

Identification of two concentration components to better understand the concentration-flow relationship(Obs. ORACLE)

José Manuel Tunqui Neira

► To cite this version:

José Manuel Tunqui Neira. Identification of two concentration components to better understand the concentration-flow relationship(Obs. ORACLE). Catchment Transport Processes Summer School 2017, Jul 2017, Einsiedeln, Switzerland. hal-04497628

HAL Id: hal-04497628 https://hal.inrae.fr/hal-04497628

Submitted on 10 Mar 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Identification of two concentration components to better understand the concentration-flow relationship(Obs. ORACLE)

José Manuel Tunqui Neira^{1*}

¹UR Hydrosystèmes et Bioprocédés, Equipe ORACLE, Irstea, Antony, UMR Metis 7619 UPMC * jose.tunqui@irstea.fr

- To study the concentration-flow relationships of a watershed by applying a two-component mixing equation : \checkmark
- Goal
- A concentration associated with the base flow rate (C_1), to represent the regular flows,
- A concentration associated with hydrometerological events (C_2), o represent the fluxes linked to the rapid transfer of water
- in the soil.

$C_k = C_{1j} + (C_{2j} - C_{1j}) \frac{Q_{ext(k)}}{Q_{t(k)}}$ **Mixing equation**

Avec:

 C_{2i}

- : Total concentration for the time step k (mg/L) C_k
- $Q_{ext(k)}$: External rate flow for the time step k (m³/s)
- : Total flow for the time step k (m³/s) $Q_{t(k)}$
 - : Base concentration parameter for the time step *j* (mg/L)

150

100

50

[Q](L/s)

: External concentration parameter for the time step *j* (mg/L)

Figure 1: Orgeval catchment with its corresponding subs-catchments (source: Irstea-Antony)

2. Resolution of equation ✓ Computation of base flow and extern flow using the

Base Index Flow (BFI) method [1]

 Resolution of the mixture equation with two unknowns C_1 and C_2 , using the linear regression method Chloride , 2015-09-15 Coef. reg. fit $C_k = 34.7 + 1.96 * \frac{Q_{ext(k)}}{Q_{4(k)}}$ (a) Hydrograph (b) Ternary graph 40 Hours 22:30:00 11:30:00 30 mg/L) 00:30:00 20 [CI] 10 - regréssion fit line

- Study Zone: Catchment of Avenelles (45,7 \checkmark km²)
- High-frequency measurements (approximately every 30 minutes) from June 2015 to August 2016.
- Ten chemical elements studied (Table 1) \checkmark
- Table 1: Summary of the mean values, min and max of the chemical elements studied from the high frequency measurements

itom	Unit	Avenelles Catchment				\checkmark For each chemical element, the daily values of C_1
		Mean	Min	Max	100	and C_2 were calculated from June 2015 to August
magnesium	mg/L	8,58	2.98	11,46	80 -	80 2016.
potassium	mg/L	3,53	1.57	8,65	60 - ර	- 60
calcium	mg/L	118,55	56.51	168,04		\checkmark For the majority of chemical elements, C_1 is very
sodium	mg/L	13,10	2.79	26,53		stable, C_2 much more variable.
strontium	mg/L	0,35	0.17	0,57	5-06-12 5-07-31 5-07-31 5-07-31 6-02-14 5-11-07 6-08-31 1	
fluoride	mg/L	0,15	0.03	2,88	100	From these results it is envisaged:
sulfate	S mg/L	19,06	4.06	25,69	80 - · · · · · · · · · · · · · · · · · ·	80
nitrates	Nmg/L	11,85	3.08	18,36	60 - ර	\checkmark To find a single parameter of C_1 and C_2 that
chloride	mg/L	31,48	3.63	51,05		efficiently encompasses interactions between
phosphate	P mg/L	0,13	0,00	0,22	20 -	flows and concentrations.
rainfall	mm/30min	0,05	0,00	10,10		
flow	m³/s	0,33	0,05	12,20	2016 6 6 6 2	\checkmark To apply this method to medium and low-
 vve pre results 	related to	e only the the chic	ne calcul oride ions	ations and	the whole study period (from 06/12/2015 to 31/08/2010 for chlorides	6) frequency measurements
					Conclusions	Perspectives
				ΤΙ\/Λ	It is possible to identify two components to explain the	\checkmark Sensitivity analysis of parameters C_1 and C_2 to better
	\sim	Scho		> I I V A	variations in the concentration of the ten chemical	understand how they yary
		00110	narsnips and ure	ants by concyted	variations in the concentration of the ten chemical	understand now they vary.
					elements studied.	 Make seasonal study of C_1 and C_2 parameters.
			NCY	TEC		\checkmark Link C_1 , C_2 and flow descriptors.
		CONSEJ TECNOLOGÍ/	JO NACIONAL DE A E INNOVACIÓN	E CIENCIA, I TECNOLÓGICA		
ww.irstea.fr	•					

Figure 2: Calculation of Q_{base} (blue) from Q_{total} (red) using the BFI method for each month in the Avenelles catchment. Rain in black.

[1] Gustard A., Bullock A., Dixon J. (1992) Low-flow estimation in the United Kingdom. Institute of Hydrology.

Hours

Figure 3: a) Daily hydrograph showing flows (Q_{total} and Q_{base}) and observed concentration. b)Example of calculation of C_1 and C_2 for Chloride, from C_{obs} and Q_{ext} and Q_{total} using the linear regression method, for the date of 15/09/2015.

Thanks to the high frequency we can calculate values of C_1 and C_2 for each day.

