.m−2.GDD6). Boxplots were constructed from the adjusted means 

of traits measured in 324 maize hybrids grown in the field in well-
watered (WW) and water-deficient (WD) conditions. Boxes represent 
the inter-quartile range and whiskers extend to 1.5 times the inter-
quartile range. Medians (horizontal lines inside the box), means (dia-
mond symbols), and outliers (circle symbols) are indicated for each 
trait in each environment (color figure online)
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17STPAULWD seems to have led to a delayed senescence 
(DS) that could be explained by better light distribution in 
the canopy strata (Borrás et al. 2003; Huang et al. 2017; 
Yang et  al. 2019). The drought effect on GLAIM and 
the consequences on DS compensated each other, so the 
decrease in AUC​S in 2017 was only slight. Conversely, 
in 2016 the drought stress mainly occurred during grain 
filling, which curtailed the stay-green phase (DF and DS, 
Fig. 3, Fig. 1), so AUC​F and AUC​S were smaller.

The relationships between the 11 traits are likely to vary 
under different conditions, so Pearson correlation coeffi-
cients (r) were calculated between pairs of traits analyzed 
within each environment (Fig. S3). The most strongly cor-
related traits were DV and DS (r values range from 0.23 
to − 0.83), DV and AUC​V (r from 0.77 to 0.92), DS and 
AUC​V (r from − 0.22 to − 0.73), GLAIM and AUC​V (r from 
0.84 to 0.90), GLAIM and AUC​S (r from 0.89 to 0.95), and 
GY and KN (r from 0.64 to 0.86). There was therefore 
a strong compensation between the duration of the veg-
etative phase and the duration of the senescence phase, 
as described by the first axis of the PCA. Moreover, the 
AUC traits seemed more dependent on the amplitude of 
the dynamics (GLAIM) than on the duration of the phases. 
Correlations between yield and GLAI traits were strongest 
for AUC​S, AUC​F and GLAIM (r from 0.23 to 0.50). Glob-
ally the latter three traits were more closely correlated to 
yield than were the flowering traits FF and ASI. TKW was 
never significantly correlated with GLAI traits, except in 
the 16STPAULWD environment where it was correlated 
with AUC​F (r = 0.16) and with the duration of senescence 
(r = 0.26). The correlation between TKW and GY was 
also the strongest (r = 0.33) in 16STPAULWD where the 
drought stress that occurred during grain filling had an 
impact on the duration of senescence.

GLAI traits exhibit limited G × E interaction

The 11 traits analyzed all showed significant genetic effects 
(Table 1). The genetic variance in GY is noteworthy with 
CVg = 7%. All GLAI traits, except DS, showed more genetic 
variance (higher CVg) than GY, while ASI was the only 
agronomic traits showing more variance than GY. The two 
traits with the least genetic variance were DS and FF with 
CVg values around 2.5%. On the contrary, ASI and AUC​V 
had the strongest genetic variances, with a CVg of 23% and 
15% respectively. All agronomic traits had a high general-
ized heritability (H2 > 0.8) except ASI, but GLAI traits were 
even more heritable. The G × E interaction was significant 
for all traits, except DV. Apart from DS, G × E interaction is 
smaller in GLAI traits (1–11% of the genetic variance �2

g
 ) 

than in agronomic traits (12–54% of the genetic variance). 
The G × E interactions of DS and GY were however similar 
(52% of the genetic variance).

Different associations between polymorphisms 
and traits in environments found with univariate 
and multivariate approaches

In a GWAS, a total of 7,806,995 SNPs were tested at 
5% false discovery rate threshold for each environment-
trait combination with two methods. With the univariate 
approach (MUV) 49,459 significant associations (com-
binations between a trait, a SNP and an environment) 
were detected for all 11 analyzed traits. For all environ-
ments combined, FF represented 55% of the associations 
detected, GLAIM 12%, and AUC​F, AUC​S, GY and KN 
between 5 and 10% each (Fig. 4). No association was 
found for DV, DS or ASI. Most other traits had at least 

Table 1   Variance 
decomposition of six modeled 
GLAI traits and five agronomic 
traits in the maize trial network

Min, Max and Mean were computed from the adjusted means of the traits of 324 hybrids over four environ-
ments. �2

g
 , genetic variance; CVg, genetic coefficient of variation; �2

ge
 , G × E interaction variance; �2

ge
∕�2

g
 , 

ratio of G × E interaction variance to genetic variance (%); H2, generalized heritability
***pvalue ≤ 0.001; **pvalue ≤ 0.01; *pvalue ≤ 0.05; n.s., pvalue > 0.05.

Trait Unit Min–Max Mean �
2

g
CVg �

2

ge
�
2

ge
∕�2

�
 (%) H2

DV GDD6 654–1005 829 4215 *** 7.83 3.91 10–8 n.s 0.00 0.91
DS GDD6 620–892 790 475 *** 2.76 246 *** 51.86 0.85
GLAIM m2.m−2 1.44–5.66 3.20 0.10 *** 9.64 2.4110–3 *** 2.53 0.88
AUC​V m2.m−2.GDD6 362–1502 844 15,296 *** 14.65 188 *** 1.23 0.89
AUC​F m2.m−2.GDD6 512–2220 1287 23,764 *** 11.98 2545 *** 10.71 0.88
AUC​S m2.m−2.GDD6 681–2632 1589 17,779 *** 8.39 917 *** 5.16 0.87
GY q.ha−1 21–134 91 43.6 *** 7.25 22.5 *** 51.67 0.83
KN kernels 954–4964 3446 69,258 *** 7.64 21,847 *** 31.54 0.82
TKW g 140–367 265 240 *** 5.85 56.2 *** 23.40 0.85
FF GDD6 823–1140 1007 514 *** 2.25 63.3 *** 12.32 0.85
ASI GDD6 − 87–187 31 51.2 *** 22.77 27.6 ** 53.86 0.50
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one association in two different environments, but not 
GY, TKW and AUC​V. Flowering was the only trait with 
associations in all four environments.

With the multivariate approach (MMV) 33,043 asso-
ciated SNPs were revealed, but 9% of them could not 
be assigned to a trait with the a posteriori Wald test 
(α = 0.01). Thus, 113,164 significant associations were 
detected for eight traits in MMV, which compares to 
44,572 associations for the same eight traits for MUV. 
All eight traits exhibited significant associations in each 
environment in MMV, which contrasts sharply with the 
univariate approach (Fig. 4). The distribution of associa-
tions between each trait and environment was also much 
more even. For instance, FF, GLAIM, AUC​V and AUC​S 
each represented 15–20% of associations.

It must be noted that in the univariate approach, most 
of the associated SNPs (86%) were associated with only 
one trait in a given environment, 11% with two, 3% with 
three and 0.4% with four environments. In contrast, the 
multivariate approach detected many more SNPs associ-
ated with several traits in a given environment. Specifi-
cally, 79% of SNPs were associated with 2–8 traits, and 
23%, 22% and 17% of SNPs were associated with 4, 5 and 
6 traits, respectively.

Most associations were specific to the GWAS model 
used, with 54% specific associations in MUV and 85% in 
MMV. Only 13% of GLAI trait associations were detected 
by both models (Fig. S5), 9% of GY associations and 19% 
FF associations.

GLAI traits have a simpler genetic architecture 
than yield

Significant SNPs were clustered for each trait-environment 
combination based on linkage disequilibrium. Within mixed 
clusters (i.e., defined as a mixture of SNPs detected by MUV 
and MMV), most associated SNPs in each metacluster were 
from the multivariate approach (81% of cases).

Among the 1444 clusters identified, 19 were longer than 
10% of the corresponding chromosome. The lengths of the 
clusters were quite short compared to the large number of 
associated SNPs, with 75% of clusters shorter than 0.25 Mbp 
(90% < 3.5 Mbp).

As expected, for a given trait, the number of clusters iden-
tified depends strongly on the number of associated SNPs 
(Table S2). However, the 25,591 SNPs associated with FF 
in 17STPAULWD were grouped into just 66 clusters. On the 
contrary, the 2,079 SNPs associated with GY in the same 
environment were grouped into as many as 96 clusters, the 
maximum detected in this study for a single trait in a given 
environment. This is consistent with the highly polygenic 
architecture of yield.

A backward elimination approach was applied to the large 
number of genomic regions detected. This had the twofold 
advantage of limiting the risk of false positives and reducing 
the number of regions to analyze. Thus, only a third of the 
clusters were kept with 1 to 20 QTLs depending on the trait 
and environment considered, thus accounting for 475 QTL in 
total (Tables S2 and S3). Moreover, the multi-environment 

Fig. 4   Number of associations detected in univariate (MUV) and mul-
tivariate (MMV) GWAS for 11 traits measured on 324 maize hybrids 
in four environments. The diameter of each circle is proportional to 

the total number of associations detected for each approach in that 
environment. Associations with KN, TKW and ASI were not tested in 
the MMV approach (color figure online)
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backward selection model can also be used to identify QTLs 
in environments where they had not been initially detected 
(Table S2). While most QTLs are concentrated on chromo-
somes 1, 3, 4, 5 and 8, there are at least 15 QTLs on each 
chromosome.

In each environment, the average proportion of pheno-
typic variance explained by a QTL is 4%, with a maximum 
of 11%, and no major differences between GLAI traits 
and agronomic traits. Nevertheless, among the 16 QTLs 
explaining less than 1% of the phenotypic variance, eight 
were yield QTLs. Some differences are also apparent at the 
network scale: the mean and maximum proportion of vari-
ance explained by QTL were, respectively, 3.5% and 9.5% 
for GLAI traits, 2.3% and 5.2% for yield and its compo-
nents, and 2.8% and 6.1% for flowering. This confirms that 
GLAI traits have a weaker G × E interaction than yield and 
flowering.

Overall, the QTLs detected captured 13–61% of the phe-
notypic variance depending on the trait considered (Fig. 5, 
MALL). To evaluate the respective contributions of MUV and 
MMV approaches to explain the phenotypic variance, two 
new sets of QTLs were selected by backward elimination, 
from the SNPs detected independently by each approach. 
It appeared that the QTLs detected by MUV explained less 
of the variance in all the traits analyzed, except FF. Indeed, 
with the MMV approach r2 values for the six GLAI traits and 
GY were 4–43% higher. The combined use of MUV and MMV 

brought little gain compared to MMV alone, at most + 11% 
for AUC​S.

GLAI QTLs show many colocalizations

According to the genomic sequence, many QTLs are colo-
calizing suggesting significant pleiotropy or genetic linkage 
between the analyzed traits, in particular the GLAI traits. 
Indeed, 53 to 89% of GLAI QTLs colocalized with QTLs 
for at least one other trait in one or more environments, com-
pared to only 27–43% of agronomic QTLs. Moreover, QTLs 
of the same trait in different environments often colocalized, 
implying that trait- and environment-specific QTLs are rare 
(Fig. S6). It is also noteworthy that most of the QTLs had 
similar effects in the four environments and it was rare that 
the direction of the effect reversed (Figs. S4 and S7).

Overall, GLAI traits shared a significant proportion of 
QTLs with same-direction effects, especially AUC​V, AUC​
F and AUC​S, but also AUC​V and DV (Fig. S6). The colo-
calizations between GLAI traits and GY or FF, distributed 
over one to seven genomic regions, were rarer. Despite this 
marked trend, there were some QTL colocalizations with 
opposite effects for almost all trait pairs.

Yield QTLs detected under drought stress showed fewer 
colocalizations than those detected under optimal condi-
tions, especially for 16STPAULWD where the stress lasted 
longer (Fig. S6). However, interestingly, in both stressed 
environments, some yield QTLs colocalized with GLAI 
QTLs detected under optimal conditions. Additionally, yield 
and flowering QTLs rarely colocalized, with only three com-
mon regions, each affecting both traits in the same direction. 
In particular, there was a single colocalization between yield 
(17STPAULWD) and flowering (16STPAULWD) under 
stressed conditions.

Some traits showed only colocalizations with opposite 
effects, such as DV and DS, AUC​V and DS, and GLAIM and 
DS (Fig. S6), which is consistent with the mainly negative 
phenotypic (Fig. S3) and genetic (Fig. S8) correlations 
between these pairs of traits. Notably, three colocalizations 
with opposite effects were detected for AUC​S and GY versus 
only one with effects in the same direction. This trend is 
surprising because it contradicts the marked positive correla-
tions between AUC​S and GY at the phenotypic and genetic 
level and probably reflects the weaknesses of the QTL colo-
calization method, or the backward elimination approach for 
the selection of the final QTL list.

GLAI QTLs can explain yield variability 
under drought stress conditions

In the GY11 network, maize GY measured over 11 WD 
trials spread over five locations in three countries and 
four years varied on average from 53 to 89 q.ha−1 with 

Fig. 5   Proportion of phenotypic variance explained by all the QTLs 
detected on 324 maize hybrids evaluated in four environments. For 
each trait, we compared the variance explained by  the QTLs from 
a univariate GWAS approach (MUV), the QTLs from a multivariate 
approach (MMV), and the QTLs from MALL built from the combina-
tion of SNPs detected by MUV and MMV. Associations with KN, 
TKW were not tested with MMV. No association was found for ASI
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a generalized heritability between 0.63 and 0.80, which 
underlines the diversity of drought stress that occurred 
during these trials (Fig. 6A). The use of a multi-environ-
ment backward selection model from all GLAI QTLs (120 
unique regions for DV, DS, AUC​V, AUC​F, AUC​S, GLAIM) 
led to the identification of 16 GLAI QTLs distributed 
over seven chromosomes having a significant effect on 
GY in this drought stressed network (Fig. 6B, Fig. S9). 
Taken together, the 16 QTLs explained almost one-fifth 
(r2 = 0.18, pvalue < 10–3, Fig. 6B) of the phenotypic vari-
ability observed over the 11 environments, and from 7 to 
18% of the phenotypic variability observed in each envi-
ronment, with 3–8 significant QTLs. Interestingly, each 
GLAI trait was associated with at least one of the 16 QTLs 
selected by the backward selection model, confirming the 
relevance of the impact of the six GLAI traits on yield.

Discussion

To quantify the changes in GLAI in diverse maize geno-
types, a panel of 324 DH lines from a MAGIC popula-
tion was phenotyped by UAV spectral imaging in four tri-
als under optimal conditions and drought stress. Six traits 
derived from the GLAI dynamics were shown to capture 
a significant proportion of the phenotypic diversity of the 
panel. To identify the genetic basis for these secondary 
traits and their influence on yield and drought tolerance, 
two GWAS approaches were compared: a univariate model 
and a multivariate model.

Traits governing GLAI dynamics are less complex 
than yield

The traits evaluated within the trial network showed a high 
heritability, except for ASI. The low heritability of ASI 
(H2 = 0.5) is consistent with the results of Cairns et  al. 
(2013), Trachsel et al. (2016) and Bouchet et al. (2017) but 
much lower than the heritability reported for American and 
Chinese nested association mapping populations (Li et al. 
2016c). The heritability of FF was also similar to previous 
estimates (Li et al. 2016c; Bouchet et al. 2017). Yield and its 
components show strong heritability compared to previous 
studies (Trachsel et al. 2016; Li et al. 2016a; Bouchet et al. 
2017; Cerrudo et al. 2018), as do the AUC (Christopher 
et al. 2014; Trachsel et al. 2016; Cerrudo et al. 2018) and 
senescence-related traits (Messmer et al. 2011; Ziyomo and 
Bernardo 2013; Almeida et al. 2014; Yang et al. 2017). The 
new traits describing vegetative growth of the canopy (DV, 
GLAIM, AUC​V) showed similar heritability to traits such 
as leaf number and leaf size (Bouchet et al. 2017; Pan et al. 
2017; Wang et al. 2017; Zhao et al. 2019).

GLAI traits were more heritable than agronomic traits, 
including yield and its components, and often had higher 
genetic variance. Moreover, although heritability gap 
between GY and GLAI traits is modest when computed at 
the network level, it can be noted that differences increase 
when heritability is evaluated at the trial level with a mean 
(maximum) gain of heritability for GLAI traits compared 
to GY of 0.10 (0.15) and 0.21 (0.3) for 16STPAULWW 
and 16STPAULWD, respectively, and 0 (0.12), 0.17 (0.28) 
for 17STPAULWW and 17STPAULWD, respectively. In 

Fig. 6   Grain yield variability explained by GLAI QTLs in the GY11 
drought stressed network. A Effect of a wide range of drought stress 
on yield of 324 hybrids measured in eleven environments. The black 
boxplot corresponds to the whole GY11 network, which is composed 
of the eleven stressed environments detailed below. The gray boxplots 
correspond to the two WD trials used to identify the GLAI QTLs 
then used in the backward selection approach to explain grain yield 
variability in the whole network. Boxplots were constructed from the 
adjusted means. The vertical line in the boxplots corresponds to the 

median, while the diamond corresponds to the mean. The box length 
represents the inter-quartile range, and the whiskers extend to 1.5 
times the inter-quartile range. Generalized heritability is given at the 
left of each boxplot. B Proportion of grain yield variance explained 
by GLAI QTLs. Proportion of explained variance, computed as r2, is 
given in percent. Color use is the same as panel A. The number of 
GLAI QTLs with a significant effect on grain yield in the network, or 
each environment, is given at the right of each bar
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addition, the G × E interaction was lower for most GLAI 
traits than for agronomic traits (Table 1, Table S4). Bouchet 
et al. (2017) and Yang et al. (2014) made similar observa-
tions regarding architectural canopy traits (number of leaves, 
size of leaves) and yield components, with comparable val-
ues of the ratio �2

ge
∕�2

g
 . In our study, the heritability was 

slightly higher when G × E interaction ratios were lower, 
whereas this relationship was more pronounced in the results 
of Yang et al. (2014) but not evidenced in results from Bou-
chet et al. (2017). These differences confirm that beyond the 
characteristics specific to the traits analyzed, the conclusions 
drawn from such genetic analyses depend on the population 
considered and the experimental network. For this study, we 
used a panel produced from 16 lines representative of the 
genetic diversity used for hybrid production in temperate 
zones, encompassing a very broad diversity of canopy struc-
tures (number, size, color and angle of the leaves). While the 
test-cross was necessary for the results to be pertinent to elite 
or breeding material as correlations are often weak between 
lines and hybrids (Cairns et al. 2012; Trachsel et al. 2016), 
phenotypic evaluation after the test cross clearly reduced the 
panel diversity. The limited size of this experimental net-
work probably also did not reveal all the existing variability 
in our panel for the considered traits. Our results suggest that 
the traits extracted from GLAI dynamics are less complex 
than yield-related traits.

Larger green leaf area increases grain yield 
under optimal conditions and moderate drought

GLAI traits were highly correlated with each other at the 
phenotypic and genetic levels (Figs. S3 and S8). They were 
also significantly correlated with yield and flowering. How-
ever, yield was more correlated with GLAI than with flow-
ering, which is consistent with the results of Trachsel et al. 
(2016) and Cerrudo et al. (2018). It is interesting to note that 
the duration of the vegetative phase (DV) and the duration 
of the senescence phase (DS) were negatively correlated, 
and that this opposition was the main factor differentiat-
ing the genotypes of the panel (Fig. 2). This relationship 
shows that it is possible to lengthen the senescence phase 
by shortening the vegetative phase while maintaining the 
same total duration. Thus, the duration of grain filling could 
possibly be increased without altering the maturity date of 
a genotype. Trachsel et al. (2017) obtained similar results 
showing under optimal and stressed conditions that, pro-
vided vegetative development was vigorous, earlier flower-
ing extended the grain filling duration, thus increasing grain 
yield. In our study, the traits most consistently and strongly 
correlated overall with yield were those that reflect vigor-
ous vegetative development and hence a large green leaf 
area during grain filling: AUC​V, AUC​F, GLAIM and AUC​S 
with 0.14 ≤ rp ≤ 0.50 and − 0.04 ≤ rg ≤ 0.94. These moderate 

correlations were expected as the proportion of yield vari-
ation explained by individual traits is known to be low at 
intermediate levels of water-deficit and stress, like the ones 
experienced in this study (Cooper and Messina 2023).

Stay-green, defined as the maintenance of photosynthetic 
activity during filling, is one of the major determinants of 
yield under optimal and stressed conditions (Wolfe et al. 
1988; Cairns et al. 2012; Almeida et al. 2014; Kante et al. 
2016) and has played a major role in the improvement of 
new hybrids in recent decades (Duvick 2005). Stay-green 
may be the consequence of increased green surface area 
before flowering, postponement of senescence, or slower 
senescence (Thomas and Howarth 2000; Christopher et al. 
2014, 2016). AUC​S is a good indicator of stay-green because 
it incorporates each of these aspects. Indeed, AUC​S was the 
GLAI trait most correlated with yield in our four environ-
ments (Figs. S3 and S8) which confirms the major interest of 
this trait. While numerous studies stated that stay-green can 
originate from ‘shifting water’ from pre- to post-anthesis, 
whether by optimal transpiration efficiency, root uptake or 
reduced transpiration area, that would lengthen senescence 
duration (Borrell et al. 2000, 2014), it is interesting to note 
that in this study, stay-green was the result of more green 
surface grown before flowering and an acceleration of senes-
cence during the rapid phase as seen by the strong correla-
tions between AUC​S, GLAIM and SRS. The weak correlation 
of AUC​S and DS shows that slower senescence was not a 
contributory factor. Moreover, DS was only weakly corre-
lated with GY. A well-developed foliar system was therefore 
central to the development of yield within our experimental 
network whether in optimal conditions or moderate drought 
stress with full irrigation at the end of the cycle. Maintaining 
leaf growth and delaying senescence increase transpiration, 
but if water reserves are restored before the end of the cycle, 
gas exchange and photosynthesis can still be maximized 
(Tardieu 2012). If not, with a severe terminal stress, main-
taining leaf growth would be deleterious. In such conditions, 
typical to the Australian environment type experienced by 
Borrell et al. (2000, 2014), it would be expected that GY 
would be negatively correlated with traits that increase leaf 
transpiration, such as areas under the curve or GLAIM, while 
being positively correlated with DS.

These specificities highlight that secondary traits are only 
of interest if associated with well-characterized types of envi-
ronments, which refers to ideotyping analysis (Hammer et al. 
2014; Bustos-Korts et al. 2019b; Cooper and Messina 2023). 
Indeed, correlation between secondary traits and GY varies 
between environment type, and even across the crop cycle in 
a given environment. With a good understanding of environ-
ment type, one can expect identifying the most relevant sec-
ondary traits that maximize correlation with GY to build one 
or more associated ideotype, if there is sufficient knowledge 
about environment variability (Cooper and Messina 2023). 
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This will thus allow a better breeding efficiency through indi-
rect selection.

Multivariate GWAS is the most powerful approach

With the combination of very dense genotyping data 
(7,806,995 SNPs) and two GWAS approaches, many associa-
tions (167,854) were detected for 11 traits measured in four 
environments. The multivariate approach (MMV) detected 
many more associations, including most of the associations 
revealed by the univariate approach (MUV, Fig. S5). Moreo-
ver, MMV revealed many more associations common to several 
traits (79% of associations) than MUV and explained a greater 
part of the phenotypic variance, particularly for yield (Fig. 5).

The power gained in GWAS with the multivariate 
approach compared to the univariate approach has been dem-
onstrated by several studies (Zhu and Zhang 2009; O’Reilly 
et al. 2012; Stephens 2013; Galesloot et al. 2014; Porter 
and O’Reilly 2017). Taking into account the covariances 
among traits brings additional information that increases the 
power in detecting genetic variants involved in the control of 
several traits, but also variants affecting a single trait (Fer-
reira and Purcell 2009; Stephens 2013; Carlson et al. 2019). 
However, the use of multivariate models may be limited by 
the number of phenotypes that can be integrated. For exam-
ple, in this study, a maximum of eight traits could be inte-
grated into the multivariate model fitted with the GEMMA 
software. In recent years, many tools have been developed 
for multi-trait GWAS that differ in terms of the number of 
analyzable traits, calculation times and assumptions on the 
distribution of phenotypes (O’Reilly et al. 2012; Sluis et al. 
2013; Stephens 2013; Zhou and Stephens 2014). These tools 
also have a very variable power depending on the phenotypic 
correlations and the genetic architecture of the traits studied 
(Porter and O’Reilly 2017).

In this work, we used a two-step approach for its com-
putational efficiency at the cost of a probable loss of infor-
mation between the two steps. The gain in power noted in 
several studies using functional mapping, and especially 
random regression (Wu and Lin 2006; Li et al. 2010; Ning 
et al. 2017, 2018; Campbell et al. 2019; Moreira et al. 2020) 
may have better enhanced our understanding of the timing 
of the genetic control of GLAI dynamics in response to 
drought stress. However, computationally it would not have 
been practicable with our dense genotyping data and the 
backward-elimination method (Ning et al. 2017; Moreira 
et al. 2020).

GLAI and agronomic traits exhibit polygenic 
architecture and common genetic determinants

The associations we detected overlap strongly with the 
genetic determinisms of GLAI traits, yield and flowering 

(Fig. S6). Our results, like those of Cheverud (1988), Bou-
chet et al. (2017), Pan et al. (2017), Sodini et al. (2018) 
and Yuan et al. (2019) show that correlations at the phe-
notypic level are good indicators of the sharing of genetic 
determinants (pleiotropy or genetic linkage) between two 
traits (Fig. S10A). This indicates that it is possible to select 
secondary yield traits quite efficiently based on phenotypic 
correlations. However, we observed only a moderate link 
between phenotypic and genetic correlations (Fig. S10B), 
which demonstrates the complementarity of these two pieces 
of information. This partial discrepancy is probably due to 
permanent environmental effects at the plot level throughout 
the cycle, captured by the temporal approach implemented in 
this study (Hadfield et al. 2007; Canela-Xandri et al. 2018).

Common genetic determinisms between earliness, plant 
architecture and changes in leaf area during the cycle are 
well known (Li et al. 2016b; Bouchet et al. 2017; Pan et al. 
2017; Condorelli et al. 2018; Spindel et al. 2018). The entire 
foliar and reproductive apparatus can be traced back to the 
activity of the apical meristem and the floral meristems it 
initiates (Kwiatkowska 2008), which is probably the reason 
for these common determinisms (Thompson et al. 2015; 
Baute et al. 2015). The impact of changes in leaf area on 
light interception, gas exchange and water fluxes explains 
the large number of QTLs affecting both yield and leaf area 
dynamics under optimal or stressed conditions (Trachsel 
et al. 2016; Cerrudo et al. 2018; Condorelli et al. 2018). 
In our study, however, there is less colocalization between 
yield and flowering than between yield and GLAI traits, 
which could be the consequence of purposely reducing the 
flowering time range of the panel. Having limited the flower-
ing date confounding effect, it can be assumed that a large 
proportion of the common QTLs between yield and GLAI 
traits that do not colocalize with flowering are due to direct 
QTL effects on the GLAI. Moreover, we showed that some 
GLAI QTLs detected under optimal conditions colocalize 
with yield QTLs detected under stressed conditions. This 
means yield under drought stress is partly due to GLAI 
QTLs detected in the absence of stress, which may facilitate 
the prediction of grain yield in breeding.

Individually, the detected QTLs reveal a complex archi-
tecture for each trait, with 4% of phenotypic variance 
explained on average, and a maximum of 11%. A polygenic 
architecture with many low-effect QTLs and a few medium-
effect QTLs is fairly consistent with the results of Bouchet 
et al. (2017) and Pan et al. (2017) for leaf architecture, yield 
and flowering, and those of Trachsel et al. (2016) and Cer-
rudo et al. (2018) for normalized difference vegetation index 
dynamics, senescence and yield. In addition, our results 
show that individually, GLAI QTLs explain a larger pro-
portion of the phenotypic variance at the network scale than 
yield or flowering QTLs, which is in good agreement with 
the high stability of the GLAI QTLs between the different 



	 Theoretical and Applied Genetics          (2024) 137:68    68   Page 14 of 20

environments. Similarly, the total r2 explained by all QTLs 
is greater for GLAI (AUC​F, AUC​S, GLAIM) than for yield 
(Fig. 5, MUV), while more QTLs were detected for yield 
(+ 25%). It therefore appears that the genetic architecture of 
GLAI is simpler than that of yield with fewer genetic factors, 
more stable between environments, exhibiting somewhat 
larger individual effects.

GLAI dynamics is a promising secondary trait 
for drought tolerance

Sixteen GLAI QTLs were shown to explain GY measured 
in 11 environments under drought stress conditions (GY11). 
They explained a significant part of the variance of GY11 
(18%), despite the small size of the initial experimental net-
work in which the QTLs were detected (only four environ-
ments, two of which under optimal conditions). It is inter-
esting to note that the 16 QTLs had much more variable 
effects between the 11 environments of GY11 (Fig. S9) than 
in the four relatively similar environments where GLAI data 
was collected (Fig. S7). GLAI QTLs detected in a specific 
environment are therefore informative of observed yield in 
a wide range of contrasting environments.

Among the 16 QTLs associated with GY11, five have 
similar effects in all environments, such as C1:57,391,598 
whose allele from B73 increases grain yield. This QTL colo-
calizes with a QTL identified in the reference network whose 
B73 allele increases AUC​S and GLAIM. It also colocalizes 
with a stay-green QTL found by Wang et al. (2016) and two 
leaf-width QTLs detected by Wang et al. (2018). A gain in 
GY when there is more green leaf area at flowering and dur-
ing grain filling is consistent with the observations made on 
the reference network. Another example is C5:10,876,996, 
whose allele from B73 leads to a yield decrease, colocalizing 
with a QTL whose B73 allele increases DS and decreases 
GY under drought stress in the reference network. Consist-
ently, Almeida et al. (2014) previously detected three QTLs 
affecting chlorophyll content during grain filling that also 
colocalize with C5:10,876,996. However, as observed by 
Trachsel et al. (2017), one would expect that increasing the 
duration of filling would lead to a yield increase, at least 
in environments without severe terminal stress. But, as DS 
is negatively correlated with DV, AUC​V, and GLAIM, the 
decreased vigor of vegetative development might explain the 
yield loss (Fig. S3). Finally, QTL C3:19,131,545 is typical of 
QTLs with unstable effects between environments. Indeed, 
the reference allele of this QTL has the strongest GY effect 
detected in this study, varying from − 6.9 to + 3.1 q.ha−1 
(− 14.4 to + 4.8% of the mean yield) for 17SZEGEDWD 
and 16BLOISWD, respectively. It colocalizes with QTLs 
whose reference allele increases FF, AUC​V, AUC​S, and/
or GLAIM under optimal and stressed conditions and GY 
under optimal conditions in the reference network. This QTL 

therefore reveals the variable effect of a developed leaf area 
over the entire cycle. While both environments experienced 
drought stress during flowering and grain filling, it appears 
that 17SZEGEDWD where B73 allele has the strongest del-
eterious effect on GY, was much warmer than 16BLOISWD 
where B73 allele increases GY (23 °C versus 18 °C in aver-
age between flowering and harvest). It would therefore seem 
that thermal stress coupled with drought stress is the reason 
for the negative effect of a more developed foliar area on GY, 
possibly cause by increased evapotranspiration induced by 
the rise in temperature. The interpretations proposed here for 
these three QTLs remain tentative, because although GLAI 
traits show little G × E interaction in the reference network, 
it is possible that the effect of these QTLs on GLAI changes 
direction within the nine additional environments considered 
here.

All these 16 QTL colocalize with previously identified 
QTL or meta-QTL for leaf architecture, plant architec-
ture and/or GY and GY components (Trachsel et al. 2016; 
Zhang et al. 2016, 2017; Chen et al. 2017; Zhao et al. 2018). 
Validated on this 11 WD trials network, these GLAI QTL 
affecting GY seem interesting candidates to be further 
investigated.

Perspectives and implications for breeding

In this study, we describe six new traits related to GLAI 
dynamics that constitutes relevant secondary traits for GY 
improvement under optimal and drought conditions. The 
other 18 GLAI traits extracted from the dynamics that were 
not analyzed in detail in this study show overall similar 
characteristics to those of the six traits analyzed (Fig. S4, 
Table S4). These traits could therefore be particularly inter-
esting for new breeding programs, depending on the con-
sidered ideotype. Indeed, although the selection efficiency 
expected by using these traits individually can be close to 
that of yield alone, due to a limited gain in heritability or 
a genetic correlation with yield that can be reduced in cer-
tain cases, it as to be noted that using an ideotype selection 
index based on several of these traits can greatly increase the 
efficiency of indirect selection (Bänziger and Lafitte 1997; 
Monneveux et al. 2006; Ziyomo and Bernardo 2013). Addi-
tionally, it can be valuable to decrease selection accuracy if 
economic efficiency is increased in breeding programs (van 
Eeuwijk et al. 2019). Indeed, by selecting secondary traits 
such as GLAI dynamics, it is possible to quickly phenotype 
a large number of individuals at low cost early in the cycle, 
which could at least allow eliminating the individuals that 
are strongly divergent from the desired ideotype (Araus et al. 
2018). Consistently, Bustos-Korts et al. (2019a) restated in 
a recent simulation study that intermediate secondary traits, 
such as green canopy dynamics, are particularly well suited 
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for field evaluation during early breeding cycles to improve 
selection efficiency.

To improve breeding efficiency, the many QTL identified 
in this work could be used in a marker-assisted selection 
program. However, it can be noted that the most heritable 
traits with the least G × E interaction were not necessarily 
the best explained by the detected QTLs in the multivari-
ate GWAS approach (for example, DV). This suggests that 
these traits probably have a polygenic architecture with very 
weak effects, as is postulated for plant height (Peiffer et al. 
2014). In this context, a genomic selection approach would 
undoubtedly be more effective than an approach based on 
QTL detection to increase the efficiency of breeding pro-
grams (Spindel et al. 2015), as shown by Bouidghaghen 
et al. (2023) for DV. Indeed, the use of secondary traits in 
genomic selection to predict yield greatly increases the qual-
ity of prediction (Rutkoski et al. 2016; Sun et al. 2017; Crain 
et al. 2018; Bustos-Korts et al. 2019a). However, genomic 
selection should not be substitute to QTL detection, which 
may be more efficient in certain cases (Spindel et al. 2015; 
Yuan et al. 2019). Cerrudo et al. (2018) proposed an opti-
mal approach of using the QTLs identified by GWAS in 
the first stages of a breeding program to enrich the material 
with strong-effect alleles, then using genomic selection to 
improve grain yield by taking advantage of low-effect loci. 
Alternatively, the integration of previously detected QTLs 
into a genomic prediction model has also performed well, 
provided the QTLs explain more than 10% of the variance 
(Bernardo 2014; Spindel et al. 2016).

Finally, the best strategies to take advantage of these new 
secondary traits will only be identified by deepening our 
knowledge and understanding of how and when they confer 
adaption to a specific environment type, probably through 
a mixture of ecophysiological modeling and empirical 
validation.

Coupling ecophysiological and genetic models 
to gain in knowledge, understanding and power

More and more approaches combine ecophysiological mod-
eling and genetic models through a framework that can go 
from sequential to fully nested. This coupling allows all 
these approaches to gain knowledge, understanding and/
or predictive ability depending on whether the emphasis is 
placed on ecophysiological or genetic modeling (Messina 
et al. 2023).

Our two-step approach uses a simple physiological model 
and high-throughput field phenotyping to extract the compo-
nents of GLAI dynamics and then characterize their genetic 
determinism. While the main focus is on genetic modeling, 
the use of a physiological model has several advantages: the 
dynamic modeling of GLAI allows (i) to extract descrip-
tive genotypic parameters for different physiological phases, 

which is highly desired since the correlation between sec-
ondary traits and GY varies during the cycle depending on 
the type of environment, and (ii) to increase the heritability 
of the extracted traits (Bustos-Korts et al. 2019a, b). The 
main contribution of this work is a better knowledge of the 
genetic determinism of GLAI dynamics and its link with 
GY made possible by fine field phenotyping and a com-
putationally efficient multi-trait and multi-environment 
QTL approach for a large number of genotypes and a dense 
genotyping. Indeed, this study is one of the first to study 
the genetic determinism of maize GLAI temporal evolution 
over the whole cycle in the field. As seen in similar works 
(Millet et al. 2016, 2019; Touzy et al. 2019; Bouidghaghen 
et al. 2023), this coupled modeling approach allowed us to 
gain power in GWAS but also to better understand the physi-
ological mechanisms relevant for adaptation to a particular 
environment through the analysis of correlations between 
traits and colocalization of QTL (Bustos-Korts et al. 2019b), 
which constitutes a first step toward ideotype design. This 
understanding is however limited by the limited range of 
environments and the relationships between evaluated traits.

Studies that put more effort into ecophysiological mod-
eling are able to greatly expand our understanding of G × E 
interactions and adaptive traits for each type of environment 
and therefore propose one or more ideotypes when neces-
sary (Bustos-Korts et al. 2019b; Cooper and Messina 2023; 
Messina et al. 2023). Today, the most advanced approaches 
to couple ecophysiological and genetic modeling (Technow 
et al. 2015; Cooper et al. 2016; Messina et al. 2018; Bus-
tos-Korts et al. 2019b) consist of a one-step approach that 
integrates biological information from several environments 
through an ecophysiological model, directly into genomic 
prediction algorithms to increase the predictive power and 
understanding of G × E interactions in the breeding network. 
While they surely constitute the next step to take advantage 
of a better G × E understanding to improve the breeding 
efficiency, this kind of approaches remains complementary 
with approaches like our, based on targeted phenotyping in a 
well-characterized environment, because they allow to gain 
empirical knowledge which can then enrich the ecophysi-
ological and genetic model couple (Yin et al. 2004; Bustos-
Korts et al. 2019a; Hammer et al. 2019).

Conclusion

Genetic determinants of maize canopy characteristics were 
found by measuring GLAI dynamics over the crop cycle in 
a diverse panel from a MAGIC population genotyped at a 
very high density. Due to the difficulty of monitoring GLAI 
in the field for a large number of genotypes, this study is one 
of the first to study the genetic determinism of its temporal 
evolution over the whole cycle. From the GLAI dynamics, 
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24 traits were derived, six of which were shown to capture 
a significant part of the panel diversity. Six GLAI traits cor-
related with yield under optimal and drought conditions 
are more variable, more heritable, and less subject to G × E 
interaction than yield, making them particularly suitable 
secondary traits for drought tolerance improvement. The 
multivariate GWAS approach explained a large proportion 
(40–60%) of the traits variance. The QTLs identified show 
a strong overlap between the genetic determinants of GLAI, 
GY and flowering. A subset of GLAI QTLs was validated 
as explaining nearly one-fifth of the GY variation measured 
on 11 environments under drought stress. GLAI traits are 
promising for the relative simplicity of their genetic archi-
tecture and medium genetic effects that are relatively stable 
between environments.
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