

Samples collection and assays-by-sequence provided to the scientific community

Hervé Acloque

► To cite this version:

Hervé Acloque. Samples collection and assays-by-sequence provided to the scientific community. Final conference of the GENE-SWitCH project, EAAP; INRAE; INRAE-T, Nov 2023, Brussels, Belgium. hal-04498288

HAL Id: hal-04498288 https://hal.inrae.fr/hal-04498288

Submitted on 11 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The regulatory GENomE of SWine and CHicken: functional annotation during development

Samples collection and assays-by-sequence provided to the scientific community

Hervé Acloque - INRAE

November 6, 2023

GENE-SWitCH Final Conference

This project has received funding from the European Union's **Horizon 2020 Research and Innovation** Programme under the grant agreement **n**[•] **817998** @GeneSwitch - www.gene-switch.eu

The regulatory GENomE of SWine and CHicken: functional annotation during development

OVERVIEW

A dynamic of regulatory elements exist in the skeletal muscle during pig fetal and adult development

Salavati et al. 2021

Functional annotation of 7 tissues during development

3 developmental stages: Early organogenesis

Late organogenesis

Newborns

7 Tissues: liver, skeletal muscle, small intestine, cerebellum, dorsal epidermis, lung and kidney

Endoderm

Mesoderm

Ectoderm

Sampling and biobanking of tissues

	IRA	2		ROSL	
	K	AF.			
Fetus 30D	Fetus 70D	Piglet	Embryo 8D	Embryo 15D	Chick
Large White			Advanded Intercross Line (AIL)		
2 pools of males and 2	2 males and 2 females	2 males and 2 females	2 pools of males and 2	2 males and 2	2 males and 2

Biobanking of 6 additional tissues: **gonads, cerebral cortex, large intestine, heart, stomach, spleen**

Metadata on individuals, tissues and pool of tissues are available on the FAANG Data Portal and the BioSamples database.

All the protocols for tissue sampling and DNA/RNA extraction are also publicly available on the FAANG Data Portal and the BioSamples database.

SAMEA7628703

Sampling and biobanking of tissues

SSC_INRAE_GS_WP1_FT_30dpf_1

Updated on: 22-10-2020 08:53

birth date 2019-11-21 (YYYY-MM-DD) birth location Nouzilly birth location latitude 47.32432 (decimal degree)
birth location longitude 0.46596 (decimal degree) birth weight 1.89 (grams) breed Large white
father id FR22XPX201805117 health status normal insemination date 2019-10-22 (YYYY-MM-DD)
material organism mother id FR17MAG201711684 mother parity 5.0 mother weight 252.0 (kilograms)
organism Sus scrofa pregnancy length 30.0 (day) project FAANG
sample description Pig_large_white_fetus_30dpf sample name SSC_INRAE_GS_WP1_FT_30dpf_1
secondary project GENE-SWitCH sex Male
submission description Samples used for GENE-SWitCH WorkPackage 1. It includes fetus of 30d, 70d and one day old glets.
submission title INRAE-FAANG-ACLOQUE-Pig-200915 derived from (reverse) SAMEA7628751
derived from (reverse) SAMEA7628787 derived from (reverse) SAMEA7628823
derived from (reverse) SAMEA7628859 derived from (reverse) SAMEA7628895
derived from (reverse) SAMEA7628931 derived from (reverse) SAMEA7628967
derived from (reverse) SAMEA7629059 derived from (reverse) SAMEA7629095
derived from (reverse) SAMEA7629131 derived from (reverse) SAMEA7629167

A set of complementary molecular assays to unravel regulatory developmental switches

Assay		Aim	Accesion	Libraries
		Chromatin accessibility	PRJEB44468	84
AIAC-Seq			PRJEB45945	84
	H3K27Ac			
	H3K4me1	Map regulatory elements		
ChIP-seq	H3K4me3	(promoters, enhancers and	On-going	
	H3K27me3	repressors) Structural annotations		
	CTCF			
	totRNA-seq		PRJEB41970	84
	(polyA+)	TSS and TTS identification Transcripts structures and	PRJEB42025	84
	smallRNA-		PRJEB42001	84
KNA-seq	seq	categories	PRJEB42041	84
	lso-seq	Transcripts numbers	PRJEB50963	21
			PRJEB48060	21
	DDDC		PRJEB41822	63
DNA	NNDJ	Functional Elements	PRJEB41829	63
methylation	MCDS	Active and inactive promoters	PRJEB42772	21
	VVUDS		PRJEB42775	21
Promoter Captu	ire Hi-C	Interaction maps	PRJEB44486	12
(liver and muscl	e only)	Enhancer-promoter interactions	PRJEB53986	12

Pipelines used for the different assays

Assay		Pipelines		
ATAC-seq		nf-core ATACseq : https://nf-co.re/atacseq		
ChIP-seq		nf-core ChIPseq : https://nf-co.re/chipseq		
	totRNAseq	dedicated pipeline TAGADA (Kurylo et al. 2023) : https://github.com/FAANG/analysis-TAGADA		
RNA-seq	smallRNAseq	nf-core smRNAseq : https://nf-co.re/smrnaseq		
	lso-seq	Dedicated pipeline (Guizard et al. 2023): https://github.com/FAANG/analysis-isoseq nf-core/isoseq		
DNA	RRBS	Dedicated pipeline adapted from nf-core/methylseq		
methylation	WGBS	https://github.com/FAANG/GSM-pipeline		
Promoter Capt	ure Hi-C	under development		

Achievements: ATAC-seq

Assay	Aim	Accesion	Libraries
	Chromotin ecococibility	PRJEB44468	84
AIAC-seq	Chromatin accessibility	PRJEB45945	84

	Raw reads 150PE (median by assay)	Uniquely mapped PE reads (median by assay)	% MT reads (mean by assay)	Number of peaks (median per tissue)
Pig	84,710,247	57,104,004	2,33%	68,490
Chicken	92,284,762	59,681,384	4,88%	80,306

Protocol:

https://data.faang.org/api/fire_api/experiments/DIAGENODE_SOP_GENESWITCH_ATAC-SEQ_20201118.pdf

Commercial kit (DIAGENODE): ATAC-seq package for tissue (C01080006)

Achievements: ATAC-seq

Quality control: reads distribution at TSS for pig and chicken libraries

Achievements: ATAC-seq

Small intestine marker: NKX2.3

pig genome version 11.1	v 14 v 14:110,719,129-110,724,434	Go 👚 ◄ ► 🖗	• ■ × 📮 I					[
				5,306 bp —					
	110,720,000 bp		110,721,000 Бр	110	,722,000 bp	1	110,723,000 bp		110,724,000 bp
30dpf-Liver_ATAC	(P - 1.80)								
70dpf-Liver_ATAC	(P - 180)								
NB-Liver_ATAC	p-180								
30dpf-SmallIntestine_AT.	p- 12g								
70dpf-SmallIntestine_AT.	p-130								
NB-SmallItine_ATAC	U-100								
30dpf-Lung_ATAC	p-120								
70dpf-Lung_ATAC	D-180								
NB-Lung_ATAC	D-180							_	
30dpf-Cerebellum_ATAC	D-180								
70dpf-Cerebellum_ATAC	p-180								
NB-Cerebellum_ATAC	p-180					_			
30dpf-Kidney_ATAC	p- 120								
70dpf-Kidney_ATAC	p-120								
NB-Kidney_ATAC	p-180								
30apt-Muscle_ATAC	p-180								
NB-Muscle_ATAC	[P-180]								
Gene				, , , , , , ,	NKX2-3				

Achievements: ATAC-seq

.

HNF4A

Achievements: RNA-seq

Assays	Species	Date of released	Accession number	Number of libraries
totRNAseq	Pig	2020-12	PRJEB41970	84
(polyA+)	Chicken	2020-12	PRJEB42025	84
smallRNA-seq	Pig	2020-12	PRJEB42001	84
	Chicken	2020-12	PRJEB42041	84

	Raw reads (median)	Uniquely mapped PE reads (median)
Pig dataset (totRNAseq)	150,082,484	143,342,894
Pig dataset (smallRNAseq)	67,614,012	16,898,621
Chicken dataset (totRNAseq)	112,414,695	105,321,362
Chicken dataset (smallRNAseq)	66,104,048	20,486,160

Achievements: mRNA-seq Hierarchical clustering

stage

stage1 stage2

stage3

Achievements: smallRNA-seq

Read Length Distribution

Percentage of reads of each length

stage

stage1

stage2

Achievements: smallRNA-seq Hierarchical clustering

Achievements: Iso-seq

Assays	Species	Date of released	Accession number	Number of libraries
T	Pig	2022-03	PRJEB50963	21
Iso-seq	Chicken	2022-03	PRJEB48060	21

Species	Mapped reads (median)	Total Genes (median per tissue)	Total Transcripts (median per tissue)
Pig	3,080,464	19,578	85,311
Chicken (GRCg7w)	2,416,260	12,224	68,802

Protocol:

https://data.faang.org/api/fire_api/experiments/ROSLIN_SOP_GENESWITCH_WP1_Iso-seq_20210809.pdf

Achievements: Iso-seq

Sscrofa11.1 - Number of genes per Timepoint

Sscrofa11.1 - Number of transcripts per Timepoint

Timepoint

Achievements: DNA methylation UNIVERSITY & RESEARCH

Assays	Species	Date of released	Accession number	Number of libraries
RRBS	Pig	2020-12	PRJEB41822	63
	Chicken	2020-12	PRJEB41829	63
WGBS	Pig	2021-01	PRJEB42772	21
	Chicken	2021-01	PRJEB42775	21

	Raw reads (RRBS,mean) or coverage (WGBS)	Uniquely mapped reads (mean)
Pig dataset (RRBS)	59,265,612	41,485,928
Pig dataset (WGBS)	36X	
Chicken dataset (RRBS)	54,671,484	37,176,609
Chicken dataset (WGBS)	31X	

Achievements: DNA methylation Methylation levels at promoters

On-going ChIP-seq

- Protocols have been optimized for pig and chicken (ChIPmentation)
- Pig and chicken libraries have been produced and sequenced
- QC and dataset validation are on-going

Achievements: ChIP-seq (on-going)

Achievements: ChIP-seq (on-going)

HoxC complex

Achievement: Promoter Capture Hi-C INRAO

Assays	Species	Date of released	Accession number	Number of libraries
Capture Hi-C	Pig	2021-04	PRJEB44486	12
	Chicken	2022-06	PRJEB53986	12

 Protocols have been optimized for pig and chicken (Arima HiC + Agilent SureSelect)

https://data.faang.org/api/fire_api/experiments/INRAE_SOP_GENESWITCH_WP1_PROMOTER_CAPTURE_HI-C_20210325.pdf

• ~15,000 promoters being captured for each species

Achievement: Promoter Capture Hi-C INRAO

• FAIR principles applied to GENE-SWitCH

All metadata regarding samples, experiments and analysis are publicly available on the FAANG Data Portal. It includes protocols, sample descriptors, experimental parameters and analysis parameters.

All raw sequences have been deposited in the European Nucleotide Archive (ENA), pipelines are publicly available either on github or nf-core.

All the information and material related to GENE-SWitCH are easily Findable, Accessible, Interoperable and Reusable from the FAANG Data Portal.

• Accessible through the FAANG data portal https://data.faang.org/projects/GENE-SWitCH

orday name	opooloo	711011110	Noody (Jpo
PRJEB40576	Sus scrofa	ENA	Hi-C
PRJEB42041	Gallus gallus	ENA	microRNA profiling by high throughput sequencing
PRJEB41822	Sus scrofa	ENA	methylation profiling by high throughput sequencing
PRJEB45945	Gallus gallus	ENA	ATAC-seq
PRJEB42775	Gallus gallus	ENA	methylation profiling by high throughput sequencing
PRJEB48060	Gallus gallus	ENA	ISO-Seq
PRJEB42025	Gallus gallus	ENA	RNA-seq of total RNA
PRJEB42001	Sus scrofa	ENA	microRNA profiling by high throughput sequencing
PRJEB42772	Sus scrofa	ENA	methylation profiling by high throughput sequencing
PRJEB44468	Sus scrofa	ENA	ATAC-seq

Acknowledgments

Megan Davey, Jonathan Smith, Jacqueline Smith, Kasia Miedzinska, Sebastien Guizard, Mick Watson

INRAe

Mayrone Mongellaz, Sylvain Foissac, Cyril Kurilo, Cervin Guyomard, Marine Beinat, Jérôme Lluch, Tabatha Bulach, Jules Sabban, Hervé Acloque, Elisabetta Giuffra

Celine Sabatel, Wassim Lakhal, Laurence Servais

Sarah Djebali

Jani de Vos, Ole Madsen, Martijn Derks

Alexey Sokolov, Peter Harrison

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the grant agreement n° 817998 @GeneSwitch - www.gene-switch.eu

Thank you for your attention

