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Global warming is associated with increasingly widespread and frequent climate extremes. This

paper develops a dynamic stochastic multi-region model of consumption smoothing, storage, and

trade to investigate the buffering effect of agricultural markets in the context of climate extremes.

The theory provides new insights on the impact of household market transaction costs, borrowing

constraints and the spatiotemporal pattern of climate shocks. A large-scale empirical analysis of

market access, climate extremes, and food insecurity at quarterly subnational level in Sub-Saharan

Africa supports the theoretical predictions. Regions with shorter travel times to cities and ports

experience a smaller detrimental impact on food insecurity from severe and extreme dry conditions.

Trade and storage appear partly substitutes in buffering the food insecurity impacts of country-wide

and multi-year climate extremes.
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1 Introduction

Climate change alters the distribution of temperature and precipitation and thereby critically affects

agricultural production. Particularly extreme weather or climate events1 such as droughts or floods

can cause drastic harvest failures and severe food insecurity. Starting in 2020, an unprecedented

extreme, widespread, and multi-season drought in the Horn of Africa contributed to over 22 million

people in the region facing acute food insecurity2. Agricultural markets may buffer such impacts.

Climate extremes create spatiotemporal variation in food supply and food prices that may create

opportunities for trade (spatial arbitrage) and storage (temporal arbitrage). Evidence about the

effectiveness of agricultural markets in smoothing food consumption in the face of climate variability

remains however scarce. This research gap is particularly pertinent given that the Intergovernmental

Panel on Climate Change (IPCC) expects a widespread increase in the frequency and intensity of

extreme events under global warming (Seneviratne et al. 2021).

Sub-Saharan Africa is characterized by rainfed agriculture and highly variable climatic conditions.

Years of adequate rainfall and bumper harvests alternate with years of droughts, floods, and harvest

failures. This variation is reflected in countries’ trade and storage patterns. Figure 1 compares the

occurrence of exceptionally dry conditions with cereal imports and stock levels for three countries in

Sub-Saharan Africa. Ethiopia faced widespread dry conditions in 2011, 2015 and 2016, Kenya in 2009

and 2011, and Zambia in 2015. In Ethiopia and Kenya, the dry years coincided with elevated imports

of cereals from international markets. In Zambia, the drought year coincided with a depletion of

cereal stocks that had been build up during a bumper maize harvest in the previous agricultural

season (Chapoto et al. 2015). These observations raise the question whether such market responses

are effective in reducing the food insecurity impacts of extreme climate events.

The objective of this paper is to investigate, theoretically and empirically, under which conditions

trade and storage buffer the food insecurity impacts of climate extremes. In the first part of the

paper, we develop a dynamic stochastic small open economy model that combines consumption

smoothing with storage and trade. The economy consists of multiple regions, each facing climate-

driven variability in agricultural production. The representative household in each region is both

1The Intergovernmental Panel on Climate Change defines an extreme weather event as an event that is rare at a
specific location and time. When extreme weather lasts for some time (e.g., for one or multiple seasons), it can be
classified as an extreme climate event, in particular when the overall conditions themselves are extreme (IPCC 2018).
This study focuses on weather conditions that are unusually dry or wet over the time frame of at least 12 months,
bundled under the term ”climate extremes”.

2The drought in the Horn of Africa started with poor rainfall during the October-December 2020 season and
persisted with poor rains in all four subsequent seasons (FEWS NET, February 16, 2023).
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Figure 1: Dry climatic conditions, cereal imports, and stocks for three countries in Sub-Saharan
Africa. Share of country area under dry conditions based on the 12 month SPEI index (SPEI ≤
-1.5) from Peng et al. 2020. Cereal production volumes from FAOSTAT. International cereal import
volume from CEPII BACI (Gaulier and Zignago 2010), aggregating primary and secondary products
to primary equivalent. Stock-to-use ratio is the marketing year ending stock of cereals divided by
marketing year domestic consumption of cereals from the USDA PSD database.
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consumer and producer of food and may face market transaction costs and borrowing constraints.

Traders in each region respond to climate variability by engaging in spatial and temporal arbitrage.

Using numerical model simulations, two market-based channels of household consumption smoothing

are assessed: storage (via inter-temporal exchanges within a region) and trade (via intra- and inter-

temporal exchanges between regions). Households’ transaction costs limit both smoothing channels,

while borrowing constraints primarily affect smoothing through trade. The simulations lead to three

qualitative predictions: (1) for households that are isolated from markets, food consumption is more

responsive to local climate extremes; (2) for regions that are isolated from the world market, food

consumption is more responsive to local and national climate extremes; and (3) storage and trade

partly substitute one another in smoothing food consumption but the degree of substitutability

reduces when climate shocks are temporally correlated.

The theoretical model predicts under which economic and climatic conditions market-based food

consumption smoothing is likely to occur and under which conditions it is not. In the second part

of the paper we quantitatively investigate these predictions by studying the prevalence of food in-

security, which corresponds to a failure of food consumption smoothing. Empirical evidence from

12 African countries for 2009–2016 confirms that the spatiotemporal pattern of climate extremes

and the degree of market access both affect food insecurity. The analysis exploits exogenous vari-

ation in climatic conditions using panel data at the sub-annual (3 to 4-monthly time interval) and

subnational level (second administrative units). Consistent with the theoretical predictions, areas

where households face higher market transaction costs, approximated by longer travel times to the

closest large city, experience a larger negative food insecurity impact from extreme dry conditions.

Dry extremes also affect food insecurity to a larger extent in areas with longer travel times to ports

(a proxy for trade costs to the world market). International cereal imports and cereal stocks both

buffer food insecurity impacts of country-wide climate extremes. Lastly, the findings confirm that

trade and storage are partly substitutes, partly complements in buffering climate-driven variability.

The analysis controls for time-invariant unobserved regional characteristics, for general time trends,

and for time-varying variables that are potentially correlated with food insecurity and market access.

This paper contributes to the body of literature linking trade, agriculture, and climate, and in

specific to the literature on climate change adaptation through trade. Adaptation through trade can

be understood as the gains from trade due to climate-driven differences in the average agricultural

productivity across locations and commodities (Costinot et al. 2016; Gouel and Laborde 2021;
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Janssens et al. 2020; Stevanović et al. 2016), or as the gains from trade due to climate-driven

differences in the variability of agricultural productivity across locations and commodities (Allen

and Atkin 2022; Burgess and Donaldson 2017; Dingel et al. 2023; Dorosh, Dradri, et al. 2009;

Dorosh, Rashid, et al. 2016; Gouel, Gautam, et al. 2016; Gouel and Jean 2015; Haggblade et al.

2017; Porteous 2019; Reimer and Li 2009). Research on trade and adaptation has expanded in

terms of economic and climatic modelling complexity since the first studies in the 1990s (Randhir

and Hertel 2000; Reilly and Hohmann 1993; Rosenzweig and Parry 1994), but important gaps remain

in terms of the spatiotemporal scales of the structural frameworks adopted (Table S3).

On the spatial level, studies have primarily, with the exception of Porteous 2019, focused on

international trade or intra-national trade. Yet, changes in international prices affect regions within

a country differently depending on the level of domestic trade barriers (Atkin and Donaldson 2015;

Sotelo 2020). The most critical research gap relates, however, to the temporal scale. Very few

studies incorporate forward-looking dynamics, future yield uncertainty, or inter-temporal trade (i.e.,

storage). The rational expectations storage and trade model by Williams and Wright 1991 pio-

neered this literature. Williams and Wright 1991 study trade and storage flows in the presence of

weather variation in a partial equilibrium setting and show that the interaction between trade and

storage depends on the correlation between the weather of trade partners. Coleman 2009 relaxes

the assumption of instantaneous trade in the model of Williams and Wright 1991. By doing so, he

demonstrates that the joined management of weekly trade flows and stock levels explains temporary

localized price spikes in 19th century Chicago and New York corn markets. Gouel and Jean 2015 use

the rational expectations trade and storage model to investigate optimal trade and storage policies

for price stabilization in a small open developing country. In such a setting, when domestic prices

are linked to world market prices, storage policy on its own does not stabilize domestic prices in

the event of price spikes, but rather needs accompanying trade policies. Porteous 2019 develops a

deterministic model of monthly grain trade and storage for 230 markets across Sub-Saharan Africa,

focusing on intra-annual dynamics between harvest periods. He finds that when storage is not con-

sidered, trade costs and welfare effects are underestimated as the timing of trade is in that case not

correctly considered.

This paper relates also to the macro- and micro-economic literature on consumption smoothing.

At the macro level, Yang 2006 and Felbermayr and Gröschl 2013 study the role of international trade

in consumption smoothing in the context of a risk averse representative household and idiosyncratic
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country-level natural disasters. In the macro-economic storage literature, stockholding is mostly

linked to profit maximization by storage firms that are risk neutral (Gouel and Jean 2015; Larson

et al. 2014; Williams and Wright 1991) or risk averse (Lence and Hayes 1998; Netz 1995), and

not to consumption smoothing by risk averse households. An exception is the study of Arseneau

and Leduc 2013 that combines the rational expectations storage model with household consumption

smoothing. At the micro level, the consumption-saving model of Deaton 1991 has been widely used

to study consumption smoothing by risk averse households with uncertain agricultural incomes in

developing countries. Smoothing mechanisms include formal credit and insurance markets (Basu and

Wong 2015; Janzen and Carter 2019), informal insurance (Kazianga and Udry 2006), livestock asset

holdings (Carter and Lybbert 2012; Kazianga and Udry 2006), and on-farm grain stocks (Kazianga

and Udry 2006; Tesfaye and Gebremariam 2020; Waldman et al. 2020). While these macro- and

micro-models are recognized as structurally related (Gouel, Gautam, et al. 2016; Yang 2006), the

explicit connection between consumption smoothing, storage, and trade has not been studied.

The contribution of this paper is to link the rational expectations storage and trade model

with a consumption-saving household model for a small open economy with subnational regions.

The closest related study is Park 2006, who develops a model of inter-temporal household grain

management decisions in which the prices observed by the household are determined in a separate

independent market model. Other studies on trade, storage, and volatility do integrate consumption

decisions directly into the market model, but do not consider inter-temporal consumption preferences

(Allen and Atkin 2022; Gouel and Jean 2015), thereby overlooking the possibility of inter-temporal

exchanges within and between regions. By taking into account inter-temporal consumption prefer-

ences, this paper formally demonstrates consumption smoothing as a source of gains from (intra-

and inter-temporal) trade in the context of variability in local production.

Besides the structural contribution, this paper also adds to the limited empirical evidence on

markets and climate-driven food shortages and price spikes in developing countries. Burgess and

Donaldson 2010, 2017 investigate the expansion of railroad infrastructure in the colonial times in

India and find that the impact of rainfall shortages on famines significantly reduced after districts

open up to trade. In Ethiopia, natural disasters have been increasing in frequency since 1960 and,

while they have been affecting more people, the number of deaths per disaster is reducing (Rashid

et al. 2018). The reduced impact is attributed to a set of comprehensive policies, including market

liberalization, an effective food reserve agency, and infrastructure investments that enable private
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grain trade between deficit and surplus areas in times of crisis. Besides domestic markets, also

international markets have been shown to reduce price volatility. Using data from 1700 up to

2008, Jacks et al. 2011 find that world market integration is associated with lower commodity price

volatility. Chen and Villoria 2019 analyze maize markets of 27 net importing countries between

2000 and 2015 and conclude that international maize imports on average reduce monthly domestic

price variability. At the micro-level, food price stabilization is found to be welfare enhancing, but

with negative distributional impacts across households (Bellemare et al. 2013). This paper provides

new evidence on the impact of market access, trade, and storage in buffering the impact of climate

extremes on food insecurity in Sub-Saharan Africa.

The paper proceeds as follows. Section 2 introduces the model of consumption smoothing,

storage, and trade. Numerical simulations lead to three qualitative theoretical predictions that are

taken to the data. Section 3 documents the data sources, the estimation strategy, and the empirical

results. Section 4 discusses the findings in relation to the literature and section 5 concludes.

2 Theoretical framework

2.1 The model

In this section we develop a dynamic small open economy model of consumption smoothing, storage,

and trade in the context of stochastic agricultural production. The model features farm households

that consume and save, and traders that engage in intra- and inter-temporal price arbitrage. The

model focuses on households’ and traders’ marketing behavior in the face of climate shocks, and

simplifies the supply side by assuming a perfectly inelastic production.

Environment. We consider a small open economy with M subnational regions indexed m,n

and a discrete infinite time horizon t ∈ [0,+ inf]. Each region has an agricultural sector and an

outside sector (composite of services and manufacturing) producing an agricultural good (food) and

an outside good (indexed by d ∈ {ag, o}, respectively). The outside good production is assumed a

constant endowment, while agricultural production is represented as a stochastic endowment process

to reflect the impact of variability in climatic conditions. In each region there are two representative

agents, risk averse households and risk neutral traders. Food can be stored and traded subject to

household-level transaction costs and market-level storage and trade costs. The outside good is

assumed freely traded but not storable and its price is normalized to one. The uncertainty in future
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agricultural production caused by variable climatic conditions creates an incentive for households

to save and for traders to store3. Goods and financial assets can be exchanged both within the

economy and with the rest of the world W taking a fixed world price and interest rate as given4.

Household problem. The representative household in region m has a utility function defined over

consumption in each time period t5

Um = E0

[ ∞∑
t=0

βt ln(Qmt)

]
, (1)

with β = 1/(1 + δ) the discount factor and δ > 0 the rate of time preference parameter. Qmt

is a constant elasticity of substitution (CES) composite of food and the outside good: Qmt =

(αC
(σ−1)/σ
m,ag,t + C

(σ−1)/σ
m,o,t )σ/(σ−1) with α the preference parameter. The household maximises utility

by choosing in each period t how much to consume and how much to save or borrow subject to the

budget constraint

Xm,t+1 =Pm,o,t(Hm,o,t − Cm,o,t − τHH
m (qsmt + qpmt))

+ Pm,ag,t(Hm,ag,t − Cm,ag,t) + Φmt + (1 + r)Xmt,

(2)

and the household food balance

Cm,ag,t = Hm,ag,t − qsmt + qpmt, (3)

where Cmdt is the household consumption of good d; Hmdt is the endowment of good d; qsmt is the

quantity of food sold on the market; qpmt is the quantity of food purchased on the market; Pmdt is

the market price of good d; τHH
m > 0 is the transaction cost incurred by the household in market

exchanges of food; Φmt = Pm,ag,tSm,t−1−Pm,ag,tkSmt are the instantaneous storage profits accruing

to the household with Smt the storage of food from period t to period t+1 subject to the ad valorem

3We assume that storage is only done by traders and not by households, in contrast to Park 2006 who allows
for household level storage across cropping seasons. Empirical evidence from Sub-Saharan Africa indicates that
household storage, if it occurs, is limited to intra-annual storage between harvest cycles (Kaminski and Christiaensen
2014; Stephens and Barrett 2011; Tesfaye and Gebremariam 2020; Waldman et al. 2020). Looking at household survey
data from Malawi, Uganda and Tanzania, Kaminski and Christiaensen 2014 for example find that farmers sell between
84% and 91% of the marketed maize within three months after harvest. In Zambia, on-farm storage represents only
5.8% of total storage capacity and the largest share is owned by the government (50%), followed by private traders
(32.7%) and millers (11.7%) (The World Bank 2021).

4The assumption of a fixed non-random world market price limits the scope of the analysis to the impact of
domestic supply uncertainty on the behavior of households and traders.

5The intertemporal utility function Um =
∑tf

t=0[β
t ln(Cmt)] is a specific case of the constant relative risk aversion

utility function Um =
∑tf

t=0[β
tC1−η

mt (1− η−1)] with the rate of risk aversion, η, equal to 1.
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storage cost km > 1; Xmt are financial assets of the household at the start of period t6; and r is

the fixed interest rate. The endowment of the outside good Hm,o,t is constant while agricultural

production Hm,ag,t is a random variable with distribution N(µ, σ2). The household can either be a

net seller, a net buyer, or autarkic in each good. For market exchanges of food households face a

transaction cost τHH
m that is paid in terms of the outside good. Selling a quantity of food qsmt to

the market earns Pm,ag,t − τHH
m Pm,o,t, while purchasing a quantity of food qpmt from the market

costs Pm,ag,t + τHH
m Pm,o,t.

The solution of the intertemporal optimization problem can be derived with Pontryagin’s Max-

imum Principle (see Appendix). The optimal solution satisfies the conditions of optimal intra-

temporal household consumption allocation

α

(
Cm,ag,t

Cm,o,t

) 1
σ

=
Pm,o,t

Pm,ag,t − τHH
m Pm,o,t

if qsmt > 0 and qpmt = 0,

α

(
Cm,ag,t

Cm,o,t

) 1
σ

=
Pm,o,t

Pm,ag,t + τHH
m Pm,o,t

if qsmt = 0 and qpmt > 0,

(4)

or

α

(
Cm,ag,t

Cm,o,t

) 1
σ

=
Pm,o,t

P ′
m,ag,t

, (5)

with P ′
m,ag,t the household shadow price of food, Pm,ag,t − τHH

m Pm,o,t ≤ P ′
m,ag,t ≤ Pm,ag,t +

τHH
m Pm,o,t, and the Euler equations determining optimal inter-temporal household consumption

allocation

Q
σ−1
σ

mt C
1
σ
m,ag,tP

′
m,ag,t =

1

(1 + r)β
Et

[
Q

σ−1
σ

m,t+tC
1
σ
m,ag,t+1P

′
m,ag,t+1

]
, (6)

Q
σ−1
σ

mt C
1
σ
m,o,tPm,o,t =

1

(1 + r)β
Et

[
Q

σ−1
σ

m,t+tC
1
σ
m,o,t+1Pm,o,t+1

]
. (7)

In an optimal allocation, the marginal utility of consuming one unit of food (outside good) today

equals the discounted expected marginal utility of consuming one unit of food (outside good) in

the next period. We define Ξm,t,t+1 = β(Q
(σ−1)/σ
mt C

1/σ
m,o,tPm,o,t)(Q

(σ−1)/σ
m,t+t C

1/σ
m,o,t+1Pm,o,t+1)

−1 as the

stochastic discount factor.

6We allow households to both borrow and save, with Xmt < 0 in case of borrowing. In the simulations we test the
implications of a strict borrowing constraint in which case Xmt is constrained to be strictly positive.
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Accumulation of debt is prevented by the transversality condition

lim
j→∞

Et

[
Xm,t+j

(1 + r)j

]
= 0. (8)

Trade and storage firms. Traders operate in a competitive environment and decide in each period

t how much of the available supply in region m to store (Smt), to export to other markets (exports

Tmnt), or to import from other markets (imports Tnmt) in order to maximize inter-temporal profits

max
Smt,Tmnt,Tnmt

Et

[ ∞∑
t=s

Ξm,t,t+1 ∗ (Pm,ag,tSm,t−1 − Pm,ag,tkSmt

+
∑
n

(Pn,ag,t − τmnPm,ag,t)Tmnt +
∑
n

(Pm,ag,t − τnmPn,ag,t)Tnmt)

]
,

(9)

subject to the non-negativity constraint for storage

Smt ≥ 0, (10)

with km > 1 the ad valorem storage cost, τmn > 1 the ad valorem trade costs for trading food from

origin market m to destination market n7, and Ξm,t,t+1 the stochastic discount factor determined in

equilibrium by the household optimal consumption-saving decision. The optimization leads to the

following temporal and spatial no-arbitrage conditions

Pm,ag,tkm ≥ Et[Ξm,t,t+1Pm,ag,t+1] with equality if Smt > 0,

Pm,ag,tτmn ≥ Pn,ag,t with equality if Tmnt > 0,

Pn,ag,tτnm ≥ Pm,ag,t with equality if Tnmt > 0.

(11)

Market clearing. In each region m market clearing requires that food consumption equals agri-

cultural production plus carry-in stock and imports minus carry-out stock and exports. For the

outside good, consumption equals local production minus net trade (NTmt with NTmt > 0 for net

exports and NTmt < 0 for net imports) and the quantity required to cover the transaction costs

Cm,ag,t = Hm,ag,t + Smt−1 − kSmt −
∑
n

(τmnTmnt − Tnmt), (12)

7The standard approach in agricultural storage and trade models is to work with additive storage and trade costs
(e.g., Porteous 2019). Here we use ad valorem costs to simplify the numerical simulations.
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Cm,o,t = Hm,o,t −NTmt − τHH
m (qsmt + qpmt). (13)

Equilibrium. A competitive equilibrium is defined as the set of prices Pmdt, and consumption

Cmdt, storage Smt, and trade Tmnt quantities that satisfy optimality conditions 4, 7, and 11; the

household good balance 3; the market clearing conditions 12 and 13; the transition equation 2; and

the transversality condition 8.

2.2 Qualitative model predictions

A well-known feature of stochastic trade and storage models with rational expectations is the inability

to derive a closed-form solution and thus the need for numerical approximation (Gouel 2013). The

complexity of the numerical problem grows exponentially with the number of markets considered.

The dimensionality of the models is therefore in practice often constrained to two markets and one

commodity. One strategy to solve for more dimensions is to have agents assume no uncertainty

in future agricultural production (e.g., Porteous 2019). Another strategy is to use a finite-period

approximation. Here, we convert the infinite-horizon problem into a moving series of three-period

problems. The finite-period approximation reduces some of the incentive for saving and storage (see

Appendix), but allows to solve the model for multiple markets whilst still considering the impact of

uncertainty on agents’ behavior. We can thus study the impact of local market access relative to

other regions’ market access as well as the impact of both local shocks and shocks in other markets.

The default parameter values used for the model quantification are presented in Table 1. The

simulations are run for a hypothetical country consisting of four regions (A, B, C, and D) that

can trade with one another and with the world market. The four regions are identical except for

household market transaction costs τHH
m and trade costs to the world market τmW . Agricultural

production varies according to a normal distribution with mean 10 and variance 2.5. Regions are

self-sufficient when agricultural production is at the mean. We run counterfactual simulations that

vary in terms of the spatial and temporal correlation of agricultural production shocks and the level

of storage and trade costs.

We start by illustrating the market-based consumption smoothing mechanisms using a simulation

of idiosyncratic agricultural production shocks shown in Figure 28. Agricultural production is in each

region and in each time period an independent random draw from the distribution. When a region

8We focus the discussion in this section on food consumption smoothing rather than welfare in order to create a
link with the empirical analysis on food insecurity (which corresponds to a failure of food consumption smoothing).
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Table 1: Model parameterization.

Parameter Economic interpretation Value

σ elasticity of substitution 0.5
α expenditure share 0.5
δ rate of time preference 0.05
β discount factor 0.95
r interest rate 0.05
τHH
m household transaction cost m ∈ {A,C} : 1.05

m ∈ {B,D} : 1.01
km storage cost m ∈ {A,B,C,D} : 1.05
τmn intra-national trade cost m,n /∈ W : τmn = 1.2

international trade cost m ∈ {A,B} : τmW = 1.4
m ∈ {C,D} : τmW = 1.2

Hm,ag,t agricultural production N(10, 2.5)
Hm,o,t outside good production 10
Pm,o,t price of outside good (numeraire) 1
PW,ag,t world price of food PW,ag,t0 = 1

PW,ag,t1 = 1.05
PW,ag,t2 = 1.1025

experiences a negative shock, traders can compensate the reduction in local supply by depleting

stocks, importing from other regions with more favorable climatic conditions, or importing from the

world market. In order to pay for market purchases of food, households may reduce expenditure

on the outside good, sell assets, or borrow. In period 4 in Figure 2 region B experiences a negative

production shock of -29% and imports food from regions that experience positive production shocks

(A and D). To pay for imports, the household in region B borrows (net asset position drops below

zero) and reduces expenditure on the outside good (exports of the outside good increase). When

a region experiences a positive shock, traders can absorb the increased local supply by building up

stocks, exporting food to other regions, or exporting to the world market. The household can save

the additional income from market sales or spend it on the outside good. In period 15, region B

experiences a positive production shock of +30%, which leads to the build up local stocks and exports

to regions A and C. The household in region B invests in storage, saves (net asset position rises above

zero), and increases expenditure on the outside good (imports of the outside good increase).

The example illustrates that trade-based consumption smoothing occurs via two channels: the

intra-temporal exchange of goods and the inter-temporal exchange of assets between regions. The

latter is constrained by the expectation that there will be no trade deficits or surpluses in the final

period (i.e., the household’s net asset position is expected to be zero in the final period). In contrast
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Figure 2: Simulation results under idiosyncratic agricultural production shock for 20 time periods.
Results with borrowing constraint in Figure S2 in Appendix.
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with the trade-based channel, storage-based consumption smoothing occurs via the inter-temporal

transfer of assets between agents (the household and the storage firm) within a region. In a period

with build up of stock, the household invests in storage, while in a period of stock utilization, the

household receives the return of its investment.

Impact of market access. Table 2 presents the estimated responsiveness of food consumption to

agricultural production under different parameterizations of the model. In the case of idiosyncratic

shocks (columns 1–2), agricultural production is for each region and in each period a random draw.

Shocks can be smoothed through domestic trade with other regions, storage, or trade with the world

market. In the case of covariate shocks (columns 3–4), agricultural production is still a random

draw in each period, but is the same for all four regions. Under the covariate shock, market-based

smoothing is therefore limited to storage and trade with the world market. Comparing the results

between the individual regions, which face different transaction costs (A and C high, B and D low)

and trade costs with the world market (A and B high, C and D low), provides insights on the impact

of market access. First, the responsiveness of food consumption to local production is significantly

larger when household market transaction costs are high (column 1: the coefficient on production H

is larger for regions A and C than for regions B and D). This remains the case when all regions are

facing the same shock (column 3). Second, food consumption is also affected by shocks occurring

in other regions and the magnitude of the effect depends on access to world markets. The impact

of production shocks in other regions is significantly lower when both household transaction costs

and trade costs to the world market are low (column 1: the coefficient on Hother is larger for

regions A, B and C than for region D). A region well connected to international markets will be

less sensitive to shocks occuring in other regions within the country. Third, the impact of a higher

level of storage costs (columns 2 and 4) is larger under covariate shocks than under idiosyncratic

shocks (the difference in coefficient H from column 3 to 4 is larger than from column 1 to 2). Storage

becomes a more important mechanism for consumption smoothing when shocks are correlated across

regions as one of the alternative smoothing mechanisms, domestic trade, becomes unavailable. In

addition, the impact of trade costs to the world market becomes larger under high storage cost levels

(column 4: larger difference between regions A and B on the one hand, and regions C and D on the

other hand). These results suggest an interaction between storage and trade that we explore next.

The interaction of storage and trade. We investigate the interaction between storage and in-

ternational trade based on simulations of covariate production shocks (thus leaving out domestic

14



Table 2: Linear regression of food consumption to agricultural production (H)

Dependent variable:

Food consumption

idiosyncratic idiosyncratic (k = 0.25) covariate covariate (k = 0.25)
(1) (2) (3) (4)

Region A 1.278∗∗∗ −0.007 2.434∗∗∗ 0.638∗∗∗

(0.425) (0.363) (0.293) (0.163)

Region B 2.855∗∗∗ 1.257∗∗∗ 3.531∗∗∗ 1.164∗∗∗

(0.425) (0.363) (0.293) (0.163)

Region C 1.802∗∗∗ 0.561 3.182∗∗∗ 2.204∗∗∗

(0.425) (0.363) (0.293) (0.163)

Region D 3.743∗∗∗ 2.172∗∗∗ 4.388∗∗∗ 2.933∗∗∗

(0.425) (0.363) (0.293) (0.163)

H 0.663∗∗∗ 0.706∗∗∗ 0.755∗∗∗ 0.938∗∗∗

(0.018) (0.015) (0.029) (0.016)

H x Region B −0.087∗∗∗ −0.069∗∗∗ −0.112∗∗∗ −0.054∗∗

(0.025) (0.021) (0.041) (0.023)

H x Region C −0.023 −0.019 −0.072∗ −0.159∗∗∗

(0.025) (0.021) (0.041) (0.023)

H x Region D −0.141∗∗∗ −0.125∗∗∗ −0.194∗∗∗ −0.234∗∗∗

(0.025) (0.021) (0.041) (0.023)

H other 0.207∗∗∗ 0.294∗∗∗

(0.035) (0.030)

H other x Region B −0.077 −0.064
(0.050) (0.042)

H other x Region C −0.029 −0.038
(0.050) (0.042)

H other x Region D −0.113∗∗ −0.099∗∗

(0.050) (0.042)

Observations 320 320 320 320
R2 1.000 1.000 0.998 0.999

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Region A is the base category. Standard errors in parentheses.
Based on a simulation of 80 periods for each parameterization.
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trade). We run simulations at different storage and trade cost levels assuming that all regions face

the same storage and trade cost levels9. Figure 3 plots the smoothing ratio of food consumption,

which takes a value between 0 and 1 with 0 indicating zero smoothing and 1 perfect smoothing. The

smoothing ratio increases as storage or trade cost levels reduce. The gain from reducing storage

costs is large at high trade cost levels but small at low trade cost levels. Similarly, the gain from

reducing trade costs is large at high storage cost levels but small at low storage cost levels. This

implies that storage and trade can partly substitute one another in smoothing food consumption.

Storage and trade are however not perfect substitutes and also partly complement one another. The

smoothing ratio achieved by the combination of low levels of both costs is larger than that achieved

by any of the two separately.

Table 3 estimates the unit change in the smoothing ratio for a unit change in storage cost,

trade cost, or both. The degree of substitutability between storage and trade corresponds to the

interaction effect between the storage and trade cost. The negative interaction effect indicates that

the additional effect of reducing trade costs is smaller at low storage cost levels than at high storage

cost levels. When agricultural production shocks are temporally correlated, the magnitude of the

interaction effect reduces (column 2). In the event of temporally correlated climate shocks, trade

and storage are thus less substitutable. Storage becomes less effective at smoothing consumption

when shocks persist for multiple time periods as stocks will become saturated in the case of recurring

positive shocks and run out in the case of recurring negative shocks. International trade is not as

much affected because recurring domestic shocks do not affect the availability of imports from foreign

markets or the capacity of foreign markets to absorb the domestic surplus. When households face

strict borrowing constraints, international trade becomes less effective at smoothing shocks (column

3). Part of the flexibility of trade lies in the possibility to buffer domestic shortages by running

temporary trade deficits. Under strict borrowing constraints, trade deficits are not possible and

imports of food can only be financed by exports of the outside good in the same period or by a trade

surplus that was build up in previous periods. Storage is less affected by borrowing constraints as it

works as an a priori investment and therefore does not require households to borrow. The interaction

effect reduces in magnitude (column 3 vs. column 1), which indicates that storage and trade are

less substitutable in the face of borrowing constraints. The difference is, however, less pronounced

9The heterogeneity between the four regions is reduced in order to unambiguously identify the implication of
different levels of trade and storage costs. The four regions remain different in terms of household transaction costs.
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than in the case of temporal correlation in climate shocks (column 2 vs. column 1).

Table 3: Linear regression of smoothing ratio to storage and trade costs with the world market

Dependent variable:

Smoothing ratio

default temp. correlated borrowing constraint
(1) (2) (3)

storage cost −0.695∗∗∗ −0.506∗∗∗ −0.662∗∗∗

(0.059) (0.048) (0.048)

trade cost −0.841∗∗∗ −0.879∗∗∗ −0.743∗∗∗

(0.059) (0.048) (0.048)

storage x trade cost −2.188∗∗∗ −1.343∗∗∗ −2.070∗∗∗

(0.514) (0.415) (0.416)

Constant 0.282∗∗∗ 0.253∗∗∗ 0.273∗∗∗

(0.007) (0.005) (0.005)

Observations 64 64 64
R2 0.857 0.886 0.885

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Run for 64 different combinations of trade and storage costs

For each combination, the smoothing ratio is calculated based
on a simulation of 50 time periods. For temporal correlation,

each shock persists for two periods (i.e., 100 periods).
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Figure 3: Food consumption smoothing ratio (smoothing ratio = 1 − CVconsumption/CVproduction)
under covariate agricultural production shocks for different combinations of storage costs and trade
costs with the world market. For each storage and trade cost combination the smoothing ratio is
calculated based on a simulation of 50 time periods. Results for temporal correlation in climate
shocks and borrowing constraints in Figure S3 in Appendix.
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Based on the results in Tables 2 and 3, we derive three predictions that we take to the data:

• Prediction 1 (household transaction cost, τHH): When households are isolated from the mar-

ket, food consumption is more responsive to local climate extremes.

• Prediction 2 (trade cost, τmW ): When a region is isolated from the world market, food con-

sumption is more responsive to local and national climate extremes.

• Prediction 3 (storage versus trade): Storage and trade partly substitute one another in smooth-

ing food consumption. The degree of substitutability reduces when climate shocks are tempo-

rally correlated.

In the following section we empirically investigate predictions 1, 2, and 3 using data on food insecu-

rity, climate extremes, and market access in Sub-Saharan Africa.

3 Empirical evidence

3.1 Data sources and summary statistics

We combine economic, climatic, and agro-ecological data from multiple sources for our empirical

analysis. Data on food insecurity, climate extremes, and travel times is composed at sub-annual

temporal (3-month or 4-month interval) and subnational spatial (second administrative unit10) res-

olution, supplemented with annual country-level economic indicators. The composed panel dataset

is fully balanced and covers 12 African countries (Burkina Faso, Chad, Ethiopia, Kenya, Mali, Mau-

ritania, Mozambique, Malawi, Niger, Nigeria, Somalia and Zambia), 1,400 second administrative

units, and 29 time periods from 2009 to 2016. Table 4 presents the summary statistics of the main

variables of interest.

Food insecurity.—We use information on food insecurity from the Famine Early Warning Systems

Network (FEWS NET) food security assessment which is recorded at 3-month or 4-month intervals

(FEWSNET 2018). FEWS NET classifies current and future expected food insecurity using the

IPC 2.0 Acute Food Insecurity scale since March 2011 (prior to that a similar scale, i.e. the FEWS

10Second administrative units are defined based on the GADM version 3.6 database. Although the size of the
administrative units differs across countries, it ensures a more equal spread in terms of population size compared a
uniform grid. For the countries in our sample, the coefficient of variation of population size in 2010 is 4.43 when
using 30 arc-minute grids as spatial unit (mean = 194,842 people, sd = 862,537 people) and 2.06 when using second
administrative unit as spatial unit (mean = 171,787 people, sd = 354,250 people).
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NET Food Insecurity Severity Scale, was used). We use the classification of current food insecurity,

which is based on observed food security conditions (e.g., food prices, wage levels, labor demand),

household level outcomes (food consumption, livelihood change), and nutrition and mortality data.

Food insecurity is measured with a 5-point scale (1: no acute food insecurity, 2: moderately food

insecure, 3: highly food insecure, 4: extremely food insecure, 5: famine) and recorded at the spatial

unit of livelihood zones, of which the boundaries vary over time. To facilitate multi-year analysis,

Backer and Billing 2021 process the FEWS NET food security data to a standardized uniform spatial

resolution of 0.5° x 0.5° grid-cells. We aggregate the grid-cell data from Backer and Billing 2021 to

second administrative units by taking the maximum value of the food insecurity scale within each

unit. We then convert the 5-point scale to a dummy variable (0, “food secure”, if FEWS NET score

= 1 and 1, “food insecure”, if FEWS NET score > 1)11, resulting in a prevalence of food insecurity

of 29.7% in our sample (Table 4).

Climate extremes.— We measure climate extremes using the Standardized Precipitation - Evap-

otranspiration Index (SPEI) pan-African dataset from Peng et al. 2020 available at high spatial

resolution (5 x 5 km) in monthly intervals. The SPEI index indicates whether climatic conditions

are moderately, severely, or extremely wet or dry for a certain time period. We use the 12 month

SPEI index which reflects for each month the accumulated water balance of that month and the

preceding 11 months12. For each administrative unit, we calculate the share of area affected by

severely wet (2 > SPEI ≥ 1.5), extremely wet (SPEI ≥ 2), severely dry (−2 < SPEI ≤ −1.5) or

extremely dry (SPEI ≤ −2) conditions as well as the share of the area in the rest of the country

that is affected by climate extremes.

Trade flows.—We compile country level trade flows of the main cereals (i.e., the sum of maize,

wheat, rice, barley, sorghum, and millet trade) from CEPII’s BACI data base (Gaulier and Zignago

2010). We focus on the volume of cereal imports from outside Africa13 and calculate a trade response

11We do not use the 5-point scale directly as the prevalence of the highest food insecurity scores 3, 4, 5 in the sample
is too low to allow for the identification of heterogeneous effects. We test the robustness of the findings to alternative
specifications of the dependent variable: food insecure = 0 when FEWS NET score ∈ 1 and food insecure = 1 when
FEWS NET score ∈ 3, 4, 5 (observations with score 2 are dropped); or food insecure = 0 when FEWS NET score =
1 and food insecure = 1 when FEWS NET score = 2 (observations with score ∈ 3, 4, 5 are dropped) (Tables S7 and
S6).

12The water balance is the difference between precipitation and potential evapotranspiration. The 12 month SPEI
index reflects persistent dry or wet conditions over a prolonged period of 12 months and does not capture short-term
extreme conditions, which may or may not affect food production depending on the agricultural growing season of the
location. Taking account of the seasonal cropping calendars of every location and crop lies beyond the scope of this
study. We use the 12 month SPEI index such that climatic conditions in the previous growing season are captured
for all administrative units, irrespective of the precise timing of the location’s growing season. As a result we may be
underestimating the impact of climate extremes on food insecurity.

13We focus on extra-African rather than intra-African trade as there is substantial informal cross-border trade in
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indicator as the difference between a certain year’s cereal imports and cereal imports from the

previous year, relative to previous year’s imports.

Trade costs.—There is no comprehensive dataset on transaction and trade costs available at

subnational level for the sample. We therefore use data on travel times to cities and ports in the

year 2015 from Nelson et al. 2019 as a proxy for market transaction costs and trade costs to the

world market respectively. We use travel time to the closest city of 100,000 - 200,000 inhabitants

and to the closest large port and aggregate these from the grid-cell (approx. 1 x 1 km) to the second

administrative level using the grid-cell area as weight.

Stocks.—We use data on national stock levels of cereals (maize, rice, barley, millet, sorghum,

and wheat) from the Production, Supply and Distribution (PSD) database of USDA. The database

covers public and private stock-holding. We compile the stock-to-use ratio (SUR) for cereals as the

ratio of the ending stock summed over all cereals over domestic consumption summed over all cereals

in each marketing year.

GDP per capita & population.—Data on GDP per capita is taken from Un Statistics Division,

measured in 2015 USD. Information on population density (number of people per km2) is taken from

GPW UN WPP-Adjusted Population Density, v4.11. We aggregate the data from 30 min (approx.

55 x 55 km) to the second administrative level using grid-cell area as weight. The data is available

in 5 year intervals (2005, 2010, 2015, 2020). Population density for the years in between is linearly

interpolated.

Agricultural employment.—We use information from ILOSTAT on the share of agricultural em-

ployment in total employment in urban areas and rural areas at the country level. We multiply this

with the share of people living in rural versus urban areas in each second administrative unit to

obtain an estimate of the share of agricultural employment in total employment at second adminis-

trative unit. Rural and urban areas are differentiated based on the population density data using a

cutoff of 300 people per km2 for urban areas14.

Conflict intensity.—We use information on the occurrence of lethal conflicts from the UCDP

Georeferenced Event Dataset (GED) Global version 21.1 (Pettersson et al. 2021; Sundberg and

Melander 2013). Violent events are recorded at village level with georeferenced coordinates and

daily resolution. We take the sum of the number of causalities within each month-year and each

Africa (Mitaritonna 2016) such that estimates of intra-African trade using the official statistics are likely biased.
14The cutoff of 300 people per km2 is based on the Degree of Urbanization method from the UN Statistical

Commission.
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second administrative level. We then create an indicator of conflict intensity based on the number

of causalities (0: no deaths, 1: minor conflict (25 - 999 deaths), 2: war (≥1000 deaths)).

Agro-Ecological Zone (AEZ).—Information on agro-ecological characteristics is taken from the

Agro-Ecological Zones for Africa South of the Sahara database from IFPRI (HarvestChoice 2015).

We use the 5-class classification scheme, which identifies Humid, Sub-Humid, Semi-Arid, Arid,

Tropical Highlands and Sub-Tropical zones. We aggregate the data from grid-cell (approx. 10 x

10km) to second administrative unit by calculating the share of area covered by each AEZ class and

allocating to each administrative unit the class with the largest coverage15.

Table 4: Summary statistics: 12 countries in Sub-Saharan Africa, 2009 - 2016

Full sample Selected AEZs
mean sd mean sd

Food insecurity (yes = 1, no = 0) 0.297 0.457 0.296 0.457
Share adm2 area dry 0.053 0.197 0.053 0.199
Share country area dry 0.051 0.095 0.050 0.093
Share adm2 area wet 0.068 0.216 0.056 0.195
Share country area wet 0.056 0.076 0.054 0.073
Travel time to city of 100k-200k in 2015 (minutes) 235.781 546.292 215.123 400.785
Travel time to large port in 2015 (minutes) 909.793 652.792 860.842 688.477
Cereals stock-to-use ratio (y-1) 0.087 0.082 0.077 0.073
International cereal imports (rel. diff. with y-1) 0.048 0.333 0.041 0.290

Observations 40600 31552

Selected AEZs are Arid, Semi-Arid and Sub-Humid areas.

3.2 Estimation strategy

Panel methods are widely used to examine the impact of climatic conditions on economic outcomes

given their strong identification properties (Dell et al. 2014). Here, we exploit exogenous variation

over time in the occurrence of climate extremes within each administrative unit. The following fixed

effects linear probability model is estimated to explore the link between climate extremes and food

15With this method only two administrative units in our sample are identified as sub-tropical (Bir Moghrein in
Mauritania and Tibesti in Chad). We reclassify these units as arid zone, which is the zone with the second largest
coverage in those administrative units, to create a balanced set of different AEZ groups.
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insecurity16 (empirical model 1, EM1)

FSimy =β1CEadm2
imy + β2CEcountry

imy + β3CEnb countries
cmy

+ β4CEadm2
imy ∗AEZi + β5CEcountry

imy ∗AEZc + γ1C
1
imy + γ2C

2
cy

+ µi + µmy + ϵimy,

(14)

with FSimy a dummy variable indicating whether the second administrative unit i in country c was

identified as food insecure by FEWS NET in month m of year y (1 = yes, 0 = no). The variable

CEadm2
imy (Climate Extreme) indicates the share of the area within the second administrative unit

that experienced severely wet or dry (2 > SPEI > 1.5 or -2 < SPEI < -1.5) or extremely wet or

dry (SPEI > 2 or SPEI < -2) conditions in the last 12 months. To limit the number of variables,

we pool extreme and severe conditions, but differentiate between wet and dry conditions17. The

variable CEcountry
imy indicates the share of the country area (excluding administrative unit i) that

was affected by severe or extreme conditions in the last 12 months, while CEnb countries
cmy indicates

the share of the neighboring countries’ area affected by severe or extreme conditions in the last

12 months. We investigate the heterogeneity in the impact of climate extremes in terms of the

baseline climatic and agricultural conditions. AEZi represents the agro-ecological zone of unit i

(Arid, Semi-Arid, Humid, Sub-Humid, Tropical Highlands). AEZc is a dummy indicator with value

1 if the majority of country c’s area is located in arid or semi-arid zones (i.e., Burkina Faso, Djibouti,

Mali, Mauritania, Niger, and Chad). Administrative unit (µi) and time (µmy) fixed effects control

for time invariant administrative unit-specific characteristics and global time trends that influence

food insecurity. Time-varying variables that influence food insecurity are included to control for

residual variation. At the administrative level (C1
imy) we include population density (iy), share of

agricultural employment in total employment (iy), and conflict intensity (imy), while at the country

level GDP per capita is added as a control variable (C2
cy). Conflict intensity is aggregated to the first

administrative level and indicates the occurrence of violent conflict in the last 12 months in order

to account for temporal and spatial spillovers (Harari and Ferrara 2018). These variables have been

shown to determine country-level food security (Dithmer and Abdulai 2017), but may be endogenous

16An alternative approach to the fixed effects linear probability model would be to estimate a fixed effects logit
model. However, such a model would drop all observations that are never or always food insecure. This would
ignore cases where climate extremes do not lead to food insecurity, possibly due to access to domestic or international
markets.

17Results that disentangle severe versus extreme conditions are reported in Table S4 in Appendix.
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to weather and climate variation (Barrios et al. 2010; Branco and Féres 2020; Harari and Ferrara

2018) and may create an ”over-controlling” problem (Dell et al. 2014). For agricultural employment

and GDP per capita, we therefore use the annual lag of the variable. For conflict intensity, we

keep the current value in order to control for potential interactions between conflicts and climate

extremes (Maystadt and Ecker 2014), and between conflicts and market access (e.g., conflict-related

food aid not reaching remote areas), which could bias our estimated interaction between climate

extremes and market access. The models are estimated using OLS with standard errors clustered

at the second administrative unit level.

To test the theoretical predictions 1 and 2, we assess whether climate extremes affect food

insecurity differently depending on the level of local and international market access. We estimate

the following model using OLS (EM2)

FSimy =β1CEadm2
imy + β2CEcountry

imy + β3CEadm2
imy ∗ CEcountry

imy + β4CEnb countries
cmy

+ (β5CEadm2
imy + β6CEcountry

imy + β7CEadm2
imy ∗ CEcountry

imy ) ∗ TT city
i

+ (β8CEadm2
imy + β9CEcountry

imy + β10CEadm2
imy ∗ CEcountry

imy ) ∗ TT port
i

+ γ1C
1
imy + γ2C

2
cy + µi + µmy + ϵimy,

(15)

with TT city
i the average travel time to the closest large city (100k-200k inhabitants18) and TT port

i the

average travel time to the closest large port. The former is a proxy for the transaction costs faced by

households in market purchases or sales (corresponding to parameter τHH
m in the theoretical model),

while the latter is a proxy for a region’s access to overseas international markets (corresponding to

parameter τmW in the theoretical model). The travel times are centered at the country mean such

that we measure market access relative to other regions within a country. From prediction 1 we

expect that β5 is positive and significant, while from prediction 2 we expect that β8 and β9 are both

positive and significant.

To investigate prediction 3 on the substitutability of storage and trade, we test whether storage

and trade both buffer the food insecurity impacts of country-wide climate extremes, and whether

18Results with an alternative city size threshold of 50k-100k or 200k-500k inhabitants are shown in Table S5 in the
Appendix.
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there is any interaction between the two using the following specification (EM3)

FSimy =β1CEadm2
imy + β2CEcountry

imy + β3CEadm2
imy ∗ CEcountry

imy + β4CEnb countries
cmy

+ (β5 + β6CEadm2
imy + β7CEcountry

imy + β8CEadm2
imy ∗ CEcountry

imy ) ∗ Itradecy

+ (β9 + β10CEadm2
imy + β11CEcountry

imy + β12CEadm2
imy ∗ CEcountry

imy ) ∗ Istoragec,y−1

+ (β13 + β14CEadm2
imy + β15CEcountry

imy + β16CEadm2
imy ∗ CEcountry

imy ) ∗ Itradecy ∗ Istoragec,y−1

+ γ1C
1
imy + γ2C

2
cy + µi + µmy + ϵimy,

(16)

with Itradecy a measure of international cereal import response, measured as the relative difference

in imports with respect to the preceding year, and Istoragec,y−1 the previous year’s stock-to-use-ratio

of cereals. We expect that β6, β7, β8, β10, β11, and β12 are negative, that is, the impact of local

and national climate extremes on food insecurity is buffered when a country increases international

imports or when stocks are available. We are further interested in the interaction effects between

climate extremes, trade, and storage (β14, β15, and β16). When these β’s are not significantly

different from zero, it indicates that trade and storage perfectly complement one another in buffering

the impact of climate extremes. When the β’s are significantly positive, it indicates that trade and

storage partly substitute one another. Lastly, negative β’s would suggests a positive synergy between

trade and storage19.

Lastly, we check whether storage and trade can buffer multi-year climate extremes using the

following specification (EM4)

FSimy =β1CEadm2
imy + β2CEcountry

imy + β3CEnb countries
cmy

+ β4CEadm2
im,y−1 + β5CEadm2

imy ∗ CEadm2
im,y−1

+ (β6 + β7CEadm2
imy + β8CEadm2

im,y−1 + β9CEadm2
imy ∗ CEadm2

im,y−1) ∗ Itradec,y−1

+ (β10 + β11CEadm2
imy + β12CEadm2

im,y−1 + β13CEadm2
imy ∗ CEadm2

im,y−1) ∗ I
storage
c,y−2

+ (β14 + β15CEadm2
imy + β16CEadm2

im,y−1 + β17CEadm2
imy ∗ CEadm2

im,y−1) ∗ Itradec,y−1 ∗ I
storage
c,y−2

+ γ1C
1
imy + γ2C

2
cy + µi + µmy + ϵimy,

(17)

19Our inter-annual model does not predict a positive synergy between trade and storage. In contrast, by looking
at a weekly time interval, Coleman 2009 identifies a positive interaction between storage and trade driven by the fact
that trade does not occur instantaneously but takes a certain amount of time to arrive at the destination location.
In some countries, the recommended level of public grain stocks is the level that allows to bridge the waiting time
for the arrival of imports. For example, in Ethiopia the recommended level is 407 kt to satisfy 4 months of cereal
consumption (Rashid et al. 2018), while in Zambia the recommended level is 300 - 400 kt to satisfy 3 months maize
consumption (The World Bank 2021).
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with CEadm2
im,y−1 the share of the area within the administrative unit that experienced severely or

extremely dry or wet conditions not in the last 12 months, but in the 12 months preceding those.

Similarly, Itradec,y−1 and Istoragec,y−2 are the lagged variables of Itradecy and Istoragec,y−1 , respectively. For the coef-

ficients β7 to β9 and β11 to β13 a negative value indicates a buffering role of storage and international

trade, respectively. Similar as in the previous empirical model, the interaction effects (β15, β16, and

β17) indicate to which extent trade and storage act as substitutes or complements in buffering the

impact of multi-year climate extremes.

3.3 Results

Climate extremes and food insecurity.—The results from the estimation of model EM1 are presented

in Table 5. We find significant differences in the impact of climate extremes on food insecurity across

agro-ecological zones. In arid areas, dry conditions increase the risk of food insecurity, while wet

conditions reduce food insecurity. For humid areas the opposite pattern is observed: dry conditions

reduce food insecurity and wet conditions increase food insecurity. Semi-arid areas are negatively

affected by severe or extreme dry conditions, while sub-humid areas are negatively affected by

severe or extreme wet conditions. These patterns are mimicked at the country level. Country-

wide dry conditions increase food insecurity to a larger extent in arid countries than in non-arid

countries. For a 10 percentage points increase in the country area affected by severe or extreme dry

conditions, the likelihood to be food insecure increases with 9.6 percentage points in arid versus 2.1

percentage points in non-arid countries. Severe or extreme wet conditions reduce food insecurity

in arid countries, while they increase food insecurity in non-arid countries. Violent conflicts and

population growth are correlated with a higher likelihood of a region to be food insecure, while the

opposite holds for economic growth and agricultural employment. These effects are in line with the

cross-country food security analysis of Dithmer and Abdulai 2017.

Travel times, climate extremes, and food insecurity.—We next investigate whether the impact of

climate extremes varies with the average travel time to the closest large city in a region. The results

of the estimation of model EM2 are presented in Table 6. Given the importance of agro-ecological

characteristics in determining the sign of impacts, we focus on dry conditions and take a sub-sample

of arid, semi-arid and sub-humid zones (i.e., the areas where dry conditions increase food insecurity

as was shown in Table 5). Based on prediction 1, we expect that these adverse climate extremes

affect the population of a region more when market access is low. We find indeed that local dry
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Table 5: The effect of climate extremes on food insecurity across Agro-Ecological Zones

Food Insecurity (yes = 1, no = 0)
b se

CE adm2 dry 0.006 (0.04)
AEZ Arid × CE adm2 dry 0.138 ∗∗ (0.05)
AEZ Humid × CE adm2 dry -0.108 ∗∗ (0.04)
AEZ Semi-Arid × CE adm2 dry 0.265 ∗∗∗ (0.05)
AEZ Sub-Humid × CE adm2 dry 0.058 (0.04)
CE adm2 wet -0.069 ∗∗∗ (0.02)
AEZ Arid × CE adm2 wet -0.197 ∗∗ (0.06)
AEZ Humid × CE adm2 wet 0.064 ∗∗ (0.02)
AEZ Semi-Arid × CE adm2 wet -0.017 (0.02)
AEZ Sub-Humid × CE adm2 wet 0.153 ∗∗∗ (0.02)
CE country dry 0.209 ∗∗∗ (0.03)
Arid country × CE country dry 0.747 ∗∗∗ (0.14)
CE country wet 0.141 ∗∗ (0.04)
Arid country × CE country wet -0.812 ∗∗∗ (0.08)
CE neighboring countries dry -0.415 ∗∗∗ (0.08)
CE neighboring countries wet 0.417 ∗∗∗ (0.08)
Conflict intensity (adm1) 0.123 ∗∗∗ (0.01)
Log population density 0.354 ∗ (0.14)
Log GDP pc (country, y-1) -0.415 ∗∗∗ (0.12)
Share agricultural employment (y-1) -0.333 ∗∗∗ (0.09)

Second administrative unit FE Yes
Year-month FE Yes
N 40600
R-squared 0.274
Standard errors in parentheses are clustered at panelid. Tropical Highlands is the base
AEZ category.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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conditions in arid, semi-arid, and sub-humid zones have a larger impact on food insecurity in regions

with a longer travel time to city (column (1)). The estimated effect reduces but remains significant

when additionally controlling for travel time to port (column (2)). Column (3) shows that the

estimated effect is robust to controlling for factors that may be correlated with local market access

(conflicts and agricultural employment). Based on the preferred specification in column (3), a 10

percentage points increase in an administrative unit’s area affected by dry conditions is estimated to

increase the likelihood of food insecurity on average with 1.56 percentage points. This is the effect

for a region with average travel times to city. When the travel time to city is at the 90th percentile,

the effect increases to 2.42 percentage points, while at the 10th percentile the effect is only 0.66

percentage points.

Based on prediction 2, we expect that local and national adverse climate extremes hit a region

harder when it is less connected to overseas international markets. We indeed find that local dry

conditions in arid, semi-arid, and sub-humid zones have a larger impact on food insecurity in areas

with longer travel times to the closest large port, a proxy for international market access (column

(2)). Column (3) shows that also this effect is robust to controlling for factors that are potentially

correlated with market access. Based on column (3) we estimate that the effect of a 10 percentage

points increase in local dry conditions is a 2.69 percentage points increase in food insecurity for a

travel time to port at the 90th percentile. At the 10th percentile, the effect is only 0.25 percentage

points. In regions that are less connected to overseas international markets, food insecurity is also

more sensitive to dry climate extremes in the rest of the country (column (2)). Also this effect

remains robust when controlling for potential confounding factors (column (3)).
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Trade, storage, climate extremes, and food insecurity.—Lastly, we explore the substitutability

and complementarity of international trade and storage for country-wide and multi-year climate

extremes in Tables 7 and 8. We again focus on dry conditions in arid, semi-arid, and sub-humid

areas. Table 7 shows the results of model EM3 that estimates the impact of international cereal

imports (column (1)), storage (column (2)) and their interaction (column (3)) on the food insecurity

impacts from country-wide climate extremes. In column (3) we estimate that a 10 percentage points

increase in the country area affected by dry conditions increases the likelihood of food insecurity

with 3.39 percentage points. For an increase in cereals imports to the 90th percentile (+18% points

increase in cereal imports compared to previous year), the effect of dry conditions on food insecurity

reduces to 2.38 percentage points. For an increase in stock-to-use ratio to the 90th percentile (+ 3%

in previous year’s stock to use ratio), the effect of dry conditions on food insecurity reduces to 0.35

percentage points. Both imports and storage have a buffering impact, and the significant positive

interaction in column (3) suggests that they partly substitute one another. The food insecurity

reduction achieved by the combination of storage and trade is larger than any of the two separately.

At the same time, there is some degree of substitutability as, when a country increases cereal

imports, the additional impact of previous year’s stocks on food insecurity is smaller. Similarly,

when a country has cereal stocks available from last year, the additional impact of cereal imports

on buffering food insecurity is smaller. Lastly, we explore what happens when severe or extreme

dry conditions persist for multiple years. Imagine a year with dry conditions that are buffered

by an increase in cereals imports or the availability of cereal stocks. The estimation in Table 8

investigates whether the buffering effects of imports or stocks persists when a drought occurs also in

the subsequent year. The estimated interaction effects in column (3) provide three insights. First,

the buffering effect of cereal imports persists also when dry conditions occur two years in a row.

Second, the buffering effect of stocks reduces when dry conditions occur two years in a row. Third,

the positive interaction effect between stocks and imports is smaller in magnitude than in Table 7.

These results suggest that in the case of multi-year droughts, there is less smoothing via storage,

and trade and storage are less substitutable. As stocks can become depleted, imports may present

an important buffer against extreme conditions that persist for multiple years.
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3.4 Robustness tests

As a first robustness test, we investigate the responsiveness of local food prices to local climatic

conditions (see Appendix Section S6.3). Using data on subnational monthly cereal prices from 11

countries for the period 2010–2016, we find that dry climatic conditions increase local food prices

in arid and semi-arid areas (Table S1). This effect is significantly larger for regions that face above

average travel times to cities of a size larger than 200,000 inhabitants (Table S2 columns (4) and

(5)). The effect is not significant for travel times to smaller cities of less than 200,000 inhabitants

(Table S2 columns (2) and (3)).

Next, we test the robustness of the findings on local market access, climate extremes, and food

insecurity to the definition of the key variables of interest. The interaction effect between local

climate extremes and travel time to city is driven by moderate food insecurity (Table S7). The

interaction is mostly driven by severe local dry conditions (Table S4). The interaction is overall

robust to altenative cutoffs of a city. It remains present for smaller cities (50–100k inhabitants), but

reduces in significance and magnitude for larger cities (200–500k inhabitants) when combined with

the travel time to port indicator (Table S5).

Lastly, we test the robustness of the findings on international market access, climate extremes,

and food insecurity. The estimated interaction effect between travel time to port and local climate

extremes is driven by moderate food insecurity (Table S7). When we distinguish between severe

and extreme local dry conditions, the interaction with travel time to port is shown to be driven by

the latter (Table S4). The estimated interaction effect between travel time to port and country level

climate extremes is present for both moderate and high levels of food insecurity (Tables S7 and S6)

and driven by severe dry conditions (Table S4).

4 Discussion

This paper investigates under which conditions agricultural markets can buffer the food insecurity

impacts of climate extremes. For a region that is isolated from outside markets, food prices drop

when local production is high and rise when local production fails. While the price response smooths

households’ nominal incomes, food consumption remains as variable as local production. When

connected to outside markets, nominal incomes become more responsive to local production, but

food consumption becomes less responsive to local production. Under a beneficial climate shock,
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markets direct the surplus local supply to exports and the build-up of stocks. This buffers the drop

in local prices, thereby raising agricultural income and allowing for asset accumulation. Under a

detrimental climate shock, markets compensate the deficit in local supply through imports and the

utilization of stocks. This buffers the increase in local prices, thereby making food purchases less

expensive. Households can borrow or use the assets accumulated during the good harvest years for

food purchases. We derive these findings from a dynamic stochastic model that integrates household-

level consumption smoothing with market-based storage and trade. Numerical simulations reveal

the importance of households’ transaction costs and regions’ trade costs to the international market

in buffering local and national climate shocks. The relative contribution of storage and trade is

determined by the spatiotemporal pattern of climate shocks. We find empirical support for the

theoretical predictions using subnational and sub-annual data from 2009 to 2016 for 12 countries in

Sub-Saharan Africa, a region where climate extremes pose severe food security risks. In areas where

households face relatively larger market transaction costs, approximated by longer travel times to

the closest large city, dry climatic conditions have a larger detrimental impact on food insecurity.

Severe and extreme dry conditions have also a larger detrimental impact on food insecurity in areas

with longer travel times to ports. International cereal imports and storage buffer the food insecurity

impacts of climate extremes and are partly substitutes, partly complements for one another.

The study complements previous work on the linkages between trade costs, prices, and agricul-

tural production shocks in India (Allen and Atkin 2022; Burgess and Donaldson 2017). Infrastructure

development – through expansion of railroads from 1861 to 1930 in Burgess and Donaldson 2017

and expansion of highway network from 1970 to 2009 in Allen and Atkin 2022 – is linked with a

reduction in the responsiveness of local prices to local yield shocks and an increase in the respon-

siveness of nominal agricultural incomes to local yield shocks. The net effect on real incomes is

theoretically ambigous (Burgess and Donaldson 2010). Empirical results in terms of real incomes

indeed differ, with Allen and Atkin 2022 finding an increase in the responsiveness of real incomes to

local yield shocks with increased market access, while Burgess and Donaldson 2017 a decrease. Here,

we demonstrate that the ambiguity on real incomes does not necessarily hold for consumption as

consumption can be decoupled from real income via inter-temporal transfers. By considering savings

and asset accumulation, the theoretical model predicts a lower responsiveness of food consumption

to local climate shocks under increased market access. The prediction in confirmed by the empirical

analysis and is in line also with Burgess and Donaldson 2010, who find a smaller impact of rainfall
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shocks on famines in India due to improved railroad infrastructure.

This study did not explore all possible climatic and economic conditions that could influence

market-based consumption smoothing. First, we did not consider reallocation of households’ pro-

ductive inputs and resources in response to climate shocks. Decisions for most agricultural inputs

(e.g., acreage, crop varieties, planting dates) are taken before the harvest is realized and the output

price is known. The agricultural supply response exhibits thus a one period lag: when a climate shock

affects the current harvest, farmers adjust the production planned for the next harvesting period.

When farmers are price-takers with rational expectations and without alternative income gener-

ating activities, theory predicts that storage and planned production move in opposite directions

(Williams and Wright 1991). Empirical studies are, however, inconclusive about the supply response

of farm households in Sub-Saharan Africa to climate and weather shocks, finding that it depends

on labor availability, the level of risk and risk aversion, market integration, and land availability

(Girard et al. 2021). Switching income generating activities is furthermore an important coping

strategy, with rainfall shortages reallocating labor to the non-agricultural sector (Branco and Féres

2020) or to migration-related jobs (Josephson and Shively 2021). Further research could expand

the theoretical model with elastic labor and land supply and investigate how the buffering effect of

markets varies across livelihood strategies. Second, we did not investigate how the buffering effect

of markets varies with households’ income level. Market participation increases asset ownership,

livestock holding, and income mostly for rich households (Ojong et al. 2022). In the face of weather

shocks, poor households are more vulnerable (Letta et al. 2018) and engage in asset smoothing rather

than consumption smoothing (Carter and Lybbert 2012; Janzen and Carter 2019). Future empir-

ical research, building on rich household-level data, is needed to investigate how to achieve equal

gains from market-based adaptation policies. Third, we focused on the impact of local and national

climate extremes and abstracted from climate extremes and other shocks elsewhere that may affect

price volatility on the world market. The theoretical model could be extended to include a stochastic

world market by building on Gouel and Jean 2015. Empirically, combining household survey data

with historical price data (Amolegbe et al. 2021) or with local trade liberalization measures (Baylis

et al. 2019; Topalova 2010) are promising approaches to investigate distributional aspects of world

market shocks on local food insecurity.
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5 Conclusion

Global warming is associated with changes in the frequency, intensity, duration, timing, and the

spatial extent of temperature and precipitation extremes (Seneviratne et al. 2021). Coping with

these extreme conditions will be a huge and inevitable challenge for policy makers, especially in

developing countries. This paper provides new theoretical and empirical insights on the importance

of facilitating market-based coping mechanisms. First, the findings show that investments in access

to markets and credit markets are necessary to ensure that macro-level mechanisms (trade and

storage) are effective at buffering local food insecurity. This can be achieved by expanding local

transport infrastructure, investing in port facilities, and improving access to banks. Second, the

findings show that storage and trade are partly substitutes in buffering the food insecurity impacts

of climate extremes. This implies that coping strategies can, to some extent, be tailored to countries’

own context, including countries’ borrowing constraints and infrastructure. A country that already

has storage facilities in place can further invest in reducing the costs and increasing the effectiveness,

for example by stimulating private sector involvement and improving within-country distribution

of the storage facilities (The World Bank 2021). A country that already has a diverse export

activity or a growing export potential can further invest in the performance of its export sectors,

thereby building up the necessary foreign exchange to cover years with enhanced food import needs

(WTO 2019). At the same time, it appears important to establish some capacity for both market

mechanisms given their complementarity in buffering climate extremes with different spatiotemporal

patterns, including multi-year and widespread events.
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6 Appendix

S6.1 Derivation of the household problem

The household problem is an intertemporal optimization problem with one state variable, assets

Xmt, and three control variables, market purchases of food qpmt, market sales of food qsmt, and

consumption of the outside good Cm,o,t. The solution of the optimization can be derived with

Pontryagin’s Maximum Principle. The present value Hamiltonian is

Hmt =βt ln
(
(αC

σ−1
σ

m,ag,t + C
σ−1
σ

m,o,t)
σ

σ−1

)
+ ηmt

[
Pm,o,t(H{m, o, t} − Cm,o,t − τHH

m (qsmt + qpmt))

+Pm,ag,t(H{m, ag, t} − Cm,ag,t) + Φmt + (1 + r)Xmt

]
,

(18)

with ηmt the co-state variable. According to the maximum principle, the optimal solution satisfies

the conditions

a. ∂Hmt

∂qsmt
= 0

⇒ βt 1

(αC
σ−1
σ

m,ag,t+C
σ−1
σ

m,o,t)

αC
−1
σ

m,ag,t = ηmt(Pm,ag,t − τHH
m Pm,o,t) if qsmt > 0 and qpmt = 0,

b. ∂Hmt

∂qpmt
= 0

⇒ βt 1

(αC
σ−1
σ

m,ag,t+C
σ−1
σ

m,o,t)

αC
−1
σ

m,ag,t = ηmt(Pm,ag,t + τHH
m Pm,o,t) if qpmt > 0 and qsmt = 0,

c. ∂Hmt

∂Cm,o,t
= 0 ⇒ βt 1

(αC
σ−1
σ

m,ag,t+C
σ−1
σ

m,o,t)

C
−1
σ

m,o,t = ηmtPm,o,t,

d. ηmt =
∂Hm,t+1

∂Xm,t+1
⇒ ηmt = (1 + r) Et[ηm,t+1].

Combining these conditions gives optimal intra-temporal household consumption allocation

α

(
Cm,ag,t

Cm,o,t

) 1
σ

=
Pm,o,t

Pm,ag,t − τHH
m Pm,o,t

if qsmt > 0 and qpmt = 0,

α

(
Cm,ag,t

Cm,o,t

) 1
σ

=
Pm,o,t

Pm,ag,t + τHH
m Pm,o,t

if qsmt = 0 and qpmt > 0,

(19)

or

α

(
Cm,ag,t

Cm,o,t

) 1
σ

=
Pm,o,t

P ′
m,ag,t

, (20)
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with P ′
m,ag,t the household shadow price of the agricultural good, Pm,ag,t − τHH

m Pm,o,t ≤ P ′
m,ag,t ≤

Pm,ag,t+ τHH
m Pm,o,t. The optimality conditions also lead to the Euler equations determining house-

hold intertemporal consumption allocation

(αC
σ−1
σ

m,ag,t + C
σ−1
σ

m,o,t)C
1
σ
m,ag,tP

′
m,ag,t

=
1

(1 + r)β
Et

[
(αC

σ−1
σ

m,ag,t+1 + C
σ−1
σ

m,o,t+1)C
1
σ
m,ag,t+1P

′
m,ag,t+1

]
,

(21)

(αC
σ−1
σ

m,ag,t + C
σ−1
σ

m,o,t)C
1
σ
m,o,tPm,o,t

=
1

(1 + r)β
Et

[
(αC

σ−1
σ

m,ag,t+1 + C
σ−1
σ

m,o,t+1)C
1
σ
m,o,t+1Pm,o,t+1

]
,

(22)

with Ξm,t,t+1 = β
(
(αC

(σ−1)/σ
m,ag,t + C

(σ−1)/σ
m,o,t )C

1/σ
m,o,tPm,o,t

)(
(αC

(σ−1)/σ
m,ag,t+1 + C

(σ−1)/σ
m,o,t+1 )C

1/σ
m,o,t+1Pm,o,t+1

)−1

the stochastic discount factor.
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S6.2 Model quantification

The challenge with solving a stochastic storage model with rational expectations is deriving consis-

tency between the equilibrium storage values and price expectations (Gouel 2013). The equilibrium

values of storage depend on future price expectations, but the price in the next period in turn

depends on that period’s storage value, which in turn depends on future price expectations, etc.

In a trade and storage model, additional complexity is generated by the fact that the trade and

storage behavior of one market influences the price expectations of agents in other markets. As

highlighted by Porteous 2019, applications of rational expectations trade and storage models are

therefore generally limited to two markets. Here we use a finite-period approximation to solve the

model for four markets20. In particular, the infinite-horizon problem is converted into a moving

series of three-period problems. A limitation of this approach is that it underestimates storage as

the incentive for storage is not only to alleviate potential production shortfalls in the next period,

but also to have sufficient supplies available to alleviate potential production shortfalls in more dis-

tant future periods. The difference in storage volume between a series of two-period models and

stochastic dynamic programming is illustrated in Williams and Wright 1991 Figure 3.3 (p. 66) and

Table 3.1 (p. 71). The model is specified as a Mixed Complementary Problem (MCP) in GAMS.

We quantify a deterministic equivalent of the stochastic problem by substituting the expectations

operators with deterministic sums using sparse grid integration (Heiss and Winschel 2008). With

accuracy level equal to 3 and using a nested integral, the procedure leads to 9 nodes for the covariate

shock simulations and 129 nodes for the idiosyncratic shock simulations. Figure S1 shows the nodes

and weights for a covariate shock Hm,ag,t(s) with states s ∈ {s1 = −6.13, s2 = 0, s3 = 6.13}.

The equations for the model solution of the finite period problem are the same as the ones of

the infinite period problem developed in the main text except for the transversality condition. For

a problem with a finite number of T periods, the transversality condition is:

Et

[
Xm,T

(1 + r)T

]
= 0 (23)

20The method allows us to solve the rational expectations model for 8 state variables (agricultural good availability
and household assets in each of the four markets).

46



t = 0 t = 1 t = 2

s1

s2

s3
s1

s2

s3
s1

s2

s3

s1

s2

s3

𝑤!! = 0.0278

𝑤!" = 0.1111

𝑤!# = 0.0278
𝑤"! = 0.1111

𝑤"" = 0.4444

𝑤"# = 0.1111

𝑤#! = 0.0278

𝑤#" = 0.1111

𝑤## = 0.0278

Figure S1: Nodes and weights for sparse grid integration of the expectation of a covariate production
shock.

S6.3 Food price analysis

For the food price regressions, data is available for 11 countries (Burkina Faso, Chad, Ethiopia,

Kenya, Mali, Mauritania, Mozambique, Niger, Nigeria, Somalia, and Sudan), 97 second administra-

tive units and 84 time periods from 2010 to 201621.

Data on cereal prices is obtained from the FEWS NET Staple Food prices and FAO GIEWS

domestic food prices databases. We select local prices of storable cereal crops (maize, rice, millet,

sorghum, teff, and wheat) and their derived products (maize meal, wheat flour, ...)22. Prices are

recorded monthly at the market level. When more than one market is recorded for one administrative

unit, we take a simple average. Prices are corrected for inflation (using January 2010 as base year)

and converted into US Dollars using the local inflation and exchange rates from IMF.

21We select only those areas with at least 1 observation per quarter of the year between 2010 and 2016. The
dataset obtained is balanced at 4-month time interval, such that the same seasonal variation as in the food insecurity
regression is covered.

22There is not sufficient data available on imported food products in order to study the relationship between import
food prices and travel time to port.
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We estimate the following two log-linear models

Log(Piωmy) =β1CEadm2
imy + β2CEcountry

imy + β3CEnb countries
cmy

+ β4CEadm2
imy ∗AEZi + β5CEcountry

imy ∗AEZc

+ µi + µω + µmy + ϵiωmy,

(24)

Log(Piωmy) =β1CEadm2
imy + β2CEcountry

imy + β3CEnb countries
cmy

+ β4CEadm2
imy ∗ TT city

i

+ µi + µω + µmy + ϵiωmy,

(25)

with Piωmy the local price of cereal product ω in administrative unit i in month m of year y. The

independent variables are the same as in the food security analysis in the main text. Product fixed

effects (µω) are included to control for time invariant product-specific characteristics that influence

food prices. Administrative unit (µi) and time (µmy) fixed effects are included to control for time

invariant administrative unit-specific characteristics and global temporal trends that influence food

prices. The results are presented in Tables S1 and S2.

Table S1: The effect of climate extremes on local cereal prices across Agro-Ecological Zones.

(1) (2) (3)
b se b se b se

CE adm2 dry -0.034 ∗ (0.02) -0.028 (0.02) -0.000 (0.02)
AEZ Arid × CE adm2 dry 0.384 ∗∗∗ (0.04) 0.211 ∗∗∗ (0.05) 0.175 ∗∗∗ (0.05)
AEZ Semi-Arid × CE adm2 dry 0.259 ∗∗∗ (0.04) 0.173 ∗∗∗ (0.04) 0.142 ∗∗∗ (0.04)
AEZ Sub-Humid × CE adm2 dry 0.152 (0.09) 0.152 (0.09) 0.138 (0.08)
CE adm2 wet -0.038 (0.02) -0.073 ∗∗∗ (0.02) -0.066 ∗∗∗ (0.02)
AEZ Arid × CE adm2 wet -0.127 ∗∗∗ (0.03) -0.026 (0.03) -0.024 (0.03)
AEZ Semi-Arid × CE adm2 wet 0.016 (0.02) 0.090 ∗∗∗ (0.02) 0.080 ∗∗∗ (0.02)
AEZ Sub-Humid × CE adm2 wet 0.133 ∗∗∗ (0.03) 0.189 ∗∗∗ (0.03) 0.181 ∗∗∗ (0.03)
CE country dry 0.123 (0.20) -0.005 (0.21)
Arid country 0.322 ∗∗∗ (0.05) 0.325 ∗∗∗ (0.05)
Arid country × CE country dry 0.183 (0.20) 0.068 (0.21)
CE country wet 0.810 ∗∗∗ (0.13) 0.866 ∗∗∗ (0.13)
Arid country × CE country wet -1.289 ∗∗∗ (0.13) -1.239 ∗∗∗ (0.13)
CE neighboring countries dry 0.631 ∗∗∗ (0.08)
CE neighboring countries wet -0.274 ∗∗ (0.08)

N 17099 17099 17099
R-squared 0.799 0.805 0.806
Second administrative unit (Adm2), Product, and Year-Month fixed effects included. Robust standard errors are
reported. No occurrence of climate extremes in Humid AEZ in the sample. AEZ Tropical Highlands is the base
category.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table S4: The effect of climate extremes (severe versus extreme dry conditions) and market access
on food insecurity (Arid, Semi-Arid and Sub-Humid areas)

Food Insecurity (yes = 1, no = 0)
b se

CE adm2 severe dry -0.094 (0.07)
CE country severe dry -0.713 ∗∗∗ (0.15)
CE adm2 severe dry × CE country severe dry 3.973 ∗∗∗ (0.59)
CE adm2 extreme dry 0.169 ∗∗∗ (0.02)
CE country extreme dry 0.511 ∗∗∗ (0.07)
CE adm2 extreme dry × CE country extreme dry 0.255 (0.17)
CE adm2 severe dry × Log tp -0.564 ∗∗ (0.22)
CE country severe dry × Log tp 1.129 ∗∗∗ (0.20)
CE adm2 severe dry × CE country severe dry × Log tp 8.578 ∗∗∗ (1.92)
CE adm2 extreme dry × Log tp 0.358 ∗∗∗ (0.06)
CE country extreme dry × Log tp -0.268 ∗∗ (0.10)
CE adm2 extreme dry × CE country extreme dry × Log tp -0.942 ∗ (0.41)
CE adm2 severe dry × Log tc 0.483 ∗∗∗ (0.13)
CE country severe dry × Log tc -0.100 (0.16)
CE adm2 severe dry × CE country severe dry × Log tc -4.089 ∗∗∗ (1.15)
CE adm2 extreme dry × Log tc 0.044 (0.04)
CE country extreme dry × Log tc -0.001 (0.08)
CE adm2 extreme dry × CE country extreme dry × Log tc -0.086 (0.27)

N 31552
R-sqr 0.299
Admin2 and Year-Month fixed effects included. Standard errors clustered at panelid. The variables tc (Log travel
time to city) and tp (Log travel time to port) are centered at country mean. The same control variables as in the
main regression are included.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table S6: The effect of climate extremes and market access on alternative definition of food insecu-
rity.

FS high (1 = yes, 0 = no)
b se

CE adm2 dry 0.098 ∗∗∗ (0.02)
CE country dry 0.222 ∗∗∗ (0.02)
CE adm2 dry × CE country dry -0.116 (0.08)
CE adm2 dry × Log tp -0.094 (0.06)
CE country dry × Log tp 0.105 ∗∗ (0.03)
CE adm2 dry × CE country dry × Log tp -0.081 (0.20)
CE adm2 dry × Log tc 0.032 (0.03)
CE country dry × Log tc 0.081 ∗∗∗ (0.02)
CE adm2 dry × CE country dry × Log tc -0.185 (0.12)

Control variables Yes
Admin2 and country wet CE Yes
Neighboring countries’ CE Yes
Second administrative unit FE Yes
Year-month FE Yes
N 24275
R-squared 0.166
Standard errors in parentheses are clustered at panelid. The variables tc (Log travel time
to city) and tp (Log travel time to port) are centered at country mean. The default control
variables are conflict intensity, GDP pc, population density, and agricultural employment.
Additional controls are conflict intensity x travel times, conflict intensity x climate extremes,
agricultural employment x climate extremes.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table S7: The effect of climate extremes and market access on alternative definition of food insecu-
rity.

FS low (1 = yes, 0 = no)
b se

CE adm2 dry 0.122 ∗∗∗ (0.02)
CE country dry 0.066 ∗ (0.03)
CE adm2 dry × CE country dry 0.394 ∗∗∗ (0.10)
CE adm2 dry × Log tp 0.291 ∗∗∗ (0.05)
CE country dry × Log tp 0.095 ∗ (0.05)
CE adm2 dry × CE country dry × Log tp 0.127 (0.19)
CE adm2 dry × Log tc 0.094 ∗∗ (0.03)
CE country dry × Log tc -0.051 (0.04)
CE adm2 dry × CE country dry × Log tc -0.106 (0.14)

Control variables Yes
Admin2 and country wet CE Yes
Neighboring countries’ CE Yes
Second administrative unit FE Yes
Year-month FE Yes
N 29478
R-squared 0.317
Standard errors in parentheses are clustered at panelid. The variables tc (Log travel time
to city) and tp (Log travel time to port) are centered at country mean. The default control
variables are conflict intensity, GDP pc, population density, and agricultural employment.
Additional controls are conflict intensity x travel times, conflict intensity x climate extremes,
agricultural employment x climate extremes.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

55



S6.5 Supplementary Figures
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Region A: 
 high HH transaction 

high world market

Region B: 
 low HH transaction 
high world market

Region C: 
 high HH transaction 

low world market

Region D: 
 low HH transaction 

low world market
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Figure S2: Simulation results under idiosyncratic agricultural production shock for 20 time periods
with and withut borrowing constraints.
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Figure S3: Food consumption smoothing ratio (smoothing ratio = 1 − CVconsumption/CVproduction)
under covariate agricultural production shocks for different values of storage costs and trade costs
with the world market. The smoothing ratio is calculated based on a simulation of 50 time periods
for the default set-up and for borrowing constraints. For temporal correlation, the simulation is
done for 100 periods where each shock persists for two periods.
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